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Abstract. Image denoising is a fundamental problem in image process-
ing and computer vision. A main challenge is to remove noise while pre-
serving features and developing piecewise smoothing image. Piecewise
constant and linear image recovery has been focused in the past decades.
In this paper, we propose a model recover a class more smoothing image
with complex geometrical structure. We first give definition of piecewise
harmonic image, which covers a wide range piecewise smoothing image.
Then a multiplicative framework for high order variational construction
is introduced. Within this framework, we present a geometrical weighted
Laplace (GWL) high order model. The proposed model is discussed and
compared to some typical related methods. Experimental results on test
images show the performance of the proposed method.
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1 Introduction

In a standard problem of gray scale image denosing problem, the noisy image
u0 corrupted by additive white Gaussian noise is modeled as

u0(x, y) = u(x, y) + σ(x, y), (1)

where u is the unknown noisy free image and σ is assumed as known noise level:∫
Ω

(u − u0)2dxdy = σ2. The goal of image restoration is to remove noise while
preserving the important structure features from the observed noisy image u0 [1].
An usual regularization approach to remove noise by minimizing the following
functional:

E(u, λ) = E(u) +
λ

2

∫

Ω

(u − u0)2dxdy, (2)

where E(u) is the regularization term to measure the variation of the noise inten-
sity and λ ≥ 0 is the Lagrange multiplier. The first regularization term on the
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right-hand side of Eq. (2) is to measure the oscillations using weighted Laplace
operator. The second fitting term is to measure the identification between u and
u0. In seminar total variational (TV) method [2], the regularization functional
is defined as

ETV(u) =
∫

Ω

|∇u|dxdy, (3)

which produces a piecewise constant image while removing noise. However, TV
suffers from staircase effect in smoothing transition region [3]. A more smoothing
image is also expected in varying image processing fields, inluding computer
photography [4], medical image processing [5], image registration [6], Retinex
problem [7]. Some operations have been used to construct high order models,
such as Laplace operation based YK model [3] and LLT model [5], the Frobenius
norm of the Hessian based affine TV model [8], curvature based elastic model
[9] mean curvature based model [10] and Gaussian curvature based model [11].
A variable exponent high order variational model was proposed in [12], where
the Gaussian convolution was used for detecting edges.

Low order model and high order operators are combined to construct new
methods: one part to produce flat image and the other part to generate smooth-
ing transition. In [15], Papafitsoros and Schönlieb considered a general additive
high order functional and proved its existence and uniqueness. A popular high
order model, total generalized variation (TGV), involves high order derivatives
and automatically balances the first to kth derivatives [13]. The second order
TGV is defined as following:

E(u)TGV = TGV2
α = α1

∫

Ω

|∇u − v|dxdy + α2

∫

Ω

|ε(v)|dxdy, (4)

where the minimum is taken over the vector fields v and ε(v) = 1
2 (∇v + ∇vT)

denotes the symmetrized derivative. TGV reduces the staircase effect and leads
to piecewise polynomial intensities [14]. The connections between some typical
additive high order models are detailed in [15]. Typical non-variational methods
includes bilateral filter [16], nonlocal means filter [17,18], guided filter [19] and
BM3D [20].

In this paper, we will introduce piecewise harmonic image, which is more
smoother beyond the classical piecewise constant image and piecewise linear
image. It allow a weak edge between different regions and it is difficult to recovery
it. We will present a a new model to address this problem. The rest of this paper is
organized as follows. Since our aim is to recover a more smoothing image, Sect. 2
introduce the definition of harmonic image and a new multiplicative framework
for model construction. A new high order model is presented and its features
are discussed in Sect. 3, Experimental results are shown in Sect. 4 and a brief
conclusion is given in Sect. 5.
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2 Framework for Piecewise Smoothing Image Recovery

2.1 Piecewise Smoothing Image: From Constant to Harmonic

Let Ωi,i = 1, 2, · · · , n, be a partition of Ω. A common piecewise image is defined
as

u(x, y) =
m∑

i=0

ui(x, y), (5)

where

ui(x, y) =

{
smoothing image (x, y) ∈ Ωi,

0 otherwise.
(6)

We require that the smoothing image in (6) is continuous and differentiable in
every partition Ωi. An usual way is to use homogeneous polynomial to represent
the smoothing function. Therefore, image I is named as a piecewise constant
image when u(i) = ci and a piecewise linear or affine image when u(i) = aix +
biy+ci. TV can recover piecewise constant image successfully. Several high order
models have been proposed to recover piecewise linear image.

Fig. 1. Two harmonic functions and their corresponding images. The left-up is the

shape of the harmonic function f(x, y) = x2

a2 − y2

b2
and right-up is its corresponding

image. The right-down is the shape of the harmonic function f(x, y) = y
x

and right-up
is its corresponding image.

In this paper, for the first time, we consider the recovery of a class more
smoothing image: piecewise harmonic image. In mathematic, a function f is
said to be harmonic if it satisfies the following Laplace equation:



542 B. Lu et al.

�f(x, y) =
∂2f

∂x2
+

∂2f

∂y2
= 0. (7)

Except the traditional constant function and the linear ones, many more smooth-
ing function are harmonic. A quadratic one is a special case when a = b for the
hyperbolic paraboloid in geometry:

f(x, y) =
x2

a2
− y2

b2
, (8)

which describes the shape for a doubly ruled surface in 3D space. Another exam-
ple is f(x, y) = arctan( y

x ), which has a non-vanishing derivatives to infinity.
Figure 1 illustrates the the profiles of two harmonic functions and their corre-
sponding images. These two functions and images has a complex and smoothing
geometrical structure. Therefore, an image u is said to be a piecewise harmonic
if u(i) meets Eq. (7) in partition Ωi. It permits more wild range smoothing func-
tions beyond polynomial, though it is an extension to the traditional piecewise
constant image and linear image. The sharp edges between the piecewise con-
stant are easy to preserved and it is difficult to preserve the edges between the
different harmonic regions, as its gradient may be small.

2.2 Multiplicative High Order Variational Framework

Based on the decisions above, we may infer that it is a challenge to recover
piecewise harmonic image as it permits more smoothing structures beyond con-
stant region and affine region. Before constructing a feasible variation model to
this problem, we should consider two issues. The first is how to judge where is
the boundaries of different smoothing transition regions, which is helpful for a
reasonable piecewise. The second is how to choose a proper way to describe the
smoothing function, which is responsible for smoothing control. The answers to
the two problems need to be integrated into the variational model. To improve
the smoothing degree of the restored image, one need to incorporate high order
operator to describe the smoothing requirement. Therefore, we proposed the
following general high order framework for piecewise smoothing image recovery:

E(u) =
∫

Ω

fp(u, ui, uij)fs(u, ui, uij)dxdy, (9)

where fp provides the clues for judging the boundaries between piecewise regions
and fs conveys the smoothing control respectively. Contrary to the traditional
additive high order variational model framework, the multiplicative model is
easy to extend to other imaging tasks.

3 Proposed Weighted Laplacian Model

By consider a gray scale image u(x, y) as a surface S = (x, y, u(x, y)), we propose
the the following geometrical weighted Laplace (GWL) energy functional:

EGWL(u) =
∫

Ω

|�u|
√

1 + |∇u|2 dxdy. (10)
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The kernel in the the energy (10) is a product of two functions and it can be seen
as a special case for (9) when choosing fp = 1√

1+|∇u|2 and fs = |uxx + uyy| =

|�u|.
The key of recovery of the piecewise harmonic image is the interaction

between two functions.

1. Piecewise. The piecewise effect in a certain partition is guaranteed by edge
boundary detector g =

√
1 + |∇u|2, which has a remarkable geometrical

interpretation:

r =
1
g

=
1

√
1 + u2

x + u2
y

=
dxdy

gdxdy
=

Adomain

Asurface
, (11)

where Adomain is the area of the infinitesimal surface in the image
domain (x, y), and Asurface is its corresponding area on the image surface
(x, y, u(x, y)). Therefore, r conveys the height variation on the surface as well
the intensigy variation on the image data [21]. r is equal 1 for flat surface and
its Laplacian is zero too, such structure will be preserved. r is equal 0 near
edges, which is helpful to preserve edges.

2. Harmonic. The smoothing harmonic constrain is mainly performed by Lapla-
cian operator Δu. As g =

√
1 + |∇u|2 > 1, zero Laplacian means the kernel

function will be zero too and functional reaches the minimizer in this region.
Therefore, smoothing structures will be kept if they can be represented as
any harmonic function.

3. Edge preserving. For an ideal typical sharp edge, its Laplace has a famous zero
crossing property: near the midpoint of the edge, its second order derivative
would cross zero. The kernel function will be 0 as Δu = 0 and r = 0 for a
true sharp edge, which will be recognized and well preserved.

Therefore, the proposed model permits discontinuous while preserving piecewise
smoothing regions.

Adding an artificial time to the Euler-Lagrange equation derived to (10), we
can obtain the following an anisotropic high order nonlinear diffusion equation:

ut = −�
( �u

g|�u|
)

+ div
( |�u|

g3
∇u

)

− λ(u − u0). (12)

The initial condition is u(x, 0) = u0 and its boundary condition is

(ux, uy) · µ = 0, (γ1, γ2) · µ = 0, (13)

where µ is the unit outward normal direction to ∂Ω and γ1 and γ2 are defined
as

γ1 =
( �u

g|�u|
)

x

+
|�u|ux

g3
, (14)

γ2 =
( �u

g|�u|
)

y

+
|�u|uy

g3
. (15)
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The diffusion of Eq. (12) is decided by the interaction of the first order edge
detector g and the second order information �u

|�u| . Noting �u
|�u| = sign�u, only

three values, −1, 0, 1 are permitted. When it equals 0, the diffusion stop auto-
matically. It means that the local structure described by the harmonic function
maybe preserved. When it equals 1 or −1, the diffusion now depends on the mag-
nitude the boundary detector. The diffusion speed will slow down as the sign of
the Laplace operator is scaled by the inverse of a large gradient magnitude. A
fast diffusion will be performed in flat region as the image gradient is small and
the boundary detector g � 1.

As the evolution equation is nonlinear highly, we now consider to solve it
by an explicit finite difference method. For time discretion, forward difference is
used and the space grid size is set as h = 1. Table 1 lists the scheme for time
and spatial operators in high order nonlinear Eq. (12).

Table 1. The discrete scheme for operators in high order nonlinear Eq. (12).

Continuous variable Discrete variable Discrete scheme

t �t Time space

u u0
i,j Initial image

�u �(ui,j) ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

ux in fourth term Dx(ui,j) Dx(ui,j) =
ui+1,j−ui−1,j

2
l

uy in fourth term Dy(ui,j) Dy(ui,j) =
ui,j+1−ui,j−1

2

ux in third term D∓
x ui,j ∓(ui∓1,j − ui,j)

uy in third term D∓
y ui,j ∓(ui,j∓1 − ui,j)

4 Experimental Results

In this section, we conduct several experiments to demonstrate the performance
of the high order GWL model. We make comparisons with three related methods.
The first one is second order TV method, which is famous for its edge preserving
ability. The second method is TGV method, which is implemented by a primal-
dual splitting method in [22]. The code is also available: http://www.gipsa-lab.
fr/∼laurent.condat/software.html. The third one is state of art BM3D method.
To do a quantitative comparison, peak signal-to-noise-ratio (PSNR) is used for
quantitative comparison. For the proposed method, we set time space �t = 10−2

and λ = 0.01.
The first experimental results on a synthesized piecewise quadratic image

are shown in Fig. 2. The test image is composed by two constant functions (one
for left side and another for right side), a linea function (up middle and down
middle) and a selected quadratic harmonic function for u(x, y) = x2

16 − y2

16 in
(8) (middle). The noise level is 10 and the denosing results for the noisy image

http://www.gipsa-lab.fr/~laurent.condat/software.html
http://www.gipsa-lab.fr/~laurent.condat/software.html
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Fig. 2. Piecewise quadratic denoised images. The image is composed by two constant
functions (one for left side and another for right side), a linea function (up middle

and down middle) and a selected quadratic harmonic function for u(x, y) = x2

16
−

y2

16
. From the left to right, the first row: clean image, noisy image (PSNR = 28.1376),

TV result (PSNR = 43.3636). From the left to right, the second row, from the left
to right, TGV result(PSNR = 32.3433), BM3D result (PSNR = 47.0606), GWL result
(PSNR = 49.3684).

Fig. 3. The induced surfaces of piecewise quadratic denoised images. The order is the
same as Fig. 2.

(PSNR = 28.1376) by four methods are shown in 2. The staircase effect is obvi-
ous in quadratic region for TV denoised image (PSNR = 43.3636). The TGV
denoised image (PSNR = 32.3433) shows a good smoothing ability but blurs
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Fig. 4. Piecewise smoothing denoised images beyond quadratic. It is composed of a
linear function and a smoothing function u(x, y) = arctan( y

x
), whose infinite deriva-

tives are non-vanishing. From the left to right, the first row: clean image, noisy image
(PSNR = 28.1221), TV result (PSNR = 43.2176). From the left to right, the second row,
from the left to right, TGV result (PSNR = 31.8597), BM3D result (PSNR = 45.4445),
GWL result (PSNR = 49.6065).

Fig. 5. The induced surfaces of piecewise smoothing denoised images in Fig. 4.

the edges seriously. The staircase effect in linear regions and quadratic regions is
unpleasant in visual for BM3D denoised image (PSNR = 47.0606). The proposed
GWL method provide an almost perfect denoised image visually and quantita-
tively (PSNR = 49.3684). The corresponding induced surfaces are displayed in
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Fig. 6. Nasa denoised image. From the left to right, the first row: clean image, noisy
image (PSNR = 22.1151), TV result (PSNR = 40.1939). From the left to right, the
second row, from the left to right, TGV result (PSNR = 33.5203), BM3D result, GWL
result (PSNR = 42.2764).

Fig. 3. It can be observed that TGV and GWL shows a better smoothing effect
than TV and BM3D.

The second test synthesized image has a more complex structures: it is com-
posed of a linear function and a smoothing function u(x, y) = arctan y

x , whose
infinite derivatives are non-vanishing. The noise level is 10 and the denosing
results for the noisy image (PSNR = 28.1221) by four methods are shown in
4. TV result shows a serious staircase effect for the tangent function region
(PSNR = 43.2176). The TGV denoised image (PSNR = 31.8597) blurs the edges
heavily again. BM3D performs better than TV and TGV but staircase effect is
visual for linear region (PSNR = 45.4445). The proposed GWL method yields a
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best result among four methods visually and quantitatively (PSNR = 49.6065).
The corresponding induced surfaces are displayed in Fig. 5.

The third test image is a picture of moon rise captured from the space sta-
tion by NASA astronaut Randy Bresnik on August 3, 2017. The noise level
is 20 and the denosing results for the noisy image (PSNR = 22.1151) by four
methods are shown in Fig. 6. Four methods remove noise in white and black
background. The differences between them lie in the moon surface and the
smoothing transition regions in the middle of the image. BM3D provides the
best detail preservation ability for moon surface (PSNR = 41.3395) while GWL
produces a good transition effect between the white region and black region
(PSNR = 42.2764). TV still suffers from the staircase (PSNR = 40.1939) and
TGV blurs edges (PSNR = 33.5203).

5 Conclusions

We present a high order variational method to recover a class more smooth-
ing piecewise image beyond quadratic, which we call piecewise harmonic image.
Piecewise harmonic image covers the popular piecewise constant and piecewise
linear images and beyond them, even including some certain function with infi-
nite order non-vanishing derivatives. We construct the new model within a multi-
plicative variational framework and its kernel is based is based on a geometrical
weighted Laplacian operation. The research in this paper shows that we can
restore piecewise harmonic image perfectly. Its major limitation is the fact that
the natural image do not always contain standard piecewise quadratic geometri-
cal structures. Therefor, improvement on its adaptability to more image is part
of our future work. Another important work is to devise an efficient speeding up
algorithms for GWL model.
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