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Abstract. Scene text recognition, is challenging due to the large appear-
ance variances of the scene character. Recently, deep learning technique
has shown its power for scene text recognition, but it requires enormous
annotated data for training and it is time-consuming to manually obtain
abundant data for all the categories of characters. This paper proposes a
new architecture, called multitask coupled generative adversarial network
(MtC-GAN), for scene Chinese character recognition (SCCR). The MtC-
GAN consists of coupled GAN networks for scene character style transfer
and classifier networks trained by the style-transferred data generated by
the coupled GAN. To make the generated data be realistic enough for
SCCR, we train the multitask networks using a new loss function that
combines the constrains of encoders, generators and classifiers simulta-
neously. Experiments show that the proposed MtC-GAN framework is
general and flexible to improve the accuracy for SCCR.
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1 Introduction

Scene text recognition (STR) has been drawing ever-increasing research interests
in recent years given its potential for many applications, such as autonomous
driving [1,2], license plate recognition [3,4] and industrial automation [5,6].
Although traditional optical character recognition has been extensively stud-
ied, naively adapting the technique to STR may fail to perform well, especially
for scene Chinese character recognition (SCCR). The main challenge of SCCR
lies in the large appearance variances of the scene character caused by style,
font, resolution, illumination, projection transformation or partially occluded.

Recently, deep learning technique has been introduced into the field of STR
[7–9]. The deep neural networks (DNN) consists of hierarchical nonlinear trans-
formation, and is allowed to learn the feature and classifier with great invariant
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and discriminate properties. The developed system with DNN structure obtains
the state-of-the-art performance for SCCR. However, it requires enormous anno-
tated data to train and fine-tune the DNN-based system. Although large-scale
benchmark databases have been constructed for STR and SCCR [10], it is still
time-consuming to obtain abundant labels, and the large categories of SCCR
may also suffer from data imbalance. For instance, in the recently proposed
CTW dataset [10], Chinese character samples of common categories can exceed
the 17000 entries, whereas some rare categories contain only one sample. There-
fore, it would be significant to generate scene Chinese character images for SCCR
using DNN architecture.

The generation of scene Chinese character images can be divided into rule-
based and learning-based methods. For the rule-based scheme, Campos et al.
[11] generated English characters to train a character-level English scene text
classifier; Jaderberg et al. [12] create a synthetic word data generator through
physical rendering process to train a whole-word-based English scene text clas-
sifier; Gupta et al. [13] proposed a fast and scalable engine to generate synthetic
images of text in clutter which further consider the local 3D scene geometry,
and then train a text localisation network. The abovementioned methods which
are limited by their rule-based nature seems to hardly simulate all the impor-
tant variances in the real-world. For example, the work of [13] is limited by the
segmentation and depth prediction of background images.

The learning-based method is mostly motivated by the GAN architecture
[14], which can estimate the target distribution, and then generate similar images
to the real ones. Although the previous X-GAN framework can have many advan-
tages, it can’t be ensured that each samples generated by GAN methods can
preserve annotation information, and the naively synthetic data generated by
GAN method may fail to improve the prediction performance due to these bad
samples.

To tackle this problem, we propose a multitask coupled GAN framework
for scene Chinese character recognition, which generates realistic scene Chinese
character and improves the classification accuracy by the generated data simul-
taneously. The MtC-GAN consists of coupled GAN networks for scene character
style transfer and classifier networks trained by the style-transferred data gen-
erated by the coupled GAN. To make the generated data be realistic enough for
scene Chinese character recognition, we propose a new loss that combines the
constrains of encoders, generators and classifiers simultaneously. Experiments
show that the synthetic data by our method have great visual consistency to
the realistic data. Furthermore, classifiers with different deep structures, like
ResNet18 [15], ResNet34 [15] or VGG16 [16], can obtain apparent performance
improvement, which indicate that the proposed multitask coupled GAN frame-
work is general and flexible to improve the accuracy for SCCR.

The contributions of our work can be summarized as follows:

– A multitask coupled GAN learning framework for SCCR, which is general and
flexible to generate realistic data and improve the accuracy of the classifier
by generated data simultaneously without extra human annotation efforts;
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– A new loss that combines the constrains of encoders, generators and classifiers
to regularize the learning of the multitask coupled GAN.

– We qualitatively and quantitatively assess the classifier performance to
demonstrate the effectiveness of the proposed method.

2 Related Works

Scene text image generation is a challenging task given the presence of complex
background and font diversity. Many researchers have proposed the generation
of realistic scene text images. Campos et al. [11] generated English character
images to train a character-level English scene text classifier. Jaderberg et al.
[12] create a synthetic word data generator through physical rendering process to
train a whole-word-based English scene text classifier. Gupta et al. [13] proposed
a fast and scalable engine to generate clutter-text synthetic images considering
local 3D scene geometry, and then train a text localisation network. However,
these methods are limited by their rule-based nature. For instance, the method in
[13] is limited by the segmentation and depth prediction of background images.
Unlike the abovementioned methods, we propose a learning-based method to
generate realistic scene Chinese character images and further improve the recog-
nition performance.

As one of the most considerable improvements on the research of deep genera-
tive models [17,18], GANs [14] are being intensively studied by the deep learning
and computer vision communities alike. A GAN basically consists of generator
and discriminator networks, where the former generates samples to increase the
discriminator error rate, and the latter aims to distinguish real from synthetic
images. This adversarial training allows the generator to estimate the target dis-
tribution and then generate similar images to the real ones. Mathematically, the
standard GAN training aims to solve the following optimization problem:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1)

To extend the abilities of GANs, Mirza et al. [19] proposed a conditional GAN
to direct data generation by conditioning both the generator and discriminator
on additional information. This type of GAN has been successfully used in plenty
of applications, such as image super-resolution [20,21], image style transfer [22–
25], domain adaptation [26], etc.

Furthermore, conditional GANs are suitable for image-to-image translation,
which has been applied for different purposes including the generation of maps
from aerial photos and colorization of grayscale images. Conditional GAN is well
suited for this task and many researchers have achieved great success based on
it. Likewise, Isola et al. [22] proposed the pix2pix model to learn the mapping
from input to output images using paired images. Zhu et al. proposed Cycle-
GAN [23] based on a cycle consistency loss to break the limit of training with
paired images. Liu et al. [25] proposed an unsupervised image-to-image transla-
tion (UNIT) network assuming a shared latent space. Azadi et al. [27] proposed
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the multi-content GAN(MCGAN) for few-shot font style transfer. Shrivastava
et al. [28] proposed a simulated and unsupervised SimGAN to enhance the real-
ism of an image simulator while preserving annotation data and demonstrated
a high performance with no labeled real data. Zhao et al. [29] proposed a dual-
agent GAN(DA-GAN) to enhance the realism of a face simulator output by
using unlabeled real-face images while preserving identity information. Our pro-
posed multitask coupled GAN combines the advantages of the UNIT network
[25] and DA-GAN [29] to improve the quality of synthetic images and consequent
classifier performance.

3 Multitask Coupled GAN

3.1 Source Data

We first propose a synthetic character generator that retrieves simple Chinese
character images through font rendering, affine transformation, and perspective
transformation. We denote the synthetic data generated in this way as source
data xs. By using diverse TrueType and OpenType font files obtained from the
Internet, we generate plenty of simple Chinese character images with annotation
information. In addition, we use real image dataset published by Yuan et al. [10]
and denote it as xt. We aim to simultaneously reduce the difference between xs

and xt and improve the performance of a scene Chinese character classifier.

Fig. 1. Diagram of the proposed multitask coupled GAN architecture. E1 and E2

are two encoding functions that map images to latent codes. G1 and G2 are generation
functions that map latent codes to images. D1 and D2 are adversarial discriminators for
the respective domains. C1 and C2 are classifiers for the respective domains. Lip, Ladv

and Lmatch are the identity perception, adversarial, and matching losses, respectively.
The dash lines denote weight sharing.



Learning to Generate Realistic Scene Chinese Character Images 45

3.2 Coupled Generator

The same Chinese characters can present appearance variations in natural
images arising from complex backgrounds and writing styles. Still, humans can
easily recognize these characters, suggesting that the same characters written
with different styles might share high-level semantic characteristics in the human
brain. This semantic similarity can be represented by a map from characters with
different styles into the same latent space, and an inverse map from a latent space
into different domain images. Consequently, if the same characters with differ-
ent styles are mapped into a latent space, we can generate corresponding images
in two domains using autoencoders. To this end, we use concepts of coupled
GAN [30] and UNIT network [25] to establish a shared latent-space assumption
through a weight-sharing constraint. The architecture of the proposed MtC-GAN
model is illustrated in Fig. 1 and relies on a UNIT network, where generator loss
Lunit is formulated as:

Lunit = LV AE1(E1, G1) + LGAN1(E1, G1,D1) + LCC1(E1, G1, E2, G2)+
LV AE2(E2, G2) + LGAN2(E2, G2,D2) + LCC2(E2, G2, E1, G1) (2)

where LV AE denotes the variational autoencoder loss, LCC denotes the cycle-
consistent loss [23], LGAN denotes the standard adversarial loss [14]. and D, G,
and E denote adversarial discriminators, generators and encoders, respectively.
More details on the loss functions can be found in [25]. The loss constraint
can only add realism to synthesized images in appearance, but hardly preserves
annotation information well. However, to use the synthesized data for improving
classification performance, the synthesized images should preserve annotation
information. Therefore, we include identity perception loss Lip that is a multi-
class cross-entropy loss to preserve annotation information. Then, we update the
generator parameters by minimizing the following loss:

LG = Lunit + λ1Lip (3)

where hyperparameter λ1 control the weights of the objective terms. This com-
bined loss both enhances the realism of synthetic images and preserves annota-
tion data.

3.3 Multitask Discriminator

The discriminator aims to distinguish real from synthesized images. Its loss is
given by:

Ladv = logD1(xs) + log(1 − D1(G1(E2(xt))))+
logD2(xt) + log(1 − D2(G2(E1(xs))))

(4)



46 Q. Lin et al.

In addition, we train a classifier to preserve label information of the generated
data using identity perception loss Lip defined as:

Lip =
∑

n

−YslogDc1(xs) +
∑

n

−YtlogDc1(G1(E2(xt)))+

∑

n

−YtlogDc2(xt) +
∑

n

−YslogDc2(G2(E1(xs)))
(5)

where Dc1 and Dc2 are the probabilities of class n output by classifier C1 and
C2, respectively. Ys and Yt are the labels of xs and xt, respectively. The defi-
nitions above derive in a multitask training that preserves label information of
the synthetic data. In addition, we can generate any amount of training data for
training supervised models.

To further constrain classifiers C1 and C2, we define a matching loss, formu-
lated as:

Lmatch =
∑

i

|Dc1(xs) − Dc2(G2(E1(xs)))| + |Dc2(xt) − Dc1(G1(E2(xt)))| (6)

Where i is the class index. This loss improves the classifier performance. Likewise,
we define another constraint in the generator to improve the quality of the
generated data by training the discriminator to minimize combined loss:

LD = Ladv + γ1Lip + γ2Lmatch (7)

where hyperparameters γ1 and γ2 weigh the corresponding objective terms.
We optimize MtC-GAN by alternatively optimizing multitask discriminator

and coupled generator for each training iteration until the whole network con-
verge.

4 Experiments and Results

We evaluated the performance of the proposed MtC-GAN mainly on the CTW
dataset [10]. Although the most commonly used metric for determining the qual-
ity of generative models is the inception score [31], it does not suit our objective
of using the generated data to improve the classifier performance. Instead we
use two complementary evaluation metrics. First, similar to [28], we deploy the
‘Visual Turing Test’ to evaluate the visual quality of the generated images. Sec-
ond, we use generated data to train a classifier, and compare the performance
among classifiers with different generation methods.

4.1 GAN Training

We used a recently released Chinese text detection and recognition dataset,
the CTW dataset [10]. It is split into training, validation and testing dataset,
where the validation dataset was used for evaluating all the experiments. Similar
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to [10], we only consider recognition of the top 1000 most frequently observed
character categories. In addition, we evaluated a simple classifier to determine
the enhancement provided by the generated images. Specifically, the classifier
that we used is the ResNet18 [15], whereas the architecture of generator and
discriminator was the same as that of the UNIT network [25]. The encoders
consisted of 3 convolutional layers as the front-end and 4 basic residual blocks [15]
as the back-end. The generators consisted of 4 basic residual blocks as the front-
end and 3 transposed convolutional layers as the back-end. The discriminators
consist of 6 convolutional layers. Then, an Adam solver [32] was adopted for the
MtC-GAN with learning rate of 0.0002, λ1 = 1, γ1 = 1,γ2 = 5.

4.2 Generated Image Quality

In this section, we deployed the ‘Visual Turing Test’ [28] to quantitatively eval-
uate the visual quality of the generated images and designed a simple user study
where subjects were asked to classify images as being either real or synthetic.
Each subject observed a random selection of 40 real and 40 synthetic charac-
ter images that were randomly presented, and was asked to label the charac-
ter images as either real or synthetic. We used the classification accuracy for
quantitative evaluation, whose outcomes are shown in Table 1. The classification
accuracy among subjects was 57%, which is very close to a random selection, i.e.,
50%. Consequently, we considered that the subjects were unable to distinguish
between real and synthetic images.

Table 1. Results of the ‘Visual Turing test’ where subjects classified real and synthetic
images. The average classification accuracy among subjects was 57%, close to the 50%
of random selection.

Selected as real Selected as synthetic

Ground truth real 225 175

Ground truth synthetic 169 231

Figure 2 shows examples of characters generated using the proposed method
that served to quantitatively evaluate its outcomes.

4.3 Classifier Performance

The goal of this study was to use generated data for improving the classifier
performance, and thus the classification accuracy was our main concern. Table 2
lists the classification accuracy using different generation methods. We can see
that, naively learning from synthetic data can undermine classification accuracy
due to the difference between synthetic and real image distributions, whereas the
proposed MtC-GAN generation method achieves the best performance among
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Fig. 2. The generated images using multitask coupled GAN. From top to bottom:
source characters, generated characters, target characters.

Table 2. Classification accuracy of different generation methods

Generation method Classification accuracy

Real data only 76.3%

Real data + source data(xs) 75.5%

Real data + synthtext2014 [12] 78.5%

Rael data + synthtext2016 [13] 78.2%

Real data + SimGAN [28] 77.2%

Real data + CycleGAN [23] 77.8%

Real data + UNIT [25] 78.5%

Real data + proposed MtC-GAN 80.7%

Table 3. Classification accuracy of different classifiers with and without the generated
images

Classifier Real data Real data+MtC-GAN

ResNet18 [15] 76.3% 80.7%

ResNet34 [15] 78.5% 82.2%

VGG16 [16] 81.3% 83.5%
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the compared methods, suggesting that multitask training can improve the clas-
sifier performance.

To further verify the effectiveness of the proposed method, we use different
classifiers, whose accuracies are listed in Table 3. Every classifiers using data
generated from the proposed MtC-GAN exhibits the best performance. Further-
more, the ResNet18 with multitask training can have better performance than
the ResNet34 [15] without multitask training. It shows that if we can generate
images which are realistic enough, we can train a shallow network enjoying the
comparable performance with a deep one.

5 Conclusions

We propose a multitask coupled GAN (MtC-GAN) for realistic annotation-
preserving image synthesis. The generated scene Chinese character images
improve the performance of character classifiers. Both qualitative and quantita-
tive evaluations demonstrate the effectiveness of the proposed MtC-GAN method
and its superior performance. The experimental results also suggest that if we
can generate images which are realistic enough, we can train a shallow network
enjoying the comparable performance with a deep one.
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