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Abstract. Infrared small target detection plays an important role in
infrared monitoring and early warning systems. This paper proposes a
local adaptive contrast measure for robust infrared small target detec-
tion using gray and variance difference. First, a size-adaptive gray-
level target enhancement process is performed. Then, an improved
multiscale variance difference method is proposed for target enhance-
ment and cloud clutter removal. To demonstrate the effectiveness of
the proposed approach, a test dataset consisting of two infrared image
sequences with different backgrounds was collected. Experiments on the
test dataset demonstrate that the proposed infrared small target detec-
tion method can achieve better detection performance than the state-of-
the-art approaches.
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1 Introduction

It is challenging to detect infrared (IR) small targets due to several reasons. First,
an infrared small target only occupies a few pixels in an image since the detection
distance is long [3,13]. Second, the target has a point spread characteristic due
to reflection, refraction, and sensor aperture diffraction [23,24]. Besides, the
intensity and shape of a small IR target can be changed under different seasons,
weathers, and time [8,12]. In addition, sunlight reflections can also be caused by
ocean and cirrus clouds. Moreover, broken cloud and cloud edges are always the
main causes for false alarms in infrared small target detection [9,21].

Recently, the progress in Human Visual Systems (HVS) has been widely
used to improve the performance of small IR target detection. According to

Supported by the National Natural Science Foundation of China (Nos. 61602499
and 61471371), and the National Postdoctoral Program for Innovative Talents (No.
BX201600172).

c© Springer Nature Switzerland AG 2018
J.-H. Lai et al. (Eds.): PRCV 2018, LNCS 11259, pp. 53–64, 2018.
https://doi.org/10.1007/978-3-030-03341-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03341-5_5&domain=pdf
http://orcid.org/0000-0001-6354-6199
http://orcid.org/0000-0001-7051-841X
http://orcid.org/0000-0002-1463-5838
http://orcid.org/0000-0003-2605-1749
https://doi.org/10.1007/978-3-030-03341-5_5


54 J. Gao et al.

the HVS attention mechanism, the local contrasts between targets and their
surrounding backgrounds are more important than the absolute intensities of
visual signals in an attention system [19]. In the literature, several local contrast
measures have been proposed to imitate the HVS selective attention mechanism
[2,4,6,7,11,16–18,22]. These measures have shown great potential in infrared
small target detection. For example, Chen et al. [2] proposed a Local Contrast
Map (LCM) for local target enhancement and background clutter suppression.
Han et al. [11] proposed an improved LCM (ILCM) to enhance the detection rate.
Wei et al. [22] produced a Multiscale Patch-based Contrast Measure (MPCM)
for small target enhancement and background clutter suppression, although it
is able to simultaneously detect bright and dark targets in IR images, some
discrete points still remain in heavy clutters. Deng et al. [4] introduced a Novel
Weighted Image Entropy (NWIE) measure using multiscale gray-level difference
and local information entropy. It focuses on the suppression of cloud edges.
Nasiri et al. [16] recently proposed a performance-leading Variance Difference
(VARD) based method. However, the detection performance is still limited by
its fixed-size sliding window.

Inspired by the multiscale gray difference used in [4,20], we propose a joint
filter using multiscale gray and variance difference to improve VARD. Two major
contributions of this work can be summarized as follows.

(1) A maximum contrast measure is used to extract the maximum cross-scale
gray difference. Meanwhile, the optimal size map of the internal window is
obtained for subsequent use.

(2) A revised multiscale variance difference measure is designed to alleviate
the impact of the background fluctuation and optimize the calculation of
variance in each internal window.

The rest of this paper is organized as follows. In Sect. 2, we review the VARD
method. In Sect. 3, we describe our proposed MGVD joint filter. In Sect. 4, sev-
eral experiments are conducted to test our method. The paper is concluded in
Sect. 5.

2 The VARD Method

Local contrast has been widely used in HVS inspired IR small target detection
[2,16,18]. Nasiri et al. [16] recently proposed the VARD method for small target
detection. In VARD, a fixed-size sliding window with three windows is first
extracted from an IR image, as shown in the right part of Fig. 1. The sizes of
the internal, middle and external windows are set to 7 × 7, 11 × 11, 15 × 15,
respectively.

Given a target with Gaussian shape in an IR image, the target is usually
brighter than its surroundings. Therefore, when a target exists in an internal
window, the intensity in the internal window is higher than that in the middle
window.

Prem(x0, y0) = Min − Mmid (1)
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where Min, Mmid, Prem represent the mean values of the internal window, the
mean values of the middle window and their difference, respectively. (x0, y0)
represents the central pixel under investigation.

Fig. 1. Target with its surrounding regions.

Note that, some areas in an IR image with strong evolving clouds are similar
to target regions, therefore, the variance difference between the internal and
external window around the investigated image patch is calculated as follows.

VARD = Vin − Ve (2)

MVARD =
1

D2
in − 1

D2
in−1∑

j=1

VARDj (3)

where Vin and Ve represent the variance of the internal and external windows,
respectively. Din is the size of the internal window, D2

in − 1 is the number of
neighbors of an image patch.

In fact, the size of a small target can range from 2 × 2 to about 9 × 9
pixels. In the ideal case, the size of the internal window should be the same as
the target size. To deal with this problem, LCM [11], MPCM [22], NWIE [4]
define several multiscale sliding windows to match the size of a real target. The
VARD method achieves a state-of-the-art detection performance and efficiency.
However, the intensity and variance estimation of the internal window defined
in Eqs. 1 and 2 is inaccurate as its internal window has a fixed size. Besides, the
number of neighboring image patches for the calculation of variance difference
(Eq. 3) is insufficient. That is because it only considers the situations when a
sliding window enters a target region, but do not consider the situations when a
sliding window leaves a target region, as shown in Fig. 2. These factors decrease
the accuracy of local gray and variance difference, and finally affects the detection
rate and false alarm rate of the algorithm. Therefore, MGVD is proposed to
improve VARD.

3 MGVD-based Small Target Detection

In this section, we introduce a new multiscale IR small target detection method
to improve VARD.
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3.1 Multiscale Gray Difference

As demonstrated in literature [4,14,15], an IR small target has a signature dis-
continuous with its neighborhood (as shown in Fig. 1). In this paper, multiscale
gray difference is presented to measure the dissimilarity of a target region from
its surrounding areas. For an image I, the kth gray difference at point (x, y) can
be formulated as:

D(x, y) =

∣∣∣∣∣∣
1

NΩk

∑

(x,y)∈Ωk

I(x, y) − 1
NΩmax

∑

(p,q)∈Ωmax

I(p, q)

∣∣∣∣∣∣

2

(4)

where k = 1, 2, . . . , K, which corresponds to the variable sizes of the internal
window 3 × 3, 5 × 5, . . ., (2K + 1) × (2K + 1). The set Ωk denotes the pixels
contained in the internal window, the set Ωmax denotes the pixels contained in
the maximal neighboring area (corresponding to the middle window). I(x, y) and
I(p, q) represent the gray value at point in Ωk and Ωmax, NΩk

and NΩmax
are

the number of pixels in sets Ωk and Ωmax. K is the number of variable internal
windows.

Using different sizes of the internal windows, we can obtain a set of cor-
responding gray difference Dk(x, y). Then, the maximum difference measure
Dmax(x, y) at point (x, y) is

Dmax(x, y) = max{D1(x, y), D2(x, y), . . . , DK(x, y)} (5)

Consequently, we can obtain the maximum contrast map (i.e., Dmax) between
the internal window and the middle window.

3.2 Multiscale Variance Difference

Some areas in an IR image with strong evolving clouds are similar to target
regions, therefore, using gray difference only is insufficient to extract a target.
In addition, the grayscale value in the middle window may be affected by the
target, we further consider the variance difference between different internal and
external windows of its neighboring image patches.

Different from VARD, we increase the number of neighboring image patches
for the calculation of variance difference, as illustrated in Fig. 2. In our method,
the size of the internal window is set to D∗

in(x, y), which corresponds to the
maximum difference measure in Eq. 5. The number of neighboring image patches
is D2 = 2D∗

in −1. Finally, the multiscale variance difference can be calculated as:

VARD
′
= V

′
in − Vej

(6)

MVARD′ =
1

D2
2 − 1

D2
2−1∑

j=1

VARD
′
j (7)
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Fig. 2. A sliding neighboring internal window (blue square). (Color figure online)

where V
′
in represents the variance of the internal window, Vej

represents the
variance of the external window in neighboring image patches, VARD

′
repre-

sents our revised variance difference for a single image patch. Consequently, the
multiscale variance difference is calculated as:

MGVD = Dmax � M2
VARD′ (8)

where � means the Hadamard product.

3.3 MGVD-based Small Target Detection

The proposed algorithm has five major steps, a flow chart is shown in Fig. 3.
First, image patches with three windows are first extracted from an IR image.
Second, the maximum contrast measure between the internal window and the
middle window is calculated on each image patch. Third, the variance difference
is calculated between the internal window and its surrounding background in
the external windows. Fourth, the multiscale gray difference map is multiplied
with the multiscale variance difference map. Finally, we used the same adaptive-
threshold segmentation method as [1,2,10] to extract candidate targets. The
threshold is computed according to

T = μ + k × σ (9)

where μ and σ are the mean and standard deviation of the final enhanced map,
respectively. In our experience, k ranges from 2 to 15.
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Fig. 3. Overview of our proposed MGVD small target detection method.

4 Experimental Results and Analysis

To test the performance of our proposed method, qualitative and quantitative
experiments are presented in this section.

4.1 Experimental Setup

To demonstrate the effectiveness of our proposed method, two real IR image
sequences with heavy clutters are tested. Example images are shown in Fig. 4
and the details of these two real sequences are summarized in Table 1.

Fig. 4. Original images.
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Table 1. Details of 2 real IR image sequences.

Frame Image
resolution

Target description Background description

Dataset 1 [21] 40 128 × 128 an airplane with
small size.

sky scene with
changing banded cloud.

Dataset 2 [2] 30 200 × 256 an airplane with
changing size.

gloomy sky with heavy
cloudy clutters.

Five recent HVS-based single frame target detection methods have been used
as baseline methods, including Average Gray Absolute Difference Maximum Map
(AGADM) [20], LCM [2], NLCM [18], NWIE [4], and VARD [16]. LCM is a tradi-
tional HVS-based local contrast method, AGADM and NWIE are two multiscale
gray difference based methods, NLCM and VARD are two joint target detection
methods using both grayscale and variance.

Three evaluation criteria have been used to measure the target enhancement
and background suppression performance, including Signal to Clutter Ratio Gain
(SCRG) and Background Suppression Factor (BSF) and Receiver Operating
Characteristic (ROC) curves [4,18,25]. They are defined as:

SCRG =
Sout/Cout

Sin/Cin
(10)

BSF =
Cin

Cout
(11)

where Sin and Sout, Cin and Cout are the amplitude of target signal and the
standard deviations of clutter in the input and output images, respectively.

A ROC curve represents the relationship between the probability of detection
and false alarm rate. Specifically, for a given threshold T in Eq. 9, the probability
of detection Pd and false alarm rate Pf [3,5,16] can be calculated as:

Pd =
nt

nc
(12)

Pf =
nf

n
(13)

where nt, nc, nf and n represent the number of detected true pixels, ground-
truth target pixels, false alarm pixels and the total number of image pixels,
respectively.

4.2 Qualitative Results

The target enhancement and detection results achieved by different methods on
the two sequences are shown in Figs. 5 and 6. It can be seen that the image
processed by our method has less clutter and residual noise under different clut-
ter backgrounds as compared to the baseline methods. That is attributed to
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Fig. 5. Target enhancement results obtained by different methods on Sequence 1. Real
targets are shown in red rectangles, with a close-up version shown in the left bottom
part of each figure. (Color figure online)

Fig. 6. Target enhancement results obtained by different methods on Sequence 2, Real
targets are shown in red rectangles, with a close-up version shown in the left bottom
part of each figure. (Color figure online)



Infrared Small Target Detection Using MGVD 61

the adaptive calculation of grayscale maximum contrast measure and variance
difference in each image patch. The AGADM and LCM methods are inferior to
the other four methods in background suppression. Although the NLCM and
NWIE methods can preserve the target to a certain extent, several strong cloud
edges remain in the filtered results of the two image sequences. Since the size
of the sliding window in VARD is fixed, the targets with various sizes cannot
be optimally enhanced. Therefore, they are missed in some frames in Sequence
1. Besides, cloud edges are also enhanced and still remain in strong evolving
background in Sequence 2 after filtered by VARD.

In summary, the above qualitative results demonstrate that the proposed
method obtains the best target enhancement and background suppression per-
formance. However, there are still few deficiencies of our MGVD method. For
example, when a target is so far away from the imaging system that it only
occupies 2–3 pixels in an image, the temporal cues in multiple frames should be
used to extract targets.

4.3 Quantitative Results

The average SCRG and BSF results obtained by our method and the baseline
methods are shown in Fig. 7 and Table 2. We can find that the SCRGs and
BSFs achieved by AGADM and LCM method are relatively low. The VARD
method is the second best method in BSF. In contrast, our proposed method
removes isolated clutter residuals and preserves the target missed by VARD in
strong cloud edges (as shown in Sequence 1). Consequently, our MGVD method
obtains the highest scores in both SCRG and BSF, with remarkable background
suppression performance being achieved. It is clear that the performance of the
NLCM and NWIE methods are poor for the removal of strong evolving cloud
edges, especially in Sequence 2.

Fig. 7. The average SCRG and BSF results achieved by different methods on two
sequences. (a) The average SCRG results. (b) The average BSF results.
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Table 2. The average SCRG and BSF results.

Method Sequence 1 Sequence 2

SCRG BSF SCRG BSF

AGADM [20] 1.2109 0.2012 0.9732 0.2250

LCM [2] 1.4365 0.9389 1.4027 0.8625

NLCM [18] 1.0492 0.9509 1.2972 0.3734

NWIE [4] 5.5243 0.6268 0.4361 0.2329

VARD [16] 7.0765 8.5662 2.5477 5.8326

MGVD 15.5178 12.3488 3.6658 6.6185

Fig. 8. ROC curves. (a) ROC curves of Sequence 1. (b) ROC curves of Sequence 2.

ROC curves are used to further compare our proposed method to the baseline
methods. As illustrated in Fig. 8, it can be seen that the ROC curves of our
method on the two real image sequences are close to the upper left corner.
That is, our method outperforms other baseline methods in terms of Pd and Pf .
On Sequence 1, when the false alarm rate is 2 × 10−5, our proposed method
and VARD can achieve a detection rate of 90%. When the false alarm rate is
1×10−4, all the methods can obtain a detection rate over 90%, except for LCM.
On Sequence 2, when the false alarm rate is 1×10−5, only our proposed method
can obtain a detection rate of 90%.

4.4 Computational Efficiency

All the methods were implemented in Matlab 2014a on a PC with a 2.7 GHz
CPU and 4.0 GB RAM. We ran our method on 2 real IR image sequences. The
run time on each dataset is 5.73 s and 17.20 s. Since our method uses a sliding
window to check all possible locations in an image, it is not very efficient. Its
efficiency should be further improved in future.
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5 Conclusion

This paper presented a joint filter for small target detection using multiscale
gray and variance difference. Maximum gray difference is first extracted by an
absolute gray difference method. The optimal size of the internal window is then
used to calculate the variance of the internal window. Finally, the neighboring
image patches are expanded for the estimation of variance difference. Experi-
ments shows that the proposed method achieves promising target enhancement
and background suppression performance on complicated real IR images.

References

1. Bai, X., Bi, Y.: Derivative entropy-based contrast measure for infrared small-target
detection. IEEE Trans. Geosci. Remote Sens. 56(99), 2452–2466 (2018)

2. Chen, C.P., Li, H., Wei, Y., Xia, T., Tang, Y.Y.: A local contrast method for small
infrared target detection. IEEE Trans. Geosci. Remote Sens. 52(1), 574–581 (2014)

3. Dai, Y., Wu, Y.: Reweighted infrared patch-tensor model with both nonlocal and
local priors for single-frame small target detection. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 10(8), 3752–3767 (2017)

4. Deng, H., Sun, X., Liu, M., Ye, C., Zhou, X.: Infrared small-target detection using
multiscale gray difference weighted image entropy. IEEE Trans. Aerosp. Electron.
Syst. 52(1), 60–72 (2016)

5. Deng, H., Sun, X., Liu, M., Ye, C., Zhou, X.: Small infrared target detection based
on weighted local difference measure. IEEE Trans. Geosci. Remote Sens. 54(7),
4204–4214 (2016)

6. Deng, H., Sun, X., Liu, M., Ye, C., Zhou, X.: Entropy-based window selection for
detecting dim and small infrared targets. Pattern Recogn. 61, 66–77 (2017)

7. Dong, L., Wang, B., Zhao, M., Xu, W.: Robust infrared maritime target detection
based on visual attention and spatiotemporal filtering. IEEE Trans. Geosci. Remote
Sens. 55(5), 3037–3050 (2017)

8. Fan, Z., Bi, D., Xiong, L., Ma, S., He, L., Ding, W.: Dim infrared image enhance-
ment based on convolutional neural network. Neurocomputing 272, 396–404 (2018)

9. Gao, C., Wang, L., Xiao, Y., Zhao, Q., Meng, D.: Infrared small-dim target detec-
tion based on Markov random field guided noise modeling. Pattern Recogn. 76,
463–475 (2018)

10. Gao, J., Lin, Z., Guo, Y., An, W.: TVPCF: a spatial and temporal filter for small
target detection in IR images. In: Digital Image Computing: Techniques and Appli-
cations (DICTA), pp. 1–7 (2017)

11. Han, J., Ma, Y., Zhou, B., Fan, F., Liang, K., Fang, Y.: A robust infrared small
target detection algorithm based on human visual system. IEEE Geosci. Remote
Sens. Lett. 11(12), 2168–2172 (2014)

12. Kim, S.: Infrared variation reduction by simultaneous background suppression and
target contrast enhancement for deep convolutional neural network-based auto-
matic target recognition. Opt. Eng. 56(6), 063108 (2017)

13. Li, Y., Zhang, Y.: Robust infrared small target detection using local steering kernel
reconstruction. Pattern Recogn. 77, 113–125 (2018)

14. Liu, D., Li, Z., Liu, B., Chen, W., Liu, T., Cao, L.: Infrared small target detection
in heavy sky scene clutter based on sparse representation. Infrared Phys. Technol.
85, 13–31 (2017)



64 J. Gao et al.

15. Liu, R., Wang, J., Yang, H., Gong, C., Zhou, Y., Liu, L., Zhang, Z., Shen, S.:
Tensor Fukunaga-Koontz transform for small target detection in infrared images.
Infrared Phys. Technol. 78, 147–155 (2016)

16. Nasiri, M., Chehresa, S.: Infrared small target enhancement based on variance
difference. Infrared Phys. Technol. 82, 107–119 (2017)

17. Nie, J., Qu, S., Wei, Y., Zhang, L., Deng, L.: An infrared small target detection
method based on multiscale local homogeneity measure. Infrared Phys. Technol.
90, 186–194 (2018)

18. Qin, Y., Li, B.: Effective infrared small target detection utilizing a novel local
contrast method. IEEE Geosci. Remote Sens. Lett. 13(12), 1890–1894 (2016)

19. Shi, Y., Wei, Y., Yao, H., Pan, D., Xiao, G.: High-boost-based multiscale local
contrast measure for infrared small target detection. IEEE Geosci. Remote Sens.
Lett. 15(99), 1–5 (2018)

20. Wang, G., Zhang, T., Wei, L., Sang, N.: Efficient method for multiscale small target
detection from a natural scene. Opt. Eng. 35(3), 761–769 (1996)

21. Wang, X., Peng, Z., Kong, D., He, Y.: Infrared dim and small target detection based
on stable multisubspace learning in heterogeneous scene. IEEE Trans. Geosci.
Remote Sens. 55(10), 5481–5493 (2017)

22. Wei, Y., You, X., Li, H.: Multiscale patch-based contrast measure for small infrared
target detection. Pattern Recogn. 58, 216–226 (2016)

23. Xin, Y.H., Zhou, J., Chen, Y.S.: Dual multi-scale filter with SSS and GW for
infrared small target detection. Infrared Phys. Technol. 81, 97–108 (2017)

24. Zhang, H., Bai, J., Li, Z., Liu, Y., Liu, K.: Scale invariant SURF detector and
automatic clustering segmentation for infrared small targets detection. Infrared
Phys. Technol. 83, 7–16 (2017)

25. Zhang, X., Ding, Q., Luo, H., Hui, B., Chang, Z., Zhang, J.: Infrared small target
detection based on directional zero-crossing measure. Infrared Phys. Technol. 87,
113–123 (2017)


	Infrared Small Target Detection Using Multiscale Gray and Variance Difference
	1 Introduction
	2 The VARD Method
	3 MGVD-based Small Target Detection
	3.1 Multiscale Gray Difference
	3.2 Multiscale Variance Difference
	3.3 MGVD-based Small Target Detection

	4 Experimental Results and Analysis
	4.1 Experimental Setup
	4.2 Qualitative Results
	4.3 Quantitative Results
	4.4 Computational Efficiency

	5 Conclusion
	References




