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Abstract. The inspection of conductive particles after Anisotropic Con-
ductive Film (ACF) bonding is a common and crucial step in the TFT-
LCD manufacturing process since quality of conductive particles is an
indicator of ACF bonding quality. Manual inspection under microscope
is a time consuming and tedious work. There is a demand in industry for
automatic conductive particle inspection system. The challenge of auto-
matic conductive particle quality inspection is the complex background
noise and diversified particle appearance, including shape, size, clustering
and overlapping etc. As a result, there lacks effective automatic detec-
tion method to handle all the complex particle patterns. In this paper,
we propose a U-shaped deep residual neural network (U-ResNet), which
can learn features of particle from massive labeled data. The experimen-
tal results show that the proposed method achieves high accuracy and
recall rate, which exceedingly outperforms the previous work.
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1 Introduction

The Anisotropic Conductive Film (ACF) bonding technique has been widely
used in the Thin Film Transistor Liquid Crystal Display (TFT-LCD) industry,
such as Film on Glass (FOG) and Chip on Glass (COG) [5,12,14]. The ACF is an
electrical conductive adhesive, containing small conductive particles distributed
on the insulated pad. During the bonding process, the particles deform and
make electrical interconnections between the conductive areas on LCD panel
and the flexible circuit vertically [14]. In general, validly deformed particles have
clear bright parts and dark parts to be seen when projecting tilted light (see
Fig. 1). As the bonding conditions are critical, such as pressure, temperature,
time and alignment of the parts, the particles may fail in deformation and be
unable to make electrical conductions if any of them is not satisfied (see Fig. 2)
[6]. Insufficient number of valid particles may result in poor conductivity and
even electrical failure between the panel and flexible circuit [6,14], which leads
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to inferior products and waste of material. To guarantee the electrical quality
at the bonding step and not affect the following manufacturing procedures, an
after-bonding inspection of conductive particles is indispensable.

Fig. 1. An example of valid particle,
which has a bright part and a dark part
to be seen when projecting light.

Fig. 2. (a) Valid conductive particles; (b)
invalid particles with too little deforma-
tion; (c) invalid particles with too much
deformation.

The current practice of after-bonding inspection is to detect the number
of valid conductive particles under the microscope manually. Fully automatic
particle inspection is still an open problem due to numerous factors, such as
clustering and overlapping of the conductive particles after the bonding process
(see Fig. 3). We see that sometimes it is even hard to distinguish the particles
on such small area, not to mention detecting the valids.

Fig. 3. Challenges in the particle detection. (a) Variant size: The particles in the
box are valid but in different size; (b) overlapping and mixture: The particles in the
box overlaps while the valids and invalids are in mixture; (c) poor illumination and
clustering : The box region is much darker than it in (a) or (b). Meanwhile, the particles
are in clusters.
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With the development of Automatic Optic Inspection (AOI) technology, a
series of researches [5,6,9,12,15] have been made to address the problem. These
researches focus on how to design appropriate description to the valid particles.
In Lin’s (2011) [6], the particles are extracted with Prewitt operator, utilizing
the gradient feature around them. After processing the image with Prewitt oper-
ator, the Otsu binarization is carried out on the processed image. Then on the
binarized image, template matching is used to further localize valid particles.
However, Prewitt operator performs poor when particles overlap and is sensi-
tive to noise. Moreover, Otsu thresholding is based on the hypothesis that the
image can be binarized by a global grayscale threshold [11], which is not prac-
tical in the complex environment of circuit surface. Later in Chen’s (2017) [15],
the particles are extracted by the intensity difference. Observing the drawbacks
of Lin’s [6], the authors substitute background subtraction method for the Pre-
witt operator process to divide the images into background and foreground,
also suppress the noise. And then, instead of a simple binarization, k-means is
used to classify the pixels, which is more suitable for the overlapping situation
and k = 4 shows the best performance in the authors’ experiment. Though the
method shows higher precision than Lin’s [6], it is more time-consuming and
still hard to cope with complex situation. In addition to the pure 2D analyses,
Guangming Ni [9] designed a special differential interference contrast (DIC) sys-
tem to detect the particles in 3D space with predefined parameters. Though it
gains more information in the additional dimension, the detection is still done
by handcrafted features. The handcrafted features are created by the researchers
from limited samples. Since the conductive particles vary in shape and size, these
handcrafted-feature based method may fail to deal with complex situations.

In this paper, we incorporate the learning-based idea [2,7] and design a convo-
lutional network for valid conductive particles detection. The proposed network
architecture is inspired by U-NET [10], which has been widely used in medical
analysis [1,10] and autonomous driving [13]. Based on the U-shaped network, we
add skip connections to cascade convolutional layers to make residual blocks [4],
which is helpful to recover the full spatial resolution at the network output [1].
Also, instead of solving the detection problem in a classification manner, our task
is reduced to a more straight-forward regression problem. Besides, we make a
series of improvements for better fitting our task. The experimental results show
our method outperforms the previous methods both in precision and recall rate.

2 Proposed AOI System for Particle Detection

2.1 Overview

The AOI system is designed to work on the assembly line. As shown in Fig. 4,
the full pipeline of our AOI system includes three major steps:

1. Image acquisition and ROI extraction. The raw image is obtained by a line
scan camera. One image includes thousands of pads, each of them is a ROI
containing particles. The ROIs are detected by aligning the marker points
which located on the corner of LCD panel.
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Fig. 4. The full pipeline of our proposed AOI system.

2. Particle detection. This step is the focus of our work in this paper. Given
a list of ROI images, the proposed algorithm detects valid particles on the
ROIs one by one.

3. Bonding quality evaluation. With the detected particles on each pad, a final
decision about the effectiveness of ACF bonding is made based on the quality
of particles, such as number of valid particles.

2.2 Pixelwise Regression

As shown in the flowchart (see Fig. 4), the particle detection is separated into
two problems, namely particle heat map estimation and particle localization.

The particle heat map is a map with value range in [0, 1] indicating strength
of particle. A higher value indicates higher probability that there is a particle.
The heat map estimation can be modeled as a pixelwise regression problem as
follows:

Y∗ = F (X), (1)

where X is the input ROI image, Y∗ is the output heat map of the same size as
X, and F is the pixelwise regression model, such as deep neural network, that
mapping the ROI image to the heat map image.

2.3 U-ResNet: U-Shaped Architecture with Residual Blocks

In general, there are two types of technologies for particle strength heat map
estimation, namely the knowledge driven and the data driven methods.

The knowledge driven based methods estimate the heat map by extracting
handcrafted particle features, while the data driven methods learn the estimation
model from markup data.

The existing methods are mainly based on the handcrafted features. However,
there are rare methods based on learning from data in the literature. Learning
based methods have the advantage to handle complex background.

In this section, we proposed a data driven method based on deep learning.
The network structure is shown in Fig. 5.
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Fig. 5. The architecture of U-ResNet-7.

Architecture. The proposed U-ResNet is a U-shaped network with a down path
and an up path, consisting of 14 basic blocks, a 1 × 1 convolutional layer and a
sigmoid layer as output, as shown in Fig. 5. The basic block refers to the convo-
lutional unit or the residual block, either composing of two 3 × 3 convolutional
layers with stride 1 and zero-padding, each followed by a batch normalization
layer and a rectified linear unit (ReLU). Differently, the residual block contains
additional shortcut connection between the layer input and the latter ReLU.
Every two blocks makes a step. After taking a step, a 2× 2 max-pooling layer is
followed in the down path while an upsampling layer is in the up path.

It should be noted that the proposed network architecture is inspired by the
U-NET [10] and ResNet [4]. The feature channels are doubled every step on
the down path and halved on the up path, which is brought from U-NET [10].
The structure of copy & concatenate is also adopted for combining the feature
hierarchy and refining the spatial precision [8].

The network shown in Fig. 5 includes 7 residual blocks, which we call
U-ResNet-7. This network structure can be further extended to have deeper
layers. By substituting residual blocks for the remaining convolutional units, the
U-ResNet-14 is built. By further replacing the three convolutions in the upsam-
pling layers, we design the U-ResNet-17, which doesn’t contain any seperate
convolutional layer except for the last 1 × 1 convolution.

Heat Map Regression. The output layer in our networks is a sigmoid layer,
which normalizes the output to range [0, 1]. Overall, the network takes an m×n
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image as input and generates a heat map of the same size. Each value on the
heat map indicates the strength of being a valid conductive particle center at
the corresponding position on the ROI image.

2.4 Loss Function

Given the predicted heat map and label image, the loss function defined for the
regression task is

L(Y∗,Y) =

√
√
√
√

m∑

i=1

n∑

j=1

αij(y∗
ij − yij)2, (2)

where m and n refer to the size of the input image, Y represents the label map
of the conductive particles while Y∗ refers to the predicted heat map, yij and y∗

ij

stands for the strength value at (i, j) on the respective maps. As the number of
pixels of particles and background in the label image is unbalanced, the weight
coefficient αij is large for the particles and small for the background, which
penalizes more on the labeled particles while keeps the robustness for the wrong
labels, as shown in Eq. (3).

αij = 0.05 × (1 − yij) + 0.95 × yij =

{

0.05 if yij = 0,

0.95 if yij = 1.
(3)

2.5 Particle Localization

Given the predicted heat map, the particle can be localized in two steps:

1. Particle segmentation. The value in the heat map indicates the strength of
being center of particle. A threshold k can be selected to segment the particle
region.

2. Given the segmented particle area, the particle center is estimated as the
centroid of segmented objects.

3 Experiments

3.1 The Dataset

As far as we know, there is no conductive particle dataset in the public domain
that is available for research. A large amount of data is necessary for both
training and validation. We created a dataset for algorithm evaluation. The
training and validation datasets are both created in two steps.

1. ROI Extraction: The raw images are of 8-bit grayscale, captured by a 64 kHz,
4k TDI Line Scan camera of 0.72µm/pixel in resolution. The size of raw image
is 42036× 1635. As the particles only appear on the pin area of LCD screen,
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Table 1. Detailed information of the annotated datasets.

Dataset Name Set-A Set-B Set-C

Image Size 1024 × 128 128 × 64 92 × 24

Training Set Count 3304 5665 5792

Validation Set Count 827 1417 1448

Total Count 4131 7082 7235

the detection algorithm focuses only on the ROI images. There are three
different sizes of ROI images according to the pin size of LCD screen used
tested in our experiments, namely 1024× 128, 128× 64, and 92× 24, which
we call Set-A, Set-B and Set-C, respectively. The particle characteristics on
these three types of ROI images are slightly different.

2. Particle Location Annotation: Given a ROI image X, the label image Y of the
same size is obtained, where yij = 1 with (i, j) is the manually marked center
of particles otherwise yij = 0. The ROI images along with corresponding label
images in three categories compose the final datasets called Set-A, Set-B and
Set-C (see Table 1).

Fig. 6. The loss curves on three datasets.
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3.2 Training the Model

To speed the training process, we divide the grayscaled value of pixels by 255
to normalize the values into range [0, 1]. We also added a batch normalization
layer after each convolutional layer (see Fig. 5).

The weights of our network are first initialized by the way introduced by
Kaiming He [3]. Then the model is trained via backpropagation algorithm with
GPU accelaration. We use Adam optimizer with a batch size of 64 samples,
learning rate of 0.001, the first momentum β1 = 0.9, the second momentum β2

= 0.999, and weight decay of 0.01. It takes about 20 h to train for 1000 epochs
on a single NVIDIA TITAN X GPU. The training and validation loss curves are
shown in Fig. 6. As we can see in the figure, both loss curves are converged.

From the loss curves, we see that all U-ResNet based networks have lower
loss than the original U-NET [10]. The U-ResNet-14 and U-ResNet-17 have
the lowerest training loss. But on the validation sets, U-ResNet-7 always has
the lowerest loss, which indicates that U-ResNet-7 may have the best particle
localization performance.

3.3 Precision and Recall Evaluation

Previous loss analysis indicates that U-ResNet-7 has the best convergence per-
formance on dataset Set-A while U-ResNet-14 wins on Set-B and Set-C. But
the output from the networks is actually a heat map rather than the detection
results. As mentioned above, we need to determine the segmentation threshold
k for further processing to localize particles. To evaluate the final results, we
introduce precision and recall as quantitative criterions.

The precision and recall are defined as:

Precision =
|U ⋂

U∗|
|U | × 100% (4)

Recall =
|U ⋂

U∗|
|U∗| × 100% (5)

where U is the set of ground truth particles on the label map, U∗ is the set of
localized particles, the intersection U

⋂
U∗ refers to the set of correctly localized

particles, and |.| is the number of elements in the set. To determine the inter-
section, the location (i∗, j∗) of each particle in set U∗ and the location (i, j) of
its nearest neighbor in set U is measured with Euclidean distance D, as shown
in Eq. 6.

D =
√

(i∗ − i)2 + (j∗ − j)2. (6)

The tolerance of D is set to 5 in the experiment, which corresponds to the nearly
maximum radius of valid particle in our dataset.
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Fig. 7. Precision-Recall curves of the proposed model.

Table 2. Performance comparison on three datasets.

Lin’s [6] Chen’s [15] U-NET [10] U-ResNet-7 U-ResNet-14 U-ResNet-17

Set-A Precision 74.8% 77.5% 96.0% 96.1% 95.9% 96.0%

Recall 74.8% 77.5% 96.0% 96.1% 95.9% 96.0%

Set-B Precision 83.8% 81.0% 89.6% 89.9% 89.8% 89.7%

Recall 31.0% 33.1% 89.6% 89.9% 89.8% 89.7%

Set-C Precision 75.4% 77.0% 83.5% 84.5% 84.7% 84.6%

Recall 30.9% 30.7% 83.5% 84.5% 84.7% 84.6%

Tradeoff Between Precision and Recall. To evaluate the tradeoff between
precision and recall, the P-R curves with respect to threshold k on heat map are
shown in Fig. 7.

We see that all 4 networks have similar performance on dataset Set-A. But on
Set-B and Set-C, whose image data contains denser particles with more variant
size, we observe that the curves are discriminate. The curve of U-ResNet-17
decays the most saliently after reaching the turning point, especially on Set-C.
Combined with loss curve of U-ResNet-17, we infer that it’s caused by slightly
overfitting, because U-ResNet-17 with the most layers among the models, has
the best training error but performs poor on the validation set. The curve of U-
NET [10] decays the second most saliently while the U-ResNet-7 and U-ResNet-
14 perform excellent on three datasets.

The curves also manifest that we cannot make both precision and recall close
to 1. To tradeoff between the two criterions, we seek for a threshold k that makes
them close to each other. The equal value determines the best precision and recall
on the dataset (see Table 2). In accord with the result from loss curve, U-ResNet-
7 has the best precision and recall on dataset Set-A and Set-B while U-ResNet-
14 performs the best on Set-C. U-ResNet-7 and U-ResNet-14 outperforms U-
NET [10] on all datasets, which demonstrates that U-ResNet is more suitable
for our particle detection task.

3.4 Comparison with Traditional Methods

The biggest difference between the traditional methods and the proposed method
is how to extract features. Figure 8 shows several examples from three datasets.
As we can see, the method based on U-ResNet or U-NET [10] performs better
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than the traditional methods. Lin’s method [6] has poor performance in region
with dense or overlapping particles, especially on Set-B and Set-C. Chen’s [15]
has better result than Lin’s method but still loses a number of particles.

Fig. 8. Examples of particle detection results on three datasets. From left to right:
ROI image, Ground truth, Lin’s [6], Chen’s [15], U-NET [10], U-ResNet-7, U-ResNet-
14, U-ResNet-17

Table 2 illustrates the precision and recall values of the methods on three
datasets. We see on the table that on Set-B and Set-C, the two traditional meth-
ods have very low recall rate while all deep learning based methods exceedingly
outperform the two traditional methods. This fact implies that learning-from-
data methods are more suitable for detecting valid conductive particles.
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3.5 Computation Time

The system was implemented on a Ubuntu 14.04 LTS OS system with 3.5 GHz
i7-5930 CPU, 32 G RAM and TITAN X GPU. The total computation time com-
parison is illustrated on Table 3. In our experiment, the regression stage accounts
for less than 1% time cost with GPU acceleration, while more than 99% of time
is consumed for localizing particles on the heat map. We see the method based
on U-ResNet or U-NET performs much better than the traditional ones and
U-ResNet-7 is more time-saving.

Table 3. Average computation time comparison (unit: ms).1

Lin’s [6] Chen’s [15] U-NET [10] U-ResNet-7 U-ResNet-14 U-ResNet-17

Set-A 11.08 151.11 5.37 5.44 6.60 7.21

Set-B 9.28 21.92 2.61 2.58 2.64 2.66

Set-C 8.45 14.10 1.98 1.96 2.05 2.06
1 For Lin’s [6] and Chen’s [15] methods, no GPU was used in the evaluation, while
for the deep learning based methods, the regression step was tested with GPU
acceleration.

4 Conclusion

The detection of conductive particles is common and crucial for the TFT-LCD
manufacturing process. Due to the complex pattern of conductive particles, there
has not been a perfect solution to detect them with certain handcrafted features.
In this paper, we make two major contributions. First, we apply deep convolu-
tional network to extracting features of conductive particles. Based on the pre-
vailing architecture of U-NET and residual blocks, the U-ResNet architecture
is proposed for better fitting our task. Second, we transform the particle detec-
tion into a pixelwise regression problem. Then valid conductive particles can be
directly detected from the heat map.
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