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Abstract. Mobile robots play an important role in Ambient Assisted
Living (AAL) by supporting or guiding people with reduced mobility to
move in an indoor environment. Visual SLAM algorithms have become
an important component of such robots by largely reducing the cost of
tracking components. These AAL robots represent a typical situation in
which robots move on level ground with merely in-plane navigation tasks.
In order to find an optimized configuration of monocular SLAM systems
in level ground navigation scenarios, we compared different lightweight
local descriptors (LDB, BRIEF and ORB) by evaluating their influence
on system performance based on the framework of ORB-SLAM. The
results indicate that BRIEF outperforms others in metrics like time and
trajectory accuracy, while LDB provides best descriptor matching qual-
ity. To conclude, BRIEF would be preferred for indoor level ground nav-
igation with a monocular SLAM system, and LDB can be used instead
if matching quality is the primary concern.
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1 Introduction

Simultaneous Localization and Mapping (SLAM) systems have been widely used
for autonomous robot exploration both in indoor and outdoor environments. One
major application field of SLAM-based mobile robot is Ambient Assisted Living
(AAL) [7]: assistive robots are designed to help disabled individuals or people
with reduced mobility to move more easily in daily life. In most cases, these
robots provide their service on level ground in an indoor environment (from room
to room, or inside a building with corridors) in forms of wheelchair [22], smart
walker [33] or robot coach [12]. AAL robots often combine inputs from multiple
sensors (e.g. LiDAR, sonars and cameras) to achieve more robust localization
capability, which leads to complex hardware integration and excessive cost [6].

With the rapid developments of visual SLAM [35], many SLAM systems are
able to track and build the map in real-time from purely visual information. This
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kind of visual SLAM has been an active research topic for more than twenty years
with contributions coming from Robotics, Computer Vision and other related
fields.

The emergence of visual SLAM systems like ORB-SLAM [25] makes it possi-
ble to build mobile AAL robots with low cost hardware, e.g. a single camera run
on an embedded system. Visual SLAM can also help to build 3D map of the envi-
ronment, which will provide more useful information of the surrounding for tasks
like obstacle avoidance than traditional 2D maps. Since AAL robots only involve
in-plane navigation on level ground of indoor environments, visual SLAM sys-
tems like ORB-SLAM can be further optimized by reducing from 6DoF tracking
to 3DoF. For example, ORB-SLAM is based on ORB feature [27], which is a fast
alternative of SIFT [19] or SURF [2]. ORB is composed of a rotation-invariant
descriptor - rotated-BRIEF, which is useful for 6DoF tracking (e.g. hand-held
camera), but not necessary for in-plane navigation.

Aiming to build a monocular SLAM system for AAL robots that usually run
on embedded systems, we want to further optimize the state-of-the-art visual
SLAM framework by finding appropriate lightweight descriptors that improve
real-time tracking performance and reduce computational cost for in-plane nav-
igation. So in this paper, based on the framework of ORB-SLAM - a milestone
of feature-point based SLAM system, we compared different lightweight local
descriptors by evaluating their influence on system performance in level ground
navigation scenarios.

2 Related Work

2.1 Monocular SLAM

Visual SLAM can be performed with a single monocular camera, which is the
simplest and cheapest sensor setup among all choices. This simplicity allows
monocular SLAM to run on embedded systems or smartphones with minimal
hardware integration effort, which encourages many years of research on this
topic. Monocular SLAM algorithms have evolved from filtering to keyframe-
based bundle adjustment (BA) algorithms, with many implementations lying in
the middle ground between them. Filtering methods create a model based on
the information gained over all past frames with a probability distribution, every
frame is processed by the filter to jointly estimate the map feature locations and
the camera pose [8]. Unlike filtering methods, keyframe-based approaches [23]
estimate the map using global bundle adjustment for only a small number of
past frames, which remain relatively efficient even processing large number of
features from the keyframes. The work of Strasdat et al. [29] demonstrated that
keyframe bundle adjustment outperforms filtering in term of accuracy per unit
of computing time by measuring entropy reduction and tracking error.

The most representative keyframe-based system is marked by PTAM [16],
which first introduced the idea of splitting camera tracking and mapping into
parallel threads. Various systems are proposed in recent years targeting different
issues in the front end and back end such as iSAM [14], FrameSLAM [17], etc.
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Another type of methods standing out of framework of filtering and keyframe
approaches is called direct SLAM, e.g. LSD-SLAM [9]. Direct SLAM method
builds large scale semi-dense maps directly upon optimization over image pixel
intensities instead of bundle adjustment over features, which offers more poten-
tial for related applications.

However, some intrinsic problems of monocular vision systems, e.g. scale drift
and failing with pure rotations, still make monocular SLAM difficult to initialize
despite simple hardware setup, which lead to the development of stereo and
RGB-D vision systems.

2.2 Keypoint Features

Keypoint features are generally salient points (e.g. corners) encoded by infor-
mation from local image regions that are invariant to viewpoint and lighting
condition changes. Many visual SLAM systems use corner detectors in their
tracking pipeline, e.g., a machine learning approach called FAST [26] is often
used in real-time applications, and its improved version is integrated in other
methods like ORB [27]. Besides corner detectors, another popular local descrip-
tor is the Scale Invariant Feature Transform (SIFT) [19], which first achieves
scale-invariant keypoint detection using histograms containing main properties
of local appearance. However, the high dimension descriptor of SIFT makes it
difficult to be used in real-time situations, which leads to different variants such
as the Speeded-Up Robust Features (SURF) [2], PCA-SIFT [15] and other types
of lightweight local descriptors.

Lightweight local descriptors are mainly designed to be computation-efficient,
so the generating and matching of descriptors can run at frame rate. For example,
the BRIEF descriptor [5] directly generates bit strings by simple binary tests in
a smoothed image patch, and is augmented with rotation invariance by rotated-
BRIEF (ORB). Unlike BRIEF, BRISK [18] and its successor FREAK [1] use a
circular sampling pattern to compute intensity comparisons between point pairs.
Another descriptor named LDB [34] computes a binary string for an image patch
using simple intensity and gradient difference tests on pairwise grid cells, which
is demonstrated to achieve greater accuracy and faster speed for tracking tasks
than state-of-the-art algorithms.

Lots of evaluations and comparisons of keypoint detectors and descriptors
have been done to help us choose among enormous options for a given applica-
tion. Some surveys compare a special group of algorithms like Juan & Gwun’s
work [13] on SIFT-related methods, while others include more detectors and
descriptors to compare with [20,32]. In the field of visual SLAM, there are also
many existing work on the performance comparison of interest point detectors
and descriptors [3,10,24]. The common conclusion that we can draw from these
surveys is that there is a trade-off between accuracy and computation cost. SIFT
and related methods offer better matching performance with high computational
cost, while lightweight descriptors provide less precise matching at a much higher
speed [21].
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The aforementioned evaluations have covered a wide range of detectors and
descriptors, but some recent advances like LDB haven’t been compared alto-
gether. Moreover, these studies mostly target at general 6DoF tracking scenarios,
cases for 3DoF in-plane level ground navigation haven’t been addressed yet.

3 Experiment

In order to find an optimized configuration of monocular SLAM systems in level
ground navigation scenarios, we compared different lightweight local descrip-
tors by evaluating their influence on system performance based on the frame-
work of ORB-SLAM. The descriptor used in ORB-SLAM is rotated-BRIEF (or
rBRIEF), which is BRIEF enhanced with rotation-invariance. Since we only
have yaw rotation in level ground scenarios, BRIEF is already sufficient and we
expect more efficient tracking with BRIEF as rotation is not considered. Another
lightweight, and claimed to be ultra-fast descriptor that we included in the eval-
uation is LDB [34]. As mentioned in Sect. 2, LDB is an efficient binary descriptor
that has the same length as BRIEF (32 bits), and is much shorter than BRISK
and SURF (both have 64 bits). Other popular descriptors exceeding a length of
64 bits are excluded from comparison.

So in this experiment, we choose to compare three lightweight descriptors:
BRIEF, ORB (rotated-BRIEF) and LDB (without rotation invariance).

3.1 Dataset

Existing Datasets. We first considered existing public visual SLAM datasets
for the evaluation task undertaken. The datasets that satisfy our testing require-
ments should only involve yaw rotation and in-plane translation (3DoF), which
excludes most hand-held sequences such as the TUM RGB-D benchmark [30]
and NYU Depth dataset [28]. Moreover, we prefer video recordings of indoor
environment as AAL robots are mostly designed for indoor service, which again
filters out datasets for large-scale outdoor environments, e.g. KITTI dataset [11]
for car driving and the EuRoC dataset [4] for aerial vehicle navigation.

Finally we selected two sequences from the TUM RGB-D dataset (we use
only the color images) that are designed for testing and debugging purpose -
fr1/xyz and fr2/xyz. These two sequences only contain translation movements
within a small movement range, which is not strictly “in-plane”, but no rotation
is involved. The TUM dataset also provides a tool that implements two methods
for calculating the error between the estimated trajectory and the real one,
namely Absolute Trajectory Error (ATE) and Relative Pose Error (RPE), both
are useful for comparison of tracking performance.

Level Ground Sequences. Since we found little existing datasets for level
ground indoor navigation, we decided to make some recordings that satisfy the
requirements mentioned above. We mounted a monocular camera on a robotic
walker - a standard four-wheel (no motor control) assistive walker combined
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with different sensors. The user stands behind the walker and walks forward
while pushing the walker by holding the handles. A laptop computer running
the SLAM algorithm is put on the robotic walker and connected to the camera
mounted in front of the walker via a USB cable.

We choose three types of trajectories to be tested, including straight line,
zigzag and octagon paths (Fig. 1). These segments have increased complexity
and their combination can represent most use case that we encounter for level
ground navigation. The length of each segment for these trajectories is chosen
arbitrarily according to the room size.

Fig. 1. Trajectories of the level ground video sequences, from left to right: line, zigzag
and octagon.

The level ground sequences used in this experiment were captured by a
Logitech C525 camera, with the auto-focus function turned off. The intrinsic
parameters of the camera are: focal lengths - fx = 820.2028 and fy = 819.9700,
the principal point (u,v) = (255.4357, 222.3254), and the radial distortion -
K1 = 0.0378 and K2 = −0.3324. The three sequences that we recorded are stored
as 640 * 480 images with a frame rate of 30 fps. The line, zigzag and octagon
sequences last respectively 33, 54 and 110 s, and are saved as 803, 1291 and 2647
images.

3.2 Performance Metrics

Time and accuracy are two fundamental aspects that represent the real-time
responsiveness and quality of a SLAM system. The performance metrics that we
use to evaluate the influence of different descriptors are thus divided into the
following groups:

Time: We logged time used for descriptor generation and matching since they
directly reflect a descriptor’s time efficiency. We also want to see the impact
of changing keypoint descriptor on system performance, so we measured the
execution time of the whole SLAM process along with the time for different
states - initialization, tracking and relocalization. A good SLAM system should
spend less time to initialize and relocate, leaving more time for tracking.

Matching Accuracy: Keypoint matching between frames is used to recover
the camera’s change of pose. We counted the number of matched keypoints as
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more correct matches generally lead to more accurate recovered pose. When
regarding descriptor matching as a classification problem and each keypoint to
be an individual class, we can use J3 (Eq. 1) to quantify class separability which
is based on within and between class scatter matrix: Sw and Sb (Eq. 2) [31].

J3 = trace{S−1
w Sm} (1)

Sm = Sw + Sb =
M∑

i=1

pisi +
M∑

i=1

pi(µi − µ0)(µi − µ0)T (2)

where Sm is the global covariance matrix. To compute Sw, pi and si are the
probability and covariance matrix of class i. For Sb, µi is the average feature
vector for class i and µ0 is the average vector for all classes. Higher J3 value
computed from all the binary strings of a descriptor indicates better matching
capability. To compute J3, we selected 50 images at the end of each sequence
and collected all descriptor binaries for keypoints extracted from the very first
image. Finally, only keypoints that have more than 30 binary strings for all three
descriptors are included.

Tracking Accuracy: Since we use part of the TUM RGB-D dataset, we can
make use of some useful tools provided by the authors. Absolute Trajectory Error
(ATE) and Relative Pose Error (RPE) are two methods well-suited for measur-
ing the performance of visual SLAM systems when ground-truth trajectory is
available. In this experiment, our level ground recordings don’t have ground-
truth data that are compatible with TUM tools, so these two methods are only
applied to TUM dataset.

4 Results

We performed our tests on a laptop computer with Intel (R) Core (TM) i7-
5700HQ CPU @ 2.70 GHz with 8G RAM, running Ubuntu 16.04 LTS. For each
video sequence, we run the SLAM system under each testing condition for 10
times to see their averaged performance. Hereafter we name each testing condi-
tion by the name of the descriptor in use, i.e. LDB, BRIEF and ORB condition.

4.1 Time

Figure 2 shows the time performance for the whole video sequences under each
condition for two descriptor-related tasks: descriptor generation and matching.
The results show that, LDB is slightly quicker for keypoint matching, but takes
more time to generate the binary code than two other methods, and the result
is almost consistent across different video sequences.

In addition to absolute time duration for a task, we also computed the pro-
portion of that task in the total time of the whole SLAM process since the total
time differs under each condition. On average, LDB has the highest time rate
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for descriptor generation (57.9%) and lowest time rate for keypoint matching
(5.9%). Regarding ORB, it has the highest matching time cost rate (7.6%), but
has similar performance in descriptor generation (52.3%) with BRIEF (51.5%).

Fig. 2. Descriptor-related time performance for different video sequences (in seconds)

As mentioned in previous section, we collected the execution time for the
whole process as well as for each system state. As shown in Fig. 3, all conditions
have good performance in fr2/xyz with most time spent on tracking (from 98.8%
to 99.3%), while with other sequences all conditions take more time to initialize,
among which ORB suffers a steeper increase (up to 12.6%).

Both zigzag and octagon sequences include yaw rotations, relocalization
occurred under all conditions on these two sequences. In the zigzag sequence,
initialization remains acceptable for LDB and BRIEF (6.9% and 7.4%), whereas
ORB increases rapidly (41.3%). LDB spends most time for tracking (85.7%)
and least for relocalization (7.4%), BRIEF (52.9%) has similar tracking time as
ORB (44.2%), but much more time for relocalization (39.7%). Octagon sequence
contains multiple in-place rotations with relatively short transition, as a conse-
quence, all conditions have bad performance. The best condition in this case -
BRIEF is able to run tracking for half of the total time (54.8%), while the others
have to relocate from time to time.

If we take the sum for all video sequences, ORB condition spends more time
for initialization than LDB and BRIEF, while BRIEF condition outperforms
others in tracking, relocalization and total time with a slight advantage.
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Fig. 3. Total and state-wise execution time with different video sequences (in seconds).

Table 1. Average number of matched keypoints per frame and J3 score for each con-
dition.

Sequence Matched keypoint number J3 score

LDB BRIEF ORB LDB BRIEF ORB

fr1/xyz 261 295 198 98.67 89.46 56.39

fr2/xyz 201 219 169 88.63 84.71 58.75

line 276 280 237 102.36 91.82 57.85

zigzag 225 244 204 84.05 72.27 61.99

octagon 210 214 189 97.79 95.02 60.82

mean 235 250 199 94.30 86.66 59.16

sd 32.4 36.4 25.0 7.64 8.88 2.25

4.2 Matching Accuracy

Table 1 shows the average number of matched keypoints per frame and J3 score
for the whole sequences. We can see that for the number of matched keypoints,
LDB (mean = 235) has similar performance with BRIEF (mean = 250), while
ORB (mean = 199) has much lower number than both of them. Regarding J3
score, from the frames we choose (all three conditions run tracking during this
period), we find that LDB has the highest score in all sequences (mean = 94.30),
and the mean score of ORB (mean = 59.16) is far lower than the other two.

4.3 Tracking Accuracy

We use ATE and RPE to compute the trajectory error of fr1/xyz and fr2/xyz.
As shown in Table 2 and Fig. 4, all conditions have similar performance for ATE
(0.3625 ∼ 0.3666) in sequence fr2/xyz, however, BRIEF gets much smaller error
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than the other two in fr1/xyz with an error of 0.057 m. For RPE, we sum
translation and rotation error separately. Same as ATE, the performance for
all conditions are close in fr2/xyz, but BRIEF still outperforms the others in
fr1/xyz.

Table 2. Measurement of tracking accuracy for each condition (in meter and degree).

Sequence ATE RPE-T error RPE-R error

LDB BRIEF ORB LDB BRIEF ORB LDB BRIEF ORB

fr1/xyz mean 0.1039 0.0570 0.1009 0.1251 0.0634 0.0922 5.2664 2.5152 5.7203

sd 0.0496 0.0500 0.0800 0.0490 0.0539 0.0863 3.7171 3.2312 4.6535

fr2/xyz mean 0.3666 0.3625 0.3651 0.0637 0.0635 0.0635 2.1105 1.7682 2.0970

sd 0.0014 0.0042 0.0022 0.0002 0.0007 0.0004 0.7405 0.0461 0.6862

Fig. 4. Measurement of tracking accuracy for each video sequence.

5 Discussion

From the above results, we can see that descriptor generation is still the most
time-consuming task for local feature based SLAM system that takes more than
half of the total system running time. The use of BRIEF provides faster binary
code generation that allows more time for tracking and less total time than with
the other two descriptors.

The ORB descriptor is indeed rotated-BRIEF, with additional rotation-
invariance ability compared to BRIEF, however, according to our tests, this
augmentation largely reduced the number of matched keypoints per frame, which
hinders not only the system time efficiency, but also matching ability (as more
matched keypoints lead to better tracking result). This reduction is mainly due
to the additional angular constraints during keypoint matching. Since rotation
invariance is not required in level ground navigation, ORB descriptor is not
recommended for this type of application.
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Through all the tests with various sequences, we find the performance of
different descriptors tends to diverge as the camera motion becomes more com-
plicated (from line to octagon), and remains at the same level with very smooth
and slow motion (e.g. in fr2/xyz). Globally, BRIEF retains robust tracking per-
formance in difficult situations, although more sequences should be included to
further confirm this observation on trajectory estimation quality.

In fact, when running pilot test for our robotic walker with ORB-SLAM, we
found that the system struggled to initialize in indoor environment with many
white walls around. The keypoints that the system can extract at runtime are too
few to support functional tracking. We had to paste some texture-rich pictures
on the walls to facilitate keypoints extraction. On the contrary, if tests were
taken in an outdoor environment, the number of keypoints should no longer be
a problem. In this case, LDB would be an appropriate choice since it has highest
J3 score among our tested descriptors.

6 Conclusion

In this work, we conducted an experiment to test the influence of different
lightweight local descriptors on the performance of monocular SLAM system,
in aim to find the best choice among LDB, BRIEF and ORB for level ground
indoor navigation. The results indicate that BRIEF outperforms the others both
in terms of time and trajectory accuracy, though it provides slightly lower match-
ing quality than LDB. To conclude, BRIEF would be a preferred component of
monocular SLAM systems designed for indoor level ground navigation.

In the future, with advances from the computer vision community, more
lightweight descriptors can be included for comparison and we can also evaluate
the impact of keypoint extraction methods. To further improve the usability of
SLAM systems for robotic walker as monocular SLAM systems are sometimes
delicate to initialize, we can take stereo, RGB-D and even inertial sensors into
consideration.
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igating blind people with a smart walker. In: 2015 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 6014–6019. IEEE (2015)

34. Yang, X., Cheng, K.T.: Local difference binary for ultrafast and distinctive feature
description. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 188–194 (2014)

35. Yousif, K., Bab-Hadiashar, A., Hoseinnezhad, R.: An overview to visual odometry
and visual SLAM: applications to mobile robotics. Intell. Ind. Syst. 1(4), 289–311
(2015)

https://doi.org/10.1007/978-3-540-75271-4_18
https://doi.org/10.1007/978-3-540-75271-4_18
https://doi.org/10.1007/11744023_34

	Evaluation of Lightweight Local Descriptors for Level Ground Navigation with Monocular SLAM
	1 Introduction
	2 Related Work
	2.1 Monocular SLAM
	2.2 Keypoint Features

	3 Experiment
	3.1 Dataset
	3.2 Performance Metrics

	4 Results
	4.1 Time
	4.2 Matching Accuracy
	4.3 Tracking Accuracy

	5 Discussion
	6 Conclusion
	References




