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Abstract. Recent state-of-the-art landmark localization task are domi-
nated by heatmap regression and fully convolutional network. In spite of
its superior performance in face alignment, heatmap regression method
has a few drawbacks in nature, such as do not follow shape constraint
and sensitivity to partial occlusions. In this paper, we proposed a score-
guided face alignment network that simultaneously outputs a heatmap
and corresponding score map for each landmark. Rather than treating
all predicted landmarks equally, a weight is assigned to each landmark
based on the two relational maps. In this way, more reliable landmarks
with strong local information are assigned large weights and the land-
marks with small weights that may stay with occlusions can be inferred
with the help of the reliable landmarks. Meanwhile, an exemplar-based
shape dictionary is designed to take advantage of these landmarks with
high score to infer the landmark with small score. The shape constraint is
implicitly applied in this way. Thus our method demonstrates superior
performance in detecting landmarks with extreme occlusions and im-
proving overall performance. Experiment results on 300 W and COFW
dataset show the effectiveness of the proposed method.
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1 Introduction

Face alignment [5,25,40], aslo known as facial landmark detection, which aims
to find the locations of a set of predefined facial landmarks (e.g., mouth, eyes,
nose, cheek and so on) in a face image. It is a crucial pre-processing step for
face recognition [16,26,27], expression recognition [3,13], face analysis [21] and
so on. As a well established problem in computer vision, researchers have pro-
posed many methods and made significant progress in face alignment. Recently,
heatmap regression method [4,6,10] has shown superior performance on face
alignment. However, Face alignment under occlusions still remains unsettled.
Especially, when face images suffer from heavy occlusions, the performance of
face alignment drops severely.
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To address face alignment under occlusions, several methods are proposed to
tackle face alignment under partial occlusions. The method of [7] divides face
into a 3× 3 grid and only draw features from the 1/9 of facial region to sever-
al separate regressors. The work in [29] proposes a robust cascaded regression
framework to handle large facial pose and occlusion. The landmark locations
and the landmark visibility probability are updated stage by stage. The method
of [18] treat face alignment as an appearance-shape model problem. They learn
two dictionaries which are relational, one for the appearance of human face and
one for the facial shape. By the two relational dictionaries, the face appear-
ance is employed to infer occlusion and suppress the influence of occluded land-
marks. The work in [33] cascades several Deep Regression networks (DR) and
De- corrupt Auto-encoders (DA) to explicitly handle partial occlusion problem.
In contrast with previous methods that only predict occlusion, the proposed De-
corrupt Auto-encoders can recover the occluded facial appearance. They divide
the facial landmarks to seven components, each specific DA is able to recover the
occluded appearance. Although these methods have shown superior performance
in aligning occluded faces, they have limited scalability and robustness. First is
the lack of large-scale ground truth occlusion annotation for images in the wild.
The task of providing occlusion annotation is often time-consuming, involving a
considerable amount of tedious manual work. Another challenge is in the inher-
ent complex facial appearance. Generally, the performance of appearance-shape
dictionary depends on whether the image patterns reside within the variations
described by the face appearance dictionary. Therefore, it shows limited robust-
ness in unconstrained environment where appearance variations are too wide
and complicated. In addition, recovering the occluded appearance is not with-
out diffculties.

Fig. 1. Papers main idea: Given a face image as input, our network simultaneously
outputs heatmaps and score maps. Due to part occlusions, the occluded landmark
cannot be located precisely. Observe that the score for the occluded parts is much
lower than that of the non-occluded parts in score maps. Based on the two relational
maps, the occluded landmarks can be refined with the help of non-occluded landmark
by exploiting geometric constraints of face shape.
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In this paper, we propose a novel score-guided face alignment network to
deal face with large occlusions. The key innovation of our method is score map
which is able to dynamically select more reliable landmarks and use these reli-
able landmarks to refine the landmarks with small score. See Fig. 1 for a graph-
ical representation of our paper’s main idea. The proposed network outputs
heatmaps and score maps. The occluded part is obvious in score map and has
small score than non-occluded part. Rather than treat all landmarks equally, we
assign a weight to each landmark based on heatmaps and score maps and the
occluded landmark can be refined with the help of the non-occluded landmarks.
More specifically, due to the partial occlusion, the occluded landmark cannot be
located precisely. However, the non-occluded landmark can be located precisely.
Since the non-occluded landmarks have lager weights than occluded landmarks.
An exemplar-based shape dictionary act as shape priors can be utilized to search
most similar shapes to reconstruct the face shapes based on the weights of land-
marks.
The main contributions of our method can be summarized as follows:

1. We propose a novel face alignment network that simultaneously outputs
heatmaps and score maps, which is more robust to occlusions. Note that
no occlusion annotations are used.

2. Rather than treating all landmarks equally, we introduce score map to as-
sign weight to each landmark. In this way, more reliable landmarks with
large weights can help to refine the occluded landmarks with small weights.

2 Related Work

Prior to deep learning, cascade regression [9,17,18,22,23,37] is a popular method
in face alignment, it starts with an initial facial shape and refine the shape
in a cascaded manner. For each regressor, it learns a mapping function from
shape-indexed features to the shape increment. The authors of [31] proposed a
method named Supervised Descnet Method (SDM) to learn cascade regressors
with strong handcrafted features such as SIFT. The work in [23] proposes learn-
ing local binary features by using random forests. Thanks to the sparse binary
features, its speed can achieve 3000 FPS. To reduce the influence of inaccurate
shape initializations, In [37] a coarse to fine search method is proposed. It begins
with a coarse search over a shape pool and employs the coarse solution to finer
search of shapes. The authors of [38] reformulates the popular cascaded regres-
sion scheme into a cascaded compositional learning (CCL) problem. It divides all
training samples into several domains. Each domain-specific cascaded regressor
handle one domain. The final shape is a composition of shape estimations across
multiple predictions. The method of [11] trains multi-view cascaded regression
models using a fuzzy membership weighting strategy, which improving the fault-
tolerant of cascade regression. Although cascade regression has achieved good
performances on the wild databases, inaccurate shape initializations, indepen-
dent regressors and handcrafted features still may be sub-optimal for face align-
ment.
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This conventional cascade regression, however, has been greatly reshaped
by convolutional neural networks (ConvNets). Recent face alignment methods
have universally adopted ConvNets as their main building block, largely replac-
ing hand crafted features. The work in [36] uses multi-stage deep networks to
detect facial landmarks in a coarse to fine manner. The authors of [35] formu-
lates a novel tasks-constrained deep model to jointly optimize landmark detec-
tion together with the recognition of heterogeneous but subtly correlated facial
attributes which improves the performance of landmark detection. The work
in [34] employs Autoencoder netwroks (CFAN) that combined several stacked
auto-encoder networks in a cascaded manner. The authors of [28] proposes a con-
volutional recurrent neural network architecture. The feature extraction stage
is replaced with a convolutional network, the fitting stage is replaced with the
Recurrent Neural NetWork. The work in [30] employs an Attention LSTM (A-
LSTM) and an Refinement LSTM (R-LSTM), which sequentially selects the
attention center by A-LSTM and refines the landmarks around the attention-
center by R-LSTM. The authors of [19] presents a deep regression architecture
with two stage reinitialization to explicitly deal with the initialization problem
by face detection. FAN [6] employs stacked hourglass Network with a state-of-
the-art residual block to solve the 2D&3D Face Alignment problem. The work in
[10] formulate a novel Multi-view Hourglass Model which tries to jointly estimate
both semi-frontal and profile facial landmarks.

3 Methodology

3.1 Network Architecture

Here, we describe our network architecture based on hourglass [20] backbone.
The input is a face image with spatial resolution 128× 128. The network starts
a 7× 7 convolutional layer with stride 2 and padding 3 to process the image
to spatial resolution 64× 64, followed by three residual blocks [14] to increase
feature channels. Then the network is split in two sub-branches. The top sub-
branch is a hourglass network, which is a symmetric top-down and bottom-up
full convolutional network. Then two residual blocks process the feature maps
to 128 channels. After that, nearest neighbor upsampling is used to increase the
spatial resolution to 128× 128, followed by a residual block and a convolutional
layer with 1× 1 kernels to produce heatmaps. The bottom sub-branch has the
same network structure with the top sub-branch. Batch Normalization is used
to before all convolutional layers expect the first convolutional layer with kernels
7× 7. ReLU is the activation function. In summary, the input of network is a face
image with spatial resolution 128× 128. The network output N heatmaps and N
score maps, where N is the number of landmarks. Each landmark corresponds
to a heatmap and a score map (Fig. 2).

3.2 Score Map and Heatmap

Heatmaps are extensive used in landmark localization tasks. The model outputs
N heatmaps where N is the number of landmarks. The pixel with the high- est
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Fig. 2. An illustration of our network architecture.

value is used as the predicted landmark location. Great progress has been made
by heatmaps. However, the landmarks with partial occlusion and complex back-
ground still cannot be precisely located. To deal with occlusions, we introduce
score maps to assign weight to each landmark and suppress the influence of
occlusions. During training, Heatmap for one landmark is created by putting a
Gaussian peak at ground truth location of the landmark. While the score maps
are binary maps, the values within a certain radius around the ground truth
locations are set to 1 and the value for the remaining are set to 0. See Fig. 3
for example outputs produced by our network. The non-occluded face part has
higher score than the occluded-part in score map. Rather than treating all land-
marks equally, we weight each landmark based on their values in score maps.
In this way, more reliable landmarks with strong local information are assigned
high weights. The landmarks with small weights that may stay with occlusions
can be refined with the help of reliable landmarks. Based on the two relational
maps, the process of assigning weight can be written via the equation

wi =

Xi+r∑

k=Xi−r

Yi+r∑

t=Yi−r

scorei(k, t)

(2 ∗ r + 1)2
. (1)

where scorei(k, t) is the value of coordinate (k, t) in i-th score map. Xi and Yi

are the predicted locations of i-th landmark.

3.3 Face Shape Reconstruction

Based on the two relational maps, the weight of each landmark can be deter-
mined. For the non-occluded face images, the heatmaps and score maps assign
high weights to each landmark. The final predicted face shape is the locations
decoded from heatmaps. For the heavy occluded face images, score maps only
can check out these inaccurate landmarks with small weights, these landmarks
still cannot be accurately located. Intuitively, the predicted face shape should
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Fig. 3. Example outputs produced by our proposed network. First row shows land-
mark locations decoded by heatmaps. Second row shows the proposed score maps.
Observe that the occluded landmarks cannot be precisely located in most cases. The
non-occluded parts in score maps have higher score and are clearer than the occluded
parts.

look like a face shape. Human vision has ability to predict good face shape by
exploiting geometric constraints. Motivated by this, these inaccurate landmarks
caused by occlusions can be refined by searching the most similar face shapes
based on non-occluded landmarks, which is feasible and simple.

However, searching from all training samples is time-consuming. There are a
lots of similar face shapes which are redundant. Assuming there are M training
samples in train set. When M is large, searching from all training samples would
be time-consuming. Follow [18], We apply K-SVD [1] on all training shapes to
get N representative face shapes and use these face shapes as a shape dictionary
DS . Searching from DS will be more effective. The searching process is formally
written as

mins1···sk‖WSS − (WSS � WSDS)‖22 (2)

where WS = diag(w1, · · · , wN , w1, · · · , wN ) is the weight matrix and the wi

is the weight of the i-th landmark calculated via Eq. 1. The goal of W is to
force the search process to emphasize on the landmarks with high weights and
ignore the landmark with small weights. s1 · · · sk are the k nearest exemplar
shapes of the non-occluded landmarks. After that, the occlusions landmarks
can be reconstructed by the k nearest exemplar shapes and the reconstruction
coefficients can be computed by least squares method (Fig. 4).

3.4 Training Details

During training, to prevent overfitting, all training samples are augmented by
random in-plane rotation (from −30o to +30o), translation, scale (from 0.9 to
1.2), flip and adding color jittering. The network input is a RGB image of size
128× 128. The network is optimized by RMSProp with an initial learning rate
of 0.0001 and drop to 0.00005 after 20 epochs. All models are trained using
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Fig. 4. Face shape reconstruction by the k nearest exemplar shapes.

PyTorch with a Nvidia 1080-Ti GPU card with a mini-batch size of 10 for 80
epochs. The loss function is defined as

Loss =
1
2

N∑

n=1

K∑

k=1

‖Hk − Ĥk‖22 +
λ

2

N∑

n=1

K∑

k=1

‖Sk − Ŝk‖22 (3)

where N is the number of training samples,Hk and Ĥk are the predicted heatmaps
and the ground-truth heatmaps. Sk and Ŝk are the predicted score map and
ground-truth score map. λ is a hyperparameter to balance the loss functions.
During inference, the predicted landmark locations Ẑk is decoded from the pre-
dicted heatmap Hk by taking the locations with the maximum value as follows,

Ẑk = arg max
p

Hk(p) (4)

4 Experiments

4.1 Datasets

For training, 300-W is the most widely-used in-the-wild dataset for 2D face
alignment. All face images are labeled by 68 landmarks. The training set consists
of AFW [39] dataset, HELEN [15] training set and LFPW [2] training set, there
are 3148 face images in total. For testing, we report the results on LFPW testing
set, Helen testing set and IBUG dataset. To verify the effectiveness of our method
on occluded faces, we evaluate COFW [7,12] testing set. The COFW dataset is
a challenging dataset with severe facial occlusions and large facial pose collected
from web. There are 1345 face images in training set and 507 face images in
testing set. All face images are labeled by 29 landmarks. Since our model is
trained on images with 68 landmarks, Follow [12], we use the COFW with 68
landmarks for testing. Note that we only use COFW testing set for evaluation.
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4.2 Metrics

Given the predicted landmark locations and ground-truth landmark locations,
the Normalized Mean Error (NME) or cumulative error distribution (CED)
curves employed to evaluate the localization performance. The normalization
is normalized by inter-pupil distance and the NME is computed as follows:

error =
1
M

M∑

i=1

1
N

N∑

j=1

‖ppredi,j − pgti,j‖2
‖pi,l − pi,r‖2 (5)

where M is the number of testing images, N is the number of landmarks. pi,l, pi,r
are the locations of left eye center and right eye center in i-th face image. ppredi,j

is the predicted location of landmark location of the j-th landmark in i-th face
image. pgti,j is the ground-truth location of landmark location of the j-th landmark
in i-th face image.

4.3 Evaluation Results on 300W

The 300-W [24] testing set consists of common set and challenging set. The
com- mon set are Helen testing set and LFPW testing set. The challenging set
is the IBUG dataset. Table 1 show the resluts on 300 W dataset. We compare
our method with eleven state-of-the-art face alignment methods with RCPR [7],
CFAN [34], ESR [8], SDM [31], LBF [22], CFSS [37], TCDCN [35], DNN [32],
MD- M [28], RAR [30], TR-DRN [19]. Our method outperform most of these
methods except RAR.

4.4 Evaluation Results on COFW

To verify the effectiveness of our method on various occluded face images, we
test our method on COFW [7,12] dataset. The CED curves are shown in Fig. 5.
It can be seen our baseline still outperform all other methods by a large mar-
gin. That is because our method benefits from heatmap regression and network
architecture. By adding occlusion inference and face reconstruction, the NME
error decreases from 6.29% to 5.78%. The success rate increases from 94.67% to
97.83%. Moreover, we analyse the evaluation on only the visible landmarks, our
method and baseline show similar results on NME error and success rate. It can
be concluded that heatmap regression method achieves excellent performance in
detecting non-occluded face part. While evaluation on all the landmarks, benefit
from score map to assign weight to each landmark and refine the occluded re-
gion by face reconstruction, our method show better results than baseline both
in NME error and success rate.
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Table 1. Landmark detection results on different subsets of the 300-W dataset in terms
of the NME averaged over all the test samples.

Method Common set Challenging set Full set

RCPR 6.18 17.26 8.35

SDM 5.57 15.40 7.52

ESR 5.28 17.00 7.58

CFAN 5.50 16.78 7.69

DeepReg 4.51 13.80 6.31

LBF 4.95 11.98 6.32

CFSS 4.73 9.98 5.76

TCDCN 4.80 8.60 5.54

DDN - - 5.59

MDM 4.83 10.14 5.88

RAR 4.12 8.35 4.94

TR-DRN 4.36 7.56 4.99

SIR 4.29 8.14 5.04

Ours 4.16 7.54 4.78
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Fig. 5. Comparison of different models on the COFW dataset: (a) evaluation on all
the keypoints, (b) evaluation on only the visible keypoints.

5 Conclusion

In this paper, we propose a score-guided face alignment network which is robust
to occlusions. The network simultaneously outputs a heatmap and corresponding
score map for each landmark. Based on the two relational maps, more reliable
landmark are assigned large weights and landmarks with small weights can be
inferred with the help of the reliable landmarks. Experiment results on 300 W
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and COFW dataset show the effectiveness of the proposed method and showed
significant performance improvements over the state-of-the-arts.
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