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Abstract. This paper introduced a simple and effective algorithm to
remove the noise and outliers in point sets generated by multi-view stereo
methods. Our main idea is to discard the points that are geometrically
or photometrically inconsistent with its neighbors in 3D space using the
input images and corresponding depth maps. We attach a scale value
to each point reflecting the influence to the adjacent area of the point
and define a geometric consistency function and a photometric consis-
tency function for the point. We employ a very efficient method to find
the neighbors of a point using projection. The consistency functions are
related to the normal and scale of the neighbors of points. Our algorithm
is locally adaptive, feature preserving and easy to implement for massive
parallelism. It performs robustly with a variety of noise and outliers in
our experiments.
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1 Introduction

The state of the art in multi-view stereo methods has seen great development
in robustness and accuracy these years. However, point sets produced by multi-
view stereo methods are usually redundant and inevitably with a lot of noise and
outliers due to imperfection of acquisition hardware and algorithms, as is shown
in Fig. 1(b). Modern MVS algorithms use different output scene representations,
such as depth maps, a point cloud, or a mesh. Depth map scene representation
is one of the most popular choices due to the flexibility and scalability [7] but
suffers more noise. This poses a great challenge to surface reconstruction.

We can impose strong regularization in MVS methods to reduce outliers, but
this will destroy sharp features and may be time consuming. Some denoising
methods directly operate on unorganized point cloud and using k nearest neigh-
bors to optimize the position and normal of a reference point [13]. Depth map,
however, often provides us with additional information such as connectivity and
c© Springer Nature Switzerland AG 2018
J.-H. Lai et al. (Eds.): PRCV 2018, LNCS 11258, pp. 415–426, 2018.
https://doi.org/10.1007/978-3-030-03338-5_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03338-5_35&domain=pdf
https://doi.org/10.1007/978-3-030-03338-5_35


416 Z. Mi and W. Tao

Fig. 1. We use the multi-view stereo methods MVE [8] to reconstruct a dense 3D point
cloud (b) for the Middlebury Temple dataset [11] (a). The output point cloud is very
noisy. We denoise the depth maps only use geometric consistency (c). A lot of noise
and outliers are removed but there are still some black points from the background
retained on the border of the temple. We use geometric consistency and photometric
consistency together in (d) and get better result.

scale [3]. Therefore, in our method, we computed a scale value for each point
using the input depth maps in image space. The scale value provides valuable
information about the surface area each point was acquired from, as discussed by
Fuhrmann et al. [3]. With scale information, we can handle datasets containing
non-uniform noise and sample resolution.

In our method, we do not discretize the 3D space, avoiding large memory
and time usage. We project a reference point to other depth maps and find its
neighbors in the image space. The neighbors obtained from image space are not
necessarily but most likely to be neighbors in the 3D space. Then we project
them back to the 3D space to evaluate the geometric and photometric con-
sistency between the reference point and its neighbors. Our locally adaptive
geometric consistency function and photometric consistency are related to the
scale of the reference point and it’s neighbors. The functions are defined com-
pactly supported, namely, the neighbors used for evaluating the functions must
be near the reference point in spatial space. Because of the redundancy of the
depth maps, we do not change the position, normal and color of the points but
just remove the points that are not consistent with its neighbors. For the sake of
efficiency, we employ view selection strategy to identify nearby views using the
feature points reconstructed in the previous SFM phase [6,8]. This enables our
methods the ability to operate on extremely large photo collections.

Our contributions are:

– An approach using scale information to evaluate the geometric and photomet-
ric consistency, which is local adaptive feature preserving and more accurate.

– Finding neighbors of reference points in image space by depth map triangu-
lation and projection, which is very efficiency.

In the remainder of this paper, we first review related work (Sect. 2). Then
introduce our denoise approach (Sect. 3), perform experiments on a variety of
data sets (Sect. 4) and conclude our work (Sect. 5).
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Fig. 2. (1) A point with a scale value represents a finite surface in the spatial space.
(2) The shape of the functions fx(x) (2a), fy(y) and fz(z) (2b), wx(x) (2c) and wyz(r)
(2d).

2 Related Work

Here we describe some closely related work in point set denoising, focusing on
how they handle point sets generated by images with varying resolution and
viewing parameters, what parameters they use and to what extend they are
time and memory consuming.

Most multi-view stereo methods integrate a depth map fusion strategy into
the depth estimation stage or after the whole reconstruction. They usually
enforce visibility and consistency across views. Wu et al. [18] firstly use an indica-
tor function based on visibility cues in [16] to remove outliers. Then they enforce
visibility consistency across views. Such method is not sophisticated thus there
remains a lot of noise and outliers. Schönberger et al. [10] define a directed graph
of consistent pixels with their photometric and geometric consistency support
set, then find and fuse the clusters of consistent pixels in this graph. The fused
point cloud are of high quality and have little outliers. However, finding clusters
is very time consuming and not easy to parallelize. In addition, they use the
photometric and geometric consistency terms computed in the MVS procedure
of their reconstruction method, which are only available in their approach.

The above methods proposed as part of multi-view stereo methods usually
use parameters that are unique in their depth reconstruction and thus their use
is restricted. There are also some methods independent of the MVS. Sun et al.
[13] directly denoise point clouds using the L0 norm to preserving sharp features.
Wolff et al. [17] take depth maps as input and implicitly uses a surface repre-
sented by the input depth maps to check geometric consistency and photometric
consistency between each per-view point and other input views. Our method
are relevant to their method, projecting the points to the image space of other
depth maps. However, we take a completely different, local adaptive strategy
to examine consistency using the finite surface represented by points with scale
value.
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Fig. 3. Our point denoising pipeline: we examine a reference point p against other
depth maps. A depth map Di is trianglated in the image space. Then we project the
reference point to the depth map and get which triangle it falls into. If no such triangle
exist, we do not compute any function and examine p against next depth map. If it
falls into an triangle, we regard the three vertexes as the neighbor of p and use them
to evaluate our functions. Our functions are related to the scale of the points. After
examining the reference point against all the depth maps, we compare the functions
with threshold and decide if the point will be removed.

The quality of the reconstructed surface strongly depends on the quality
of the input point set which is inevitably with noise and outliers. Therefore,
many surface reconstruction methods explicitly use some strategy to handle the
noise and outliers. Poisson surface reconstruction [9] estimate local sampling
density and scale the contribution of each point accordingly. However, sampling
density is not necessarily related to the sample resolution, and an increased
sampling density may simply be caused by data redundancy as discussed in [4].
Fuhrmann et al. [3] construct a discrete, multi-scale signed distance field capable
of representing surfaces at multiple levels of detail and produce output surfaces
that are adaptive to the scale of the input data. Our methods apply the same
depth map triangulation step and compute the scale of every points. Fuhrmann
et al. [4] attach the scale value to each sample point and use the weighted average
of locally estimated functions to define the implicit surface compactly around
the input data. The method is virtually parameter-free for mixed-scale datasets
and does not require any global operations. Our method draws inspiration from
this method and uses scale value computed from the triangulated depth maps
to handle the noise outliers.

3 Denoising and Outlier Removal

In this section, we describe the evaluation of geometric and photometric consis-
tency between a reference point p and its neighbors in spatial space. We assume
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that M input depth maps are given and points in them are equipped with a
position, a normal and a color.

3.1 Definition of Scale

We define a scale value for each point related to the depth map it comes from. As
illustrated in Fig. 3, we first find the adjacent points for a point in the input depth
map in image space, and then computed a scale value for each point by averag-
ing the spatial distances between the point and its adjacent points. As discussed
by Fuhrmann et al. [3], the scale value provides valuable information about the
surface area each point was acquired from. The points in depth maps are not
ideal points. Instead, they represent a surface at a particular scale depending on
viewing distance, focal length and image resolution [3] as illustrated in Fig. 2.
With scale information, we can define local adaptive functions for geometric con-
sistency and photometric consistency to handle datasets containing non-uniform
noise and sample resolution.

3.2 Neighbors in Image Space and LCS

To determine the geometric and photometric consistency, every reference point
p has to be examined against its neighbors in the spatial space. Depth maps can
provide us with additional information such as connectivity. As illustrated in
Fig. 3, We triangulate the depth maps in image space using the method proposed
by [3]. Then we project the reference point p to other depth maps and get
the triangles it falls into. The three vertices of the triangle are regarded as
the neighbors of the reference point. After the whole projection, we get a set
of neighbors Np = {pi|i = 1, ...,M} for p. Each of them are equipped with a
position pi ∈ R

3, a normal ni ∈ R
3, ‖ni‖ = 1, and a scale value si ∈ R. Generally,

such neighbors are most likely near the reference point in spatial space. Since
our functions are compactly supported, we can ensure that the neighbor points
used to evaluate geometric and photometric consistency are actually near the
reference point. When examining p against pi, we use the local coordinate of p in
the local coordinate system (LCS) of pi. The local coordinate is xi = Ri ·(p−pi)
with a rotation matrix Ri = R(ni) such that pi is located in the origin and the
normal ni coincides with the positive x-axis [4]. The LCS is only up to the
position and normal of pi so the functions should be invariant to the choice of
the LCS orthogonal to the normal.

3.3 Geometric Consistency

Given a reference point p, and a set of neighbors Np = {pi|i = 1, ...,M}, we
define a signed geometric consistency function F (p) as a weighted sum of basis
functions, as proposed in the surface reconstruction method [4]:

F (p) =
∑

i wdi(xi)wni(pi)fi(xi)∑
i wdi(xi)wni(pi)



420 Z. Mi and W. Tao

W (p) =
∑

i

wdi(xi)wni(pi) (1)

where xi is the local coordinate of p in local coordinate system of (LCS) pi. The
basis function fi(xi) is a signed function which is positive in front of the surface
and negative otherwise (similar to a signed distance function). The function
fi(xi) and weight wdi(xi), wni(pi) are parameterized by the ith neighbor’s
position pi, normal ni and scale si. Similar to [4], for each neighbor pi, we
define a basis function that is unit-integral and stretched depending on the scale
of the neighbor.

With xi = (x, y, z), we use a function fx(x) that is like the derivative of the
Gaussian in the x-coordinate. The standard deviation of fx(x) is set to the scale
of the neighbor, that is σ = si. It is positive when x > 0 and negative when
x < 0. Normalized Gaussians fy(y), fz(z) are used orthogonal to the normal in
y-coordinate and z-coordinate.

fx(x) =
x

σ2
e

−x2

2σ2 , fy(y) =
1

σ
√

2π
e

−y2

2σ2 , fz(z) =
1

σ
√

2π
e

−z2

2σ2 (2)

We define the basis function of the ith neighbor as:

fi(xi) = fx(x)fy(y)fz(z) =
x

σ42π
· e

−1
2σ2 (x2+y2+z2) (3)

The function meets the condition that it must be unit-integral as discussed
before:

∫ ∫ ∫

|fi(xi)|dxi =
∫

|fx(x)|dx

∫

fy(y)dy

∫

fz(z)dz = 1 (4)

In the following, we define a weighting function wdi(xi) related to the dis-
tance between the neighbor pi. It is designed to ensure that the neighbor used to
evaluate F (p) are actually near the reference point p. As illustrated in the Fig. 2,
fi(xi) is almost zero beyond 3σ, and thus wdi(xi) is define as 0 beyond 3σ to
ensure the compact support. As discussed by Curless and Levoy [1] and Vrubel
et al. [14]: if a point has been observed, the existence of a surface between the
observer and the point is not possible. Therefore, if x < 0, the existence of a ref-
erence point behind the neighbor cause conflict. Therefore, we want to reduce the
weight quickly. The weighting function wdi(xi) is non-symmetric in x-direction
and rotation invariant in y- and z-direction:

wdi(xi) = wx(x) · w(yz)(
√

y2 + z2) (5)

wx(x) =

⎧
⎨

⎩

1
9

x2

σ2 + 2
3

x
σ + 1 x ∈ [−3σ, 0)

2
27

x3

σ3 − 1
3

x2

σ2 + 1 x ∈ (0, 3σ]
0 otherwise

(6)

wyz(r) =
{

2
27

r3

σ3 − 1
3

r2

σ2 + 1 r < 3σ
0 otherwise

(7)
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r =
√

y2 + z2 (8)

Additionally, to better preserve the sharp features in the point set and avoid
over smoothing, we define a weighting function wni(pi) related to the similarity
between the normals of the points.

wni(pi) =

{
nT

pni

‖np‖·‖ni‖ nT
pni > 0

0 nT
pni ≤ 0

(9)

We define wni(pi) as 0 if nT
pni ≤ 0 to eliminate the influence of neighbors

that have a much different normal direction with the reference point, which can
improve the robustness.

Since F (p) is compactly supported, some extremely isolated outliers with
little neighbors will have small F (p). They cannot be filtered if we only make use
of F (p). We observe that if a reference point is an outlier with little neighbors,
its W (p), the sum of the weighting function, will be very small. In practice,
points with a weight below a certain value are also removed, which can filter out
extremely isolated outliers.

3.4 Photometric Consistency

In practice, our algorithm can filter out common noise and outliers with geo-
metric consistency function. However, as illustrated by Fig. 1(b) (c), the noisy
points near the border of object are hard to remove. Our observation is that such
points usually have a blurred color that is quite different from its neighbors. So
we define a function E(p) to evaluate the photometric consistency between the
reference point p, with a color c(p), and its neighbors Np = {pi|i = 1, ...,M},
whose colors are c(pi). E(p) is defined as

E(p) =
‖c(p) − c′(p)‖

‖c(p)‖ (10)

where c′(p) is the temporary color of p computed by the color of its neighbors.
Inspired by the anisotropic and feature-preserving nature of bilateral filtering
[2], we compute c′(p) as

c′(p) = K(p)
∑

i

Wc(pi)Ws(pi)c(pi) (11)

where Wc(pi) is the spatial weighting term, Ws(pi) is the signal weighting term
and K(p) = 1∑

i Wc(pi)Ws(pi)
is the normalization factor. Wc(pi) is a spatial

Gaussian that decreases the influence of distant neighbors:

Wc(pi) = exp(−‖p − pi‖2/2σ2) (12)

where σ = sp, which is the scale value of the reference point p. We do not define
Ws(pi) as Gaussian but just use the normalized dot product of the normals
between p and pi for efficiency.
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Ws(pi) =

{
nT

pni

‖np‖·‖ni‖ nT
pni > 0

0 nT
pni ≤ 0

(13)

The influence of neighbors that have a much different normal direction with
the reference point, i.e. nT

pni ≤ 0, are eliminated.

3.5 Depth Map Selection for Scalability

Our algorithm proposed above does not perform costly optimizations and thus
is very efficient and easy to parallel. However, assuming we have N input depth
maps with a resolution of K, the time complexity of our algorithm is O(KN2).
It increases quadratically with the number of depth maps N . In practice, we do
not consider depth maps whose viewing direction vi differs too much from the
viewing direction v under which p was observed, i.e. vT

i v < 0. However, the
time complexity still increase quickly when operating extremely large data sets.
In order to make our algorithm more scalable, we introduce a view selection
method as an option when operating on large data sets. We use SFM points
to select nearby depth maps for a reference depth map. The number of shared
SFM points between the reference depth map and other depth maps is a good
indicator whether the reference point is visible in other depth maps. We calculate
the number of shared feature points, sort them from large to small and only
examine the points in the reference depth map against the first C depth maps.
Now the time complexity is O(KCN), increasing linearly with the number of
depth maps N . Since the reference point is not likely visible by the depth maps
with few shared SFM points, our algorithm still yields good results with view
selection in our experiments.

3.6 Point Filtering Strategy

After evaluating F (p), W (p) and E(p) for a reference point p, we use them to
decide whether the point p will be retained. We retain a point if it satisfies all
of the following three conditions:

− Tp < F (p) < Tp, W (p) > α, E(p) < ε (14)

Since F (p) is an locally adaptive function, we define a locally adaptive
threshold Tp = βF (x = sp,

√
y2 + z2 = sp, σ = sp) for F (p). Actually,

F (x = sp,
√

y2 + z2 = sp, σ = sp) is the function value of a virtual point
whose local coordinates are relate to the scale of reference point. This definition
can ensure the adaptivity of filtering. β is a constant decided by users to control
the degree of filtering. It performs well in feature preserving in our experiments.
The threshold of W (p) is a constant α to filter out the extremely isolated out-
liers. It is related to the number of input depth maps and typically we set it to
25 when there are hundreds of input depth maps. The threshold of E(p) is a
constant ε. We typically set it to 0.1, that is, if the difference between the real
color and the temporary color is above 10%, we filter the point out. It performs
well in eliminating the color blur in the point sets.
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4 Results

In this section, we perform evaluation of our algorithm on different types of
datasets. In Sect. 4.1 we compare our filtering results with the method proposed
by Wolff et al. [17] on several datasets released by Yücer et al. [15]. We use
(Screened) Poisson Surface Reconstruction (PSR) [9] for surface reconstruction.
In Sect. 4.2 we analyze the performance of our strategy for filtering using the
Fountain data set of Strecha et al. [12]. In Sect. 4.3 we check the validity of the
photometric consistency function on the Temple Full dataset from the Middle-
bury benchmark [11].

4.1 Comparison Against the Method of Wolff et al.

Figure 4 shows the results of comparison of our method and the method proposed
by Wolff et al. [17] on the datasets released by Yücer et al. [15]. Wolff et al. [17]
also takes depth maps as input and use these datasets for the evaluation of their
method. We use two of state-of-the-art multi-view stereo methods, the colmap of
Schönberger et al. [10] and the MVE of Fuhrmann et al. [5] for the dense multi-
view depth reconstruction. While Fuhrmann et al. (MVE) [5] do not integrate a
fusion step into the MVS reconstruction, colmap of Schönberger et al. [10] fuse
their resulting depth maps into a point cloud. In our experiment, we disable the
fusion step in colmap [10] and use its raw depth maps for filtering. We also show
the result of the fusion result of colmap [10] for comparison.

We use about 200 input images for the reconstructions of each dataset. For
MVE we used the level-2 depth maps (4*downsampling) the same as the exper-
iments of Wolff et al. [17]. We also limit the max image size in colmap to the
same resolution as the experiment of MVE for comparison. We run PSR for each
point cloud in our experiment after the filtering. As shown in Fig. 4, the outliers
of the results of MVE and colmap are very dense so that it is not easy to filter
them out. However, our method employ both the F (p) and W (p) in Geometric
consistency and thus more robust to such outliers. Comparing to the results of
Wolff et al. [17], we get more clean and dense point cloud and little outliers with
our method. In all the experiments, the run time of our method and Wolff et
al. are almost the same. With the use of scale value, our method are not only
perform well in removing outliers but also preserve more sharp features in the
point cloud. Since the method of Wolff et al. are actually global, the results of
it often retains some outliers while destroying the sharp features.

4.2 Analysis of Filtering Strategy

In this section, we analyze the filtering strategy of our methods using the datasets
released by Yücer et al. [15] and the Fountain data set of Strecha et al. [12]. In
our experiments, we use the locally adaptive threshold for Tp. As is shown in
Fig. 4, the result of locally adaptive threshold is more clean nearby the surface
of the objects. That is, F (p) with a locally adaptive threshold performs better
in feature preserving with the scale information. We also use different constant
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Fig. 4. We use the MVE [5] and colmap [10] to generate the depth maps. After filtering,
we use (PSR) [9] to reconstruct a surface for the point cloud. We compare our output
point clouds and surfaces with those of Wolff et al. [17]. We also show the result of the
fusion method of colmap as a comparison.

threshold of α for W (p). As illustrated by Fig. 5, as the increase of α, the number
of outliers in the point cloud decreases quickly because W (p) play an important
role in extreme outliers removing.

4.3 Performance of Photometric Consistency

Figure 1 shows the importance of photometric consistency function. The Temple
Full dataset from the Middlebury benchmark [11] contains 312 images. Their
background are black, so as shown in Fig. 1, the resulting point cloud using
MVE contains a mass of black points near the border of the object. These black
points are retained when we only apply the photometric consistency. When we
integrate the photometric consistency in filtering, most of the black points are
removed and the colors of the surface of the object are more uniform.
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Fig. 5. The sum of weight, W (p) performs an important role in outliers removing. The
α for W (p) in (b), (c), (d), (e) are 0, 2, 4, 6. It is clear that as the increase of α, the
number of outliers decreases quickly.

5 Conclusions

We propose a very efficient point cloud denoiser which is locally adaptive. We
are mainly inspired by the surface reconstruction method [4]. Since scale and
efficiency are common topics in 3D reconstruction, we hope that other people
can be inspired by our work and solve some other problems.
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