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Abstract. As a post-processing step, Non-Maximum Suppression (NMS) is
always used to obtain final detection boxes. It suppresses all detection boxes
which have a higher intersection-over-union (IoU) overlap than threshold T with
pre-selected detection box p with the maximum score in each iteration. How-
ever, it removes the positive object, if the positive object is adjacent to p with a
higher IoU. To overcome these shortages, we propose Penalty-NMS method
which according to the different overlap to assign penalty coefficient to decay
detections scores. In this process, we will not eliminate any detection boxes.
And we keep all detection boxes temporarily until the detections with lower
score will be eliminated after many rounds of iteration. Our method obtains
significant improvements on standard datasets like PASCAL VOC (1.9% for
Faster RCNN) and MS COCO (1.6% for R-FCN and 1.8% for Faster RCNN)
without any additional computational and parameters.

Keywords: Non-Maximum suppression � Detection boxes � Penalty coefficient
Intersection-over-union

1 Introduction

Object detection has always been a popular research topic in the field of computer
vision. In the past decade, traditional methods [26–28] have reached the bottleneck and
the accuracy is also not satisfying. However, owing to the image recognition which is
based on Convolutional Neural Network, has fulfilled remarkable achievements, thus in
the basis of the development of network, [3] has successfully made remarkable pro-
gress by introducing Convolutional Neural Network into object detection. Subse-
quently, many methods [1–3, 7, 32–34] based on the idea of [3] have significantly
improved in the part of accuracy and speed. At the meantime, many current object
detection pipelines due to the deep learning can be divided into three stages as follows:
(1) extracts region proposals, (2) classifies and refines each region proposal, and
(3) removes extra detection boxes that might belong to the same object. NMS is
frequently used in Stage (3) as an essential part of object detection and obtains
impressive effect in [1–3, 7, 8]. However, traditional NMS algorithm suppresses any
detection box which exceeds the threshold T. That is, it removes detection boxes which
have a IoU of pre-selected detection p exceed the given threshold T. Average precision
would drop as a result of the missing positives, thus, traditional NMS could also be
named as GreedyNMS. The current state-of-the-art object detection Faster RCNN
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based on ImageNet model [10–12] extracts feature maps and generates many region
proposals by Region Proposal Network(RPN) [2]. Then it uses GreedyNMS to get final
detections.

For any IoU threshold, GreedyNMS always tradeoffs between recall and precision.
This paper is devoted to solving the problem which leads to a miss due to the setting of
the threshold T. As a post-processing step, GreedyNMS aims to remove redundant
detections. When we solve its defects, we should not add any additional computation or
parameters. [9] proposed Tyrolean network (Tnet) to rescore all detections, then the
network can choose the best detection. Although this method improves detection
performance, it also adds extra training.

Static images which are addressed by stage (1) and (2) will generate multiple
detection boxes (denoted as set P), each detection box attaches a corresponding
detection score (denoted as set C). GreedyNMS selects the detection box p with the
highest score in the set P, removes p from set P and appends it to set K (final detection
boxes set). Then it calculates the IoU of p with the rest detection boxes, suppressing all
detections in which the IoU is higher than threshold T. At last, repetitively executing
the remaining detection boxes with the same procedures, then T plays an essential role
in object detection. When we selected a lower threshold T, the object which has a IoU
higher than T would be missed. Instead, when we select a larger threshold T, it would
generate more false positives which will lead to a drop in average precision. Hence,
GreedyNMS always compromises between recall and precision. For this purpose, we
propose Penalty Non-maximum suppression (Penalty-NMS) which penalizes all
detection boxes except detection box which has the highest score in each iteration.
Owing to the different overlap values, assigning penalty coefficient to reduce the
detection boxes score without using threshold T. In comparison with the box in which
the GreedyNMS suppression is greater than the threshold T, we’d like to use the
quadratic function to calculate the penalty coefficient to reduce detection score which
has different overlap values. Penalty-NMS obtains significant improvements in average
precision for Faster RCNN and R-FCN on standard datasets like PASCAL VOC and
MS COCO.

2 Related Work

Although the NMS algorithm is a core part of object detection, Numerous studies have
focused on feature design, classifier design, and object proposals in the past. Sur-
prisingly, Few studies on the NMS algorithms exist.

NMS was first employed in edge detection which is performed edge thinning to
remove spurious responses [35]. Subsequently, it has been applied to face detection
[29] and object detection [16]. [16] demonstrated that a greedy NMS algorithm, where
a detection box with the maximum score is selected and its neighboring boxes are
suppressed using a threshold improves performance over the approach used for face
detection [29]. Since then, greedy NMS has been the de-facto algorithm used in object
detection [1–3, 7, 24, 32].

For clustering detections, principled clustering formulation has been proposed in
[15, 16] which obtain good performance for object class detection. Several other
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clustering algorithms have been explored for the task of NMS: mean-shift clustering
[16], agglomerative clustering [17] and affinity propagation clustering [18]. However,
they have yet to surpass the performance of GreedyNMS. To link convnets and NMS
[26], directly generates a sparse set of detections by training an LSTM that NMS is
unnecessary. [21] designs a convnet that combines decisions of GreedyNMS with
different overlap thresholds, allowing the network to choose the GreedyNMS operating
point locally. [20] proposed a proposal subset optimization algorithm for detecting
salient objects as an alternative to NMS. [22] has proposed a true end-to-end learning
algorithm which makes the classifier aware of the NMS procedure at test time by
including GreedyNMS at training time. [23] operates on graphs, but requires a pre-
processing that defines a node ordering. [4, 30] tend to produce fewer spread-out
double detections and improve overall detection quality. [19, 24] propose to detect
pairs of objects instead of each individual objects in order to handle strong occlusion.
But there is a problem that single and double detections need to be handled.

In summary, most of the proposed algorithms can replace GreedyNMS. However,
we find that GreedyNMS still obtain the greatest performance for generic object
detection. [21] has obtain better results which is capable of performing NMS without
being given a set of suppression alternatives to choose from and without having another
final suppression step. But an additional deep network with vast parameters and
Computation is required. [25] proposed Soft-NMS that Our algorithm is similar to it
but does not add any parameters.

Although the traditional NMS algorithm can obtain better performance in several
generations of detector [1–3, 13, 14], it is still a greedy algorithm with obvious defects.
This paper aims to improve the NMS algorithm without any additional parameters or
computation.

3 Penalty-NMS

This section is divided into two parts. First of all, we review the details of the tradi-
tional NMS (i.e. GreedyNMS) and analyze the shortcomings of GreedyNMS as a post-
processing in object detection. Then we introduce Penalty-NMS which is proposed in
this paper in detail.

3.1 GreedyNMS

When a test image passes the detection system without post-processing, multiple
detections are generated around each object. However, each object only needs one
detection box. Therefore, GreedyNMS is used as a post-processing to eliminate
redundant detection boxes. GreedyNMS process is as follows:

1. Detection boxes set pfp1; p2 � � � png and the corresponding scores set
C c1; c2. . .cnf g.

2. Choose the detection box pmax which has a maximum score and merge it into set K
(the final detection boxes set). Then remove pmax from set P and calculate the IOU
overlap of the remaining detections with pmax.
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3. Set the threshold T. Remove all detections which have a IoU overlap that is greater
than T from set P.

4. Repeat steps 2 and 3 until set P is empty.

Threshold T in step 3 has a decisive influence on the final result of the entire
detection system. However, it’s hard for us to find a suitable value.

3.2 Penalty-NMS

The neighbor detection boxes have a higher likelihood of detecting the same object.
However, GreedyNMS always falls into local optimal, since it removes all the detec-
tion boxes which have a IoU overlap that is greater than threshold T. Unlike Gree-
dyNMS, we penalize all detection boxes that should be suppressed in GreedyNMS in
Piecewise Penalty-NMS or penalize all detection boxes regardless of whether they
have an overlap with detection box p in Continuous Penalty-NMS. The detection
boxes with lower scores are removed after multiple penalties.

(Piecewise Penalty-NMS). As it is shown in Eq. (1), Piecewise Penalty-NMS
penalizes any detection which has a higher IoU than T and the detection boxes with
a IoU less than T keep its original score. The penalty coefficient is b 1� overlap2

� �
.

li ¼
1; overlap\T
b 1� overlap2
� �

; overlap� T

�
ð1Þ

Here li is the penalty coefficient for detection box i, overlap (0 � overlap � 1) is
the IoU overlap of the detection box pi with the pre-selected detection box, b ðb[ 0Þ is
the regulatory factor.

In Eq. (1) we change the score of the detection boxes which have a IoU overlap is
greater than threshold T in GreedyNMS from 0 to b 1� overlap2

� � � confidence(de-
tection boxes’ score). Therefore, we can regard GreedyNMS as a special form of
Piecewise Penalty-NMS. As we have analyzed in Sect. 3.1, there are always some
positive objects which are missed in GreedyNMS. So penalizing detections to decay
the scores seems to be a better approach. Eq. (1) decreases the scores of the detection
boxes whose IoU overlap is greater than threshold T. However, the Piecewise Penalty-
NMS still needs to set threshold T manually. The performance of the algorithm is still
limited by the threshold T.

(Continuous Penalty-NMS). Continuous Penalty-NMS algorithm is shown in Fig. 3.
The penalty coefficient is shown in Eqs. (2) and (3). In Continuous Penalty-NMS, we
no longer use threshold T, but directly penalize all detection boxes. In Eqs. (2) and (3),
the growth of penalty has the opposite change. In the following sections, Continuous
Penalty-NMS1 and Continuous Penalty-NMS2 correspond to Eqs. (2) and (3)
respectively.
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li ¼ b 1� overlap2
� � ð2Þ

li ¼ b overlap� 1ð Þ2 ð3Þ

In Sect. 3.1, we have analyzed the performance of the traditional NMS which is
strictly limited by the threshold T. Piecewise Penalty-NMS is a better way to improve
the performance of GreedyNMS algorithm, but it’s still unable to get rid of the
threshold T. Therefore, we further propose Continuous Penalty-NMS which is different
from [25] that does not penalize detection boxes with no overlap. Instead, Continuous
Penalty-NMS penalizes all detections except detection box with maximum score in
each iteration.

Quadratic functions are used as the penalty coefficients in this paper. The first
derivative of Eqs. (1) and (2) is �2b � overlap and the first derivative of Eq. (3) is
2b overlap� 1ð Þ. All of them are less than 0. Therefore, the penalty coefficient becomes
smaller as the value of IoU becomes higher to decay the score of detection box. The
second derivative of Eqs. (1) and (2) are both less than 0 that are convex function.
Equation (3) is opposite to it but is the same as Gaussian function which is presented in
[25]. The growth proportion of Penalty in Eq. (2) increases as the IoU overlap
increases. However, the growth proportion of Penalty in Eq. (3) decreases as the IoU
overlap increases.

Penalty-NMS algorithm is used in each iteration and removes detections whose
scores are less than r. Compared with the influence of the threshold T in GreedyNMS,
the parameter b and r in Penalty-NMS is less sensitive to the performance of the
algorithm. We can also set b to 1.0 which means that our algorithm does not add any
parameters. Besides, the computational complexity for Penalty-NMS is O(n2) which is
the same as GreedyNMS, the n is the number of detection boxes. Although Penalty-
NMS algorithm does not get the global optimal solution, compared with GreedyNMS
algorithm, a better sub-optimal global solution is obtained without any additional
computation and can be easily embedded in any detection system (Fig. 1).

4 Experiment

4.1 Experiment on PASCAL VOC

Our experiment is based on Faster RCNN on PASCAL VOC [4] that has 20 object
categories and the basic network is VGG16 [11]. We train the models on the union set
of VOC 2007 trainval and evaluate on VOC 2007 test set. Object detection accuracy is
measured by mean Average Precision (mAP). In this section, we analyze and compare
the performance of Piecewise Penalty-NMS, Continuous Penalty-NMS1, Continuous
Penalty-NMS2 and traditional NMS algorithm. We also analyze the sensitivity of
parameters b and r.

(Penalty-NMS Performance Analysis). In Table 1, we analyze the changes of mAP
values at different threshold T by GreedyNMS and Piecewise Penalty-NMS. We also
compare the performance of Piecewise Penalty-NMS at different values of b.
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Table 1 shows that when the threshold T is 0.3 or 0.4, compared with GreedyNMS,
Piecewise Penalty-NMS has a significant improvement up to 1.9%(higher than [25]) in
mAP. Although Piecewise Penalty-NMS adds a parameter b, analyzing the red box in
Table 1, we can see that the different values of b has no significant distinction in
mAP. The fluctuation range is only 0–0.7%. The blue box in Table 1 shows that
Piecewise Penalty-NMS does not obtain any performance improvement when the
threshold T � 0.5. We analyze the main reason for this situation is that the positive
detections which should be suppressed is directly kept. The effect is similar to our
algorithm when we set higher threshold. However, this growth of positive is much less
than the growth of false positive, which leads a drop in average precision.

Fig. 1. The pseudo code for Penalty-NMS algorithm

Table 1. Results on PASCAL VOC 2007 test set, PPenalty-NMS denotes Piecewise Penalty-
NMS. 0.5, 0.6, 0.7, 0.8 denotes the value of b

NMS T
0.3 0.4 0.5 0.6 0.7

GreedyNMS 69.6 70.0 69.2 64.6 56.4
PPenalty-NMS0.5 71.5 71.1 69.0 64.7 56.5
PPenalty-NMS0.6 71.9 71.2 68.8 64.1 56.6
PPenalty-NMS0.7 71.5 71.4 68.6 64.8 56.3
PPenalty-NMS0.8 71.2 71.4 68.9 64.7 56.5
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Table 2 shows that Continuous Penalty-NMS1 and Continuous Penalty-NMS2
algorithm still obtain significant improvement without using threshold T. The highest
growth reached 1.9% and 1.8% respectively which are Equal to Piecewise Penalty-
NMS. Empirically, the detection boxes with higher overlap should be penalized more.
The growth proportion of Penalty in Eq. (2) increases as the IoU increases. However,
the growth proportion of Penalty in Eq. (3) decreases as the IoU increases. As
parameter b changes, although Penalty-NMS1 and Continuous Penalty-NMS2 are two
different modes of penal growth, both of them obtain similar improvement. Therefore,
the growth mode of penalty is not the key factor which can affect the performance of
the algorithm. In Table 2, row 4 and 5 show that the value of mAP decreases con-
tinuously as the threshold T increases. Compared with Continuous Penalty-NMS1 and
Continuous Penalty-NMS2 whose ranges of variation are from 0.3% to 0.8%, the
performance of the traditional NMS is totally depended on the setting of threshold T.

(Sensitivity Analysis). The function of the parameter r is the same as the threshold T
in GreedyNMS. But its effect on the performance of the algorithm is far less than T. As
shown in Fig. 4, Piecewise Penalty-NMS1 and Continuous Penalty-NMS2 obtain better
performance from a range between 0.001 to 0.004. The mAP for Piecewise Penalty-
NMS ðb ¼ 0:6;T ¼ 0:3Þ are maintained at 71.4%–71.9%. Likewise, Continuous
Penalty-NMS1 ðb ¼ 0:6Þ also stays at 71.6%–71.9%. The fluctuation range is kept
within 0.5% and less than the GreedyNMS (Fig. 2).

Table 2. Results on PASCAL VOC 2007 test set, CPenalty-NMS1 denotes Continuous Penalty-
NMS1, CPenalty-NMS2 denotes Continuous Penalty-NMS2.

NMS b

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CPenalty-NMS1 71.6 71.5 71.3 71.9 71.4 71.2 71.4 71.1
CPenalty-NMS2 71.4 71.1 71.1 71.5 71.5 71.4 71.1 71.8
T 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
GreedyNMS 69.6 70.0 69.2 64.6 56.4 42.9 – –

Fig. 2. Sensitivity Analysis to parameter r
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Fig. 3. Selected examples of object detection results on the PASCAL VOC 2007 test set using
the Faster R-CNN system. The model is VGG-16 and the training data is 07 trainval. Left for
NMS algorithm and right for Continuous Penalty-NMS1 algorithm.
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Column 9 of Table 2 shows that Continuous Penalty-NMS1 and Continuous
Penalty-NMS2 reach 71.1% and 71.8% respectively which also obtain better perfor-
mance than GreedyNMS. So we have a further experiment that sets b to 1.0, which
means that we also no longer use parameter b. In Table 3, we still obtain a better
improvement by 1.0%–1.8%, when the range is from 0.001 to 0.004. Although it has
brought some loss in average precision, compared with the traditional NMS algorithm,
Penalty-NMS not only has significant improvements, but also is freer to select
parameter r, which has a slight influence on accuracy. Table 4 show the detailed
numbers.

4.2 Experiments on MS COCO

We evaluate Faster RCNN and R-FCN on the MS COCO dataset [5] that has 80 object
categories. Our experiments involve the 80 k train set and 40 k val set for test. We
evaluate the mAP average for IoU 2 [0.5:0.05:0.95] (COCO’s standard metric, simply
denoted as mAP@[0.5, 0.95]) and mAP@0.5 (PASCAL VOC’s metric).

The results are in Table 5. R-FCN [24] with single-scale trained baseline has a val
result of 48.9%/27.6% and Faster RCNN has a baseline 48.4%/27.2%. R-FCN obtained
1.1% and 1.0% improvement respectively based on MS COCO’s standard metric and
PASCAL VOC’s metric when we adopt Piecewise Penalty-NMS algorithm. We also
obtain improvements of 1.4% and 1.3% for Faster RCNN. For MS COCO’s standard
metric we obtain an improvement of 1.6% and 1.8% respectively for R-FCN and
Faster RCNN which are higher than Soft-NMS [25] ’s improvements 1.1% for
Faster RCNN and 1.3% for R-FCN.

Table 3. Sensitivity Analysis when b is equal to 1.0. Continuous Penalty-NMS1 denotes
CPenalty-NMS1 and Continuous Penalty-NMS2 denotes CPenalty-NMS2.

NMS r

0.001 0.002 0.003 0.004

CPenalty-NMS1 71.1 71.2 71.0 71.1
CPenalty-NMS2 71.8 71.6 71.4 71.3
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5 Conclusion

As the greedy algorithm, NMS usually serves as post-processing. In this paper, we
analyze in detail the limitations of GreedyNMS, which bring about a miss due to the
setting of threshold T. We propose Penalty-NMS algorithm which penalizes detection
boxes rather than the direct suppress one. What’s more, our method solves the limi-
tations without using any additional computations or parameters. The experimental
results indicate that compared to the traditional NMS algorithm, Penalty-NMS achieves
salient progress. Notes should be observed that we do not obtain the overall optimal
result and Penalty-NMS is still a greedy algorithm. But the penalty idea gets a good
effect on applying NMS algorithm. Moreover, other functions are proper to be penalty
coefficient. The future work will focus on the way of learning to get penalty coefficient
instead of adopting the fixed function.
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