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Abstract. Topic models have been widely used in discovering latent
topics which are shared across documents in text mining. Vector rep-
resentations, word embeddings and topic embeddings, map words and
topics into a low-dimensional and dense real-value vector space, which
have obtained high performance in NLP tasks. However, most of the
existing models assume the results trained by one of them are perfect
correct and used as prior knowledge for improving the other model. Some
other models use the information trained from external large corpus to
help improving smaller corpus. In this paper, we aim to build such an
algorithm framework that makes topic models and vector representations
mutually improve each other within the same corpus. An EM-style algo-
rithm framework is employed to iteratively optimize both topic model
and vector representations. Experimental results show that our model
outperforms state-of-the-art methods on various NLP tasks.

Keywords: Topic modeling · Polysemous-word · Word embeddings
Text mining

1 Introduction

Word embeddings, e.g., distributed word representations [16], represent words
with low dimensional and dense real-value vectors, which capture useful semantic
and syntactic features of words. Distributed word embeddings can be used to
measure word similarities by computing distances between vectors, which have
been widely used in various IR and NLP tasks, such as entity recognition [23],
disambiguation [5] and parsing [21]. Despite the success of previous approaches
on word embeddings, they all assume each word has a specific meaning and
represent each word with a single vector, which restricts their applications in
fields with polysemous words, e.g., “bank” can be either “a financial institution”
or “a raised area of ground along a river”.

To overcome this limitation, [14] propose a topic embedding approach,
namely Topical Word Embeddings (TWE), to learn topic embeddings to charac-
terize various meanings of polysemous words by concatenating topic embeddings
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Fig. 1. Skip-Gram, TWE and LTSG models. Blue, yellow, green circles denote the embed-
dings of word, topic and context, while red circles in LTSG denote the global topical
word. White circles denote the topic model part, topic-word distribution ϕ and topic
assignment z. (Color figure online)

with word embeddings. Despite the success of TWE, compared to previous multi-
prototype models [11,20], it assumes that word distributions over topics are
provided by off-the-shelf topic models such as LDA, which would limit the appli-
cations of TWE once topic models do not perform well in some domains [19]. As a
matter of fact, pervasive polysemous words in documents would harm the perfor-
mance of topic models that are based on co-occurrence of words in documents.
Thus, a more realistic solution is to build both topic models with regard to poly-
semous words and polysemous word embeddings simultaneously, instead of using
off-the-shelf topic models. In this work, we propose a novel learning framework,
called Latent Topical Skip-Gram (LTSG) model, to mutually learn polysemous-
word models and topic models. To the best of our knowledge, this is the first
work that considers learning polysemous-word models and topic models simulta-
neously. Although there have been approaches that aim to improve topic models
based on word embeddings MRF-LDA [24], they fail to improve word embeddings
provided words are polysemous; although there have been approaches that aim
to improve polysemous-word models TWE [14] based on topic models, they fail to
improve topic models considering words are polysemous. Different from previous
approaches, we introduce a new node Tw, called global topic, to capture all of
the topics regarding polysemous word w based on topic-word distribution ϕ,
and use the global topic to estimate the context of polysemous word w. Then we
characterize polysemous word embeddings by concatenating word embeddings
with topic embeddings. We illustrate our new model in Fig. 1, where Fig. 1(A) is
the skip-gram model [16], which aims to maximize the probability of context c
given word w. Figure 1(B) is the TWE model, which extends the skip-gram model
to maximize the probability of context c given both word w and topic t, and
Fig. 1(C) is our LTSG model which aims to maximize the probability of context
c given word w and global topic Tw. Tw is generated based on topic-word distri-
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bution ϕ (i.e., the joint distribution of topic embedding τ and word embedding
w) and topic embedding τ (which is based on topic assignment z). Through
our LTSG model, we can simultaneously learn word embeddings w and global
topic embeddings Tw for representing polysemous word embeddings, and topic
word distribution ϕ for mining topics with regard to polysemous words. We will
exhibit the effectiveness of our LTSG model in text classification and topic mining
tasks with regard to polysemous words in documents.

In the remainder of the paper, we first introduce preliminaries of our LTSG
model, and then present our LTSG algorithm in detail. After that, we evaluate
our LTSG model by comparing our LTSG algorithm to state-of-the-art models in
various datasets. Finally we review previous work related to our LTSG approach
and conclude the paper with future work.

2 Preliminaries

In this section, we briefly review preliminaries of Latent Dirichlet Allocation
(LDA), Skip-Gram, and Topical Word Embeddings (TWE), respectively. We show
some notations and their corresponding meanings in Table 1, which will be used
in describing the details of LDA, Skip-Gram, and TWE.

Table 1. Notations of the text collection.

Term Notation Definition or description

Vocabulary V Set of words in the text collection, |V| = W

Word w A basic item from vocabulary indexed as
w ∈ {1, 2, . . . , W}

Document w A sequence of N words, w = (w1, w2, . . . , wN )

Corpus D A collection of M documents, D = {w1,w2, . . . ,wM}
Topic-word ϕ K distributions over vocabulary (K × W matrix),

|ϕ| = K, |ϕk| = W

Word embedding v Distributed representation of word, denoted by vw,
v ∈ Rd

Topic embedding τ Distributed representation of topic, denoted by τk,
τ ∈ Rd

2.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [2], a three-level hierarchical Bayesian model,
is a well-developed and widely used probabilistic topic model. Extending Prob-
abilistic Latent Semantic Indexing (PLSI) [10], LDA adds Dirichlet priors to
document-specific topic mixtures to overcome the overfitting problem in PLSI.
LDA aims at modeling each document as a mixture over sets of topics, each
associated with a multinomial word distribution. Given a document corpus D,
each document wm ∈ D is assumed to have a distribution over K topics. The
generative process of LDA is shown as follows,
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1. For each topic k = 1 → K, draw a distribution over words ϕk ∼ Dir(β)
2. For each document wm ∈ D,m ∈ {1, 2, . . . ,M}

(a) Draw a topic distribution θm ∼ Dir(α)
(b) For each word wm,n ∈ wm, n = 1, . . . , Nm

i. Draw a topic assignment zm,n ∼ Mult(θm), zm,n ∈ {1, . . . , K}.
ii. Draw a word wm,n ∼ Mult(ϕzm,n

)

where α and β are Dirichlet hyperparameters, specifying the nature of priors
on θ and ϕ. Variational inference and Gibbs sampling are the common ways to
learn the parameters of LDA.

2.2 The Skip-Gram Model

The Skip-Gram model is a well-known framework for learning word vectors [16].
Skip-Gram aims to predict context words given a target word in a sliding window,
as shown in Fig. 1(A).

Given a document corpus D defined in Table 1, the objective of Skip-Gram
is to maximize the average log-probability

L(D) =
1

∑M
m=1 Nm

M∑

m=1

Nm∑

n=1

∑

−c≤j≤c,j �=0

log Pr(wm,n+j |wm,n), (1)

where c is the context window size of the target word. The basic Skip-Gram
formulation defines Pr(wm,n+j |wm,n) using the softmax function:

Pr(wm,n+j |wm,n) =
exp(vwm,n+j

· vwm,n
)

∑W
w=1 exp(vw · vwm,n

)
, (2)

where vwm,n
and vwm,n+j

are the vector representations of target word wm,n

and its context word wm,n+j , and W is the number of words in the vocabulary
V . Hierarchical softmax and negative sampling are two efficient approximation
methods used to learn Skip-Gram.

2.3 Topical Word Embeddings

Topical word embeddings (TWE) is a more flexible and powerful framework for
multi-prototype word embeddings, where topical word refers to a word taking
a specific topic as context [14], as shown in Fig. 1(B). TWE model employs LDA
to obtain the topic distributions of document corpora and topic assignment for
each word token. TWE model uses topic zm,n of target word to predict context
word compared with only using the target word wm,n to predict context word
in Skip-Gram. TWE is defined to maximize the following average log probability

L(D) =
1

∑M
m=1 Nm

M∑

m=1

Nm∑

n=1

∑

−c≤j≤c,j �=0

log Pr(wm,n+j |wm,n) + log Pr(wm,n+j |zm,n).

(3)
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TWE regards each topic as a pseudo word that appears in all positions of words
assigned with this topic. When training TWE, Skip-Gram is being used for learn-
ing word embeddings. Afterwards, each topic embedding is initialized with the
average over all words assigned to this topic and learned by keeping word embed-
dings unchanged.

Despite the improvement over Skip-Gram, the parameters of LDA, word
embeddings and topic embeddings are learned separately. In other word, TWE
just uses LDA and Skip-Gram to obtain external knowledge for learning better
topic embeddings.

3 Our LTSG Algorithm

Extending from the TWE model, the proposed Latent Topical Skip-Gram model
(LTSG) directly integrates LDA and Skip-Gram by using topic-word distribution
ϕ mentioned in topic models like LDA, as shown in Fig. 1(C). We take three steps
to learn topic modeling, word embeddings and topic embeddings simultaneously,
as shown below.

Step 1. Sample topic assignment for each word token. Given a specific
word token wm,n, we sample its latent topic zm,n by performing Gibbs updat-
ing rule similar to LDA.

Step 2. Compute topic embeddings. We average all words assigned to each
topic to get the embedding of each topic.

Step 3. Train word embeddings. We train word embeddings similar to Skip-
Gram and TWE. Meanwhile, topic-word distribution ϕ is updated based on
Eq. (10). The objective of this step is to maximize the following function

L(D) =
1

∑M
m=1 Nm

M∑

m=1

Nm∑

n=1

∑

−c≤j≤c,j �=0

log Pr(wm,n+j |wm,n) + log Pr(wm,n+j |Twm,n
),

(4)

where Twm,n
=

K∑

k=1

τk ·ϕk,wm,n
. τk indicates the k-th topic embedding. Twm,n

can be seen as a distributed representation of global topical word of wm,n.

We will address the above three steps in detail below.

3.1 Topic Assignment via Gibbs Sampling

To perform Gibbs sampling, the main target is to sample topic assignments zm,n

for each word token wm,n. Given all topic assignments to all of the other words,
the full conditional distribution Pr(zm,n = k|z−(m,n),w) is given below when
applying collapsed Gibbs sampling [9],

Pr(zm,n = k|z−(m,n),w) ∝
n

−(m,n)
k,wm,n

+ β
∑w

w=1 n
−(m,n)
k,w + Wβ

· n
−(m,n)
m,k + α

∑K
k′=1 n

−(m,n)
m,k′ + Kα

, (5)
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where −(m,n) indicates that the current assignment of zm,n is excluded. nk,w

and nm,k denote the number of word tokens w assigned to topic k and the count
of word tokens in document m assigned to topic k, respectively. After sampling
all the topic assignments for words in corpus D, we can estimate each component
of ϕ and θ by Eqs. (6) and (7).

ϕ̂k,w =
nk,w + β

∑W
w′=1 nk,w′ + Wβ

(6)

θ̂d,k =
nm,k + α

∑K
k′=1 nm,k′ + Kα

(7)

Unlike standard LDA, the topic-word distribution ϕ is used directly for con-
structing the modified Gibbs updating rule in LTSG. Following the idea of DRS
[7], with the conjugacy property of Dirichlet and multinomial distributions, the
Gibbs updating rule of our model LTSG can be approximately represented by

Pr(zm,n = k|w, z−(m,n),ϕ, α) ∝ ϕk,wm,n
· n

−(m,n)
m,k + α

∑K
k′=1 n

−(m,n)
m,k′ + Kα

. (8)

In different corpus or applications, Eq. (8) can be replaced with other Gibbs
updating rules or topic models, eg. LFLDA [18].

3.2 Topic Embeddings Computing

Topic embeddings aim to approximate the latent semantic centroids in vector
space rather than a multinomial distribution. TWE trains topic embeddings after
word embeddings have been learned by Skip-Gram. In LTSG, we use a straight-
forward way to compute topic embedding for each topic. For the kth topic, its
topic embedding is computed by averaging all words with their topic assignment
z equivalent to k, i.e.,

τk =

M∑

m=1

Nm∑

n=1
I(zm,n = k) · vwm,n

∑W
w=1 nk,w

(9)

where I(x) is indicator function defined as 1 if x is true and 0 otherwise.
Similarly, you can design your own more complex training rule to train topic

embedding like TopicVec [13] and Latent Topic Embedding (LTE) [12].

3.3 Word Embeddings Training

LTSG aims to update ϕ during word embeddings training. Following the similar
optimization as Skip-Gram, hierarchical softmax and negative sampling are used
for training the word embeddings approximately due to the computationally
expensive cost of the full softmax function which is proportional to vocabulary
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size W . LTSG uses stochastic gradient descent to optimize the objective function
given in Eq. (4).

The hierarchical softmax uses a binary tree (eg. a Huffman tree) represen-
tation of the output layer with the W words as its leaves and, for each node,
explicitly represents the relative probabilities of its child nodes. There is a unique
path from root to each word w and node(w, i) is the i-th node of the path. Let
L(w) be the length of this path, then node(w, 1) = root and node(w,L(w)) = w.
Let child(u) be an arbitrary child of node u, e.g. left child. By applying hier-
archical softmax on Pr(wm,n+j |Twm,n

) similar to Pr(wm,n+j |wm,n) described in
Skip-gram [16], we can compute the log gradient of ϕ as follows,

∂ log Pr(wm,n+j |Twm,n
)

∂ϕk=zm,n,w=wm,n

=
1

L(wm,n) − 1

L(wm,n)−1∑

i=1
[
1 − h

wm,n+j

i+1 − σ(Twm,n
· v

wm,n+j

i )
]
τk · v

wm,n+j

i ,

(10)

where σ(x) = 1/(1 + exp(−x)). Given a path from root to word wm,n+j

constructed by Huffman tree, v
wm,n+j

i is the vector representation of i-th
node. And h

wm,n+j

i+1 is the Huffman coding on the path defined as h
wm,n+j

i+1 =
I
(
node(wm,n+j , i + 1) = child(node(wm,n+j , i)

)
.

Follow this idea, we can compute the gradients for updating the word w
and non-leaf node. From Eq. (10), we can see that ϕ is updated by using topic
embeddings τk directly and word embeddings indirectly via the non-leaf nodes
in Huffman tree, which is used for training the word embeddings.

3.4 An Overview of Our LTSG algorithm

In this section we provide an overview of our LTSG algorithm, as shown in
Algorithm 1. In line 1 in Algorithm 1, we run the standard LDA with certain
iterations and initialize ϕ based on Eq. (6). From lines 4 to 6, there are the
three steps mentioned in Sect. 3. From lines 7 to 13, ϕ will be updated after
training the whole corpus D rather than per word, which is more suitable for
multi-thread training. Function f(ξ, nk,w) is a dynamic learning rate, defined by
f(ξ, nk,w) = ξ · log(nk,w)/nk,w. In line 16, document-topic distribution θm,k is
computed to model documents.

4 Experiments

In this section, we evaluate our LTSG model in three aspects, i.e., contextual
word similarity, text classification, and topic coherence.

We use the dataset 20NewsGroup, which consists of about 20,000 documents
from 20 different newsgroups. For the baseline, we use the default settings of
parameters unless otherwise specified. Similar to TWE, we set the number of topics
K = 80 and the dimensionality of both word embeddings and topic embeddings
d = 400 for all the relative models. In LTSG, we initialize ϕ with init nGS =
2500. We perform nItrs = 5 runs on our framework. We perform nGS = 200
Gibbs sampling iterations to update topic assignment with α = 0.01, β = 0.1.



382 J. Law et al.

Algorithm 1. Latent Topical Skip-Gram
Input: corpus D, # topics K, size of vocabulary W , Dirichlet hyperparameters α, β, # itera-

tions of LDA for initialization init nGS, # iterations of framework nItrs, # Gibbs sampling
iterations nGS.

Output: θm,k, ϕk,w, vw, τk, m = 1, 2, . . . , M ; k = 1, 2, . . . , K; w = 1, 2, . . . , W

1: Initialization. Initialize ϕk,w as in Equation (6) with init nGS iterations in standard
LDA as in Equation (5)

2: i ← 0

3: while (i < nItrs) do
4: Step 1. Sample zm,n as in Equation (8) with nGS iterations

5: Step 2. Compute each topic embedding τk as in Equation (9)
6: Step 3. Train word embeddings with objective function as in Equation (4)

7: Compute the first-order partial derivatives L′(D)

8: Set the learning rate ξ

9: for (k = 1 → K) do
10: for (w = 1 → W ) do

11: ϕ
(i+1)
k,w ← ϕ

(i)
k,w + f(ξ, nk,w)

∂L′(D)
∂ϕk,w

12: end for
13: end for

14: i ← i + 1
15: end while

16: Compute each θm,k as in Equation (7)

4.1 Contextual Word Similarity

To evaluate contextual word similarity, we use Stanford’s Word Contextual Word
Similarities (SCWS) dataset introduced by [11], which has been also used for
evaluating state-of-art model [14]. There are totally 2,003 word pairs and their
contexts, including 1328 noun-noun pairs, 399 verb-verb pairs, 140 verb-noun, 97
adjective-adjective, 30 noun-adjective, 9 verb-adjective pairs. Among all of the
pairs, there are 241 same-word pairs which may show different meaning in the
giving context. The dataset provide human labeled similarity scores based on the
meaning in the context. For comparison, we compute the Spearman correlation
similarity scores of different models and human judgments.

Following the TWE model, we use two scores AvgSimC and MaxSimC to evaluate
the multi-prototype model for contextual word similarity. The topic distribution
Pr(z|w, c) will be inferred by using Pr(z|w, c) ∝ Pr(w|z) Pr(z|c) with regarding
c as a document. Given a pair of words with their contexts, namely (wi, ci) and
(wj , cj), AvgSimC aims to measure the averaged similarity between the two words
all over the topics:

AvgSimC =
∑

z,z′∈K

Pr(z|wi, ci) Pr(z′|wj , cj)S(vz
wi

,vz′
wj

) (11)

where vz
w is the embedding of word w under its topic z by concatenating word

and topic embeddings vz
w = vw ⊕τz. S(vz

wi
,vz′

wj
) is the cosine similarity between

vz
wi

and vz′
wj

.
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MaxSimC selects the corresponding topical word embedding vz
w of the most

probable topic z inffered using w in context c as the contextual word embedding,
defined as

MaxSimc = S(vz
wi

,vz′
wj

) (12)

where
z = arg maxz Pr(z|wi, ci), z′ = arg maxz Pr(z|wj , cj).
We consider the two baselines Skip-Gram and TWE. Skip-Gram is a well-known

single prototype model and TWE is the state-of-the-art multi-prototype model.
We use all the default settings in these two model to train the 20NewsGroup
corpus.

Table 2. Spearman correlation ρ × 100 of contextual word similarity on the SCWS
dataset.

Model ρ × 100

Skip-Gram 51.1

LTSG-word 53.4

AvgSimC MaxSimC

TWE 52.0 49.2

LTSG 54.2 54.1

From Table 2, we can see that LTSG achieves better performance compared to
the two competitive baseline. It shows that topic model can actually help improv-
ing polysemous-word model, including word embeddings and topic embeddings.
The meaning of a word is certain by giving its specify context so that MaxSimC
is more relative to real application. Then LTSG model achieves more improve-
ment in MaxSimC than AvgSimC compared to TWE, which tells that LTSG could
perform better in telling a word meaning in specify context.

4.2 Text Classification

In this sub-section, we investigate the effectiveness of LTSG for document mod-
eling using multi-class text classification. The 20NewsGroup corpus has been
divided into training set and test set with ratio 60% to 40% for each category.
We calculate macro-averaging precision, recall and F1-score to measure the per-
formance of LTSG.

We learn word and topic embeddings on the training set and then model doc-
ument embeddings for both training set and testing set. Afterwards, we consider
document embeddings as document features and train a linear classifier using
Liblinear [8]. We use vm, τk, vw to represent document embeddings, topic embed-
dings, word embeddings, respectively, and model documents on both topic-based
and embedding-based methods as shown below.
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Table 3. Evaluation results of multi-class text classification.

Model Accuracy Precision Recall F1-score

BOW 79.7 79.5 79.0 79.2

LDA 72.2 70.8 70.7 70.7

Skip-Gram 75.4 75.1 74.7 74.9

TWE 81.5 81.2 80.6 80.9

LTSG-theta 74.1 73.1 72.7 72.9

LTSG-topic 74.8 74.0 73.3 73.7

LTSG-word 81.4 81.0 80.4 80.7

LTSG 82.7 82.5 81.7 82.1

Table 4. Top words of some topics from LTSG and LDA on 20NewsGroup for K = 80.

LTSG LDA LTSG LDA LTSG LDA LTSG LDA

image image jet printer stimulation doctor anonymous list

jpeg files ink good diseases disease faq mail

gif color laser print disease coupons send information

format gif printers font toxin treatment ftp internet

files jpeg deskjet graeme icts pain mailing send

file file ssa laser newsletter medical server posting

convert format printer type staffed day mail email

color bit noticeable quality volume microorganisms alt group

formats images canon printers health medicine archive news

images quality output deskjet aids body email nonymous

−75.66 −88.76 −91.53 −119.28 −66.91 −100.39 −78.23 −95.47

– LTSG-theta. Document-topic distribution θm estimated by Eq. (7).
– LTSG-topic. vm =

∑K
k=1 θm,k · τk.

– LTSG-word. vm = (1/Nm)
∑Nm

n=1 vwm,n
.

– LTSG. vm = (1/Nm)
∑Nm

n=1 v
zm,n
wm,n , where contextual word is simply con-

structed by v
zm,n
wm,n = vwm,n

⊕ τzm,n
.

Result Analysis. We consider the following baselines, bag-of-word (BOW)
model, LDA, Skip-Gram and TWE. The BOW model represents each document as
a bag of words and use TFIDF as the weighting measure. For the TFIDF model,
we select top 50,000 words as features according to TFIDF score. LDA represents
each document as its inferred topic distribution. In Skip-Gram, we build the
embedding vector of a document by simply averaging over all word embeddings
in the document. The experimental results are shown in Table 3.

From Table 3, we can see that, for topic modeling, LTSG-theta and LTSG-
topic perform better than LDA slightly. For word embeddings, LTSG-word
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significantly outperforms Skip-Gram. For topic embeddings using for multi-
prototype word embeddings, LTSG also outperforms state-of-the-art baseline
TWE. This verifies that topic modeling, word embeddings and topic embeddings
can indeed impact each other in LTSG, which lead to the best result over all the
other baselines.

4.3 Topic Coherence

In this section, we evaluate the topics generated by LTSG on both quantitative
and qualitative analysis. Here we follow the same corpus and parameters setting
in Sect. 4.2 for LSTG model.

Quantitative Analysis. Although perplexity (held-out likehood) has been widely
used to evaluate topic models, [3] found that perplexity can be hardly to reflect
the semantic coherence of individual topics. Topic Coherence metric [17] was
found to produce higher correlation with human judgments in assessing topic
quality, which has become popular to evaluate topic models [1,4]. A higher topic
coherence score indicates a more coherent topic.

We compute the score of the top 10 words for each topic. We present the
score for some of topics in the last line of Table 4. By averaging the score of
the total 80 topics, LTSG gets −92.23 compared with −108.72 of LDA. We can
conclude that LTSG performs better than LDA in finding higher quality topics.

Qualitative Analysis. Table 4 shows top 10 words of topics from LTSG and LDA
model on 20NewsGroup. The words in this two models are ranked based on
the probability distribution ϕ for each topic. As shown, LTSG is able to capture
more concrete topics compared with general topics in LDA. For the topic about
“image”, LTSG shows about image conversion on different format, while LDA
shows the image quality of different format. In topic “printer”, LTSG emphasizes
the different technique of printer in detail and LDA generally focus on “good
quality” of printing.

5 Releated Work

Recently, researches on cooperating topic models and vector representations have
made great advances in NLP community. [24] proposed a Markov Random Field
regularized LDA model (MRF-LDA) which encourages similar words to share the
same topic for learning more coherent topics. [6] proposed Gaussian LDA to use
pre-trained word embeddings in Gibbs sampler based on multivariate Gaussian
distributions. LFLDA [18] is modeled as a mixture of the conventional categor-
ical distribution and an embedding link function. These works have given the
faith that vector representations are capable of helping improving topic models.
On the contrary, vector representations, especially topic embeddings, have been
promoted for modeling documents or polysemy with great help of topic models.
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For examples, [14] used topic model to globally cluster the words into differ-
ent topics according to their context for learning better multi-prototype word
embeddings. [13] proposed generative topic embedding (TopicVec) model that
replaces categorical distribution in LDA with embedding link function. However,
these models do not show close interactions among topic models, word embed-
dings and topic embeddings. Besides, these researches lack of investigation on
the influence of topic model on word embeddings.

6 Conclusion and Future Work

In this paper, we propose a basic model Latent Topical Skip-Gram (LTSG) which
shows that LDA and Skip-Gram can mutually help improve performance on dif-
ferent task. The experimental results show that LTSG achieves the competitive
results compaired with the state-of-art models.

We consider the following future research directions: (I) We will investigate
non-parametric topic models [22] and parallel topic models [15] to set parame-
ters automatically and accelerate training using multi threading for large-scale
data. (II) We will construct a package which can be convenient to extend with
other topic models and word embeddings models to our framework by using the
interfaces. (III) We will deal with unseen words in new documents like Gaussian
LDA [6].
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