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Abstract. The state-of-the-art performance for object detection has
been significantly improved over the past two years. Despite the effec-
tiveness on still images, something stands in the way of transferring the
powerful detection networks to videos object detection. In this work, we
present a fast and accurate framework for video object detection that
incorporates temporal and contextual information using convolutional
LSTM [27]. Moreover, an Encoder-Decoder module is made up based
on the convolutional LSTM to predict the feature map. It is an end-
to-end learning framework and is general and flexible when combining
with still-image detection networks. It achieves significant improvement
on both speed and accuracy. Our method significantly improves upon
strong single-frame baselines in ImageNet VID [21], especially for more
challenging moving objects at high speed.
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1 Introduction

Deep learning has achieved significant success and been widely applied to various
computer vision tasks such as image classification [7,25], object detection [1,3,4,
17], semantic segmentation [6,13], video representation [14], dense captioning [8],
etc. In the case of object detection, the performance has made a huge leap
forward with the success of deep Convolutional Neural Networks (CNN). To
make the object detection more challenging, ImageNet introduced a new task
for object detection from videos (VID), which brings object detection from still
image into the video domain. In this task, the object detection system is required
to give the position and the class of the objects in each frame. VID play an
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important helping role in a number of applications on video analysis such as
video representation, video caption and object tracking.

However, existing methods focus on detecting objects in still images, and
directly applying them to solve the video object detection is clumsy. Differ-
ent from the ImageNet object detection (DET) challenge in still image, VID
shows objects in image sequences and comes with additional challenges such as
motion blur due to rapid camera or object motion, illumination variation due to
scene changing or different camera angles, partial occlusion or unconventional
object-to-camera poses, etc (See some examples in Fig.1). The broad range of
appearances varying in video make recognizing the class of object more difficult.
Besides, video is a kind of data with high density, which raises a higher demand
to object detector’s speed and accuracy.

Fig. 1. Example special video images with motion blur, illumination variation and
occlusion, respectively.

Although difficulties arise, videos have more rich temporal information than
still image. How to exploit the relation among the image sequences become the
crux of the video object detection methods. We seek to improve the video object
detection quality by exploiting temporal information, in a principled way. As
motivated by the success in precipitation nowcasting [27], using convolutional
LSTM (ConvLSTM), we propose to improve the detection by spatiotemporal
aggregation. Note that the ConvLSTM has convolutional structures in both
the input-to-state and state-to-state transitions, so it can work with 2D spa-
tial feature maps and solve the spatiotemporal sequence forecasting problem.
This suggests that it may fit the video image sequences.

In this work, we propose a unified framework based on the ConvLSTM to
tackle the problem of object detection in realistic video. The framework consists
of three main modules: (1) firstly, a fully convolutional network, which can be
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some general pre-trained ImageNet models such as googlenet [25], resnet [7],
to generate the feature map; (2) then a Encoder-Decoder module composed
by two ConvLSTMs, one for the input feature maps of adjacent frames and
another for the output feature map; (3) task module including RPN [3], the
final classification subnetwork and regression subnetwork, just like the other
two-stage detector. Finally, the entire architecture can be trained end-to-end.

2 Related Work

Object Detection from Still Image. State-of-the-art methods for general
object detection [1,3,6,17,19,20] are mainly based on deep CNNs. In general,
the detection networks are divided into two kinds according to whether the region
proposals are needed. First, one-stage network that directly predict boxes for an
image in one step such as YOLO [19], SSD [12] and second, two-stage network
with Region Proposal Network such as Fast R-CNN [3], Faster R-CNN [20],
R-FCN [1].

Our approach builds on R-FCN [1] which is a simple and efficient framework
for object detection on region proposals with a fully convolutional nature. Unlike
the Faster R-CNN [20], R-FCN reduces the cost for region classification by push-
ing the region-wise operations to the end of the network with the introduction
of a position-sensitive Rol pooling layer which works on convolutional features
that encode the spatially subsampled class scores of input Rols.

Object Detection in Video. Since the object detection from video task has
been introduced at the ImageNet challenge in 2015, it has drawn significant
attention. Kang et al. [9,10] combined the still-image object detection with
general object tracking method and proposed a tubelet proposal network to
propagates predicted bounding boxes to neighboring frames and then generates
tubelets by applying tracking algorithms from high-confidence bounding boxes.
Seq-NMS [5] constructs sequences along nearby high-confidence bounding boxes
from consecutive frames. Differing from these box-level post-processing meth-
ods, Zhu et al. [29,30] utilized a optical flow ConvNet for propagating the deep
feature maps via a flow field instead of the bounding box.

Sequence Modeling. Recurrent neural networks, especially Long Short-Term
Memory (LSTM), have been adopted to address many video processing tasks
such as action recognition [16], video summarization [28],video representa-
tions [23] and object tracking [15]. However, limited by the fixed propagation
route of existing LSTM structures where the input, cell output and states are
all 1D vectors, most of these previous works can only learn some holistic infor-
mation, which is impractical for image data.

Some recent approaches develop more complicated recurrent network struc-
tures. For instance, to apply the LSTM to image sequence, the ConvLSTM [27]
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was proposed for video prediction. In our method, we exploits spatiotempo-
ral information by using ConvLSTM. Besides, the entire system is end-to-end
trained for the task of video object detection.

3 Method

In this section, we first give an overview of object detection from video (Sect. 3.1)
including the task setting and some base elements in the task. Then we give a
detailed description of our framework design (Sect. 3.2). Section 3.3 describes the
major component Encoder-Decoder module and introduces how to exploit the
spatiotemporal information using ConvLSTM.

3.1 Overview

The ImageNet object detection from video (VID) task is similar to image object
detection task (DET) in still images. There are 30 classes, which is a subset of 200
classes of the DET task. Given the input video images I; where ¢ is the time,
the algorithms need to produce a set of annotations (r;), which include class
labels, confidence scores and bounding boxes. Therefore, a baseline approach is
to apply an off-the-shelf object detector to each frame individually.

Most of the two-stage detection network include two major components: (1) a
feature extraction subnetwork N¢.q: composed by a common set of convolutional
layers which can generate the feature map f; = Nyeq(I;) on the input image; (2)
a task-specific subnetwork N;,sr which executes the specific task such as classifi-
cation, regression to output the result 7, = Nyusr(f). Consecutive video frames
are highly similar, likewise, their feature maps have a strong correlation. How to
use the correlation information is what we present in the following sections.

3.2 Model Design

The proposed architecture takes every other frame I, € RT:XWix3 at time t,
and pushes them through a backbone Nycqs (i.e. ResNet-101 [7]) to obtain fea-
ture maps f; € REP>WrxCr where Hy, Wy and Cj are the width, height and
number of channels of the feature map, and then output the result r; though
the Nigsk. Our overall system builds on the R-FCN [1] object detector, specifi-
cally, the ResNet-101 models pre-trained for ImageNet classification as default.
It works in two stages: first extracts candidate regions of interest (Rol) using a
Region Proposal Network (RPN) [20]; and, second, performs region classification
into different object categories and background by using a position-sensitive Rol
pooling layer [1]. That is to say that every other frame needs to go through the
whole R-FCN and get the result.

Let us now consider the other frames, which are not processed by the whole
R-FCN. We extend this architecture by introducing a module named Encoder-
Decoder to propagate the feature maps. It figures out how to properly fuse the
features from multiple frames to get the feature map of current frame. Besides,
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we can control how many frames we want to fuse by defining the parameter T'.
Besides, to make the prediction more robust, a convolution layer follows behind
the decoding ConvLSTM. Obviously, the module is much faster than the feature
network. They are elaborated below (Fig. 2).

Y e =\
| l Task
. v Subnetwork

Encoder-Decoder
Module

Feature
Subnetwork

Fig. 2. Our proposed architecture based on ConvLSTM Encoder-Decoder module (see
Sect. 3 for details).

3.3 Encoder-Decoder Module

The framework [24] provides a general framework for sequence-to-sequence learn-
ing problems, which include two stage: one to read the input sequence and the
other to extract the output sequence, and its ability to capture long-term tem-
poral dependencies makes it a natural choice for this application. Our spatiotem-
poral sequence, we use the Encoder-Decoder structure like in [24]. During the
encoding step, use one ConvLLSTM to read the input sequence feature maps, one
timestep at a time, to compresses the whole input sequence into a hidden state
tensor, and then to use another ConvLSTM to conduct the hidden state to give
the prediction.

The equation of ConvLSTM are shown in Eqs. (1, 2) below, where ‘«’ denotes
the convolution operator. All the input-to-state kernels wj and state-to-state
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kernels w,, are of size 3 x 3 x 512 with the 1 x 1 padding. They are all randomly
initialized. As we can see, the module is characterized by fewer parameters than
the convolution feature network and the flow method [2,29]. Moreover, it is
convenient to change the dependency scope, just adjust the parameter 7.

For the start states, before the first input, we initialize the ¢y and hg of the
encoding ConvLSTM to zero which means “no history”, and the input x; at
each timestep are corresponding feature map. As well the initial state ¢y and
cell output hg of the decoding ConvLSTM are copied from the last state of the
encoding network, but its input are zeros.

it g
ft —_ o (wh>*(ht—1>+b (1)
04 o Wy Tt
gt tanh
¢t = fr -1+ gt, he = 0f - tanh(cy) (2)

4 Experiments

4.1 Setup

ImageNet VID Dataset [21]. It is a prevalent large-scale benchmark for video
object detection. Following the protocols in [10,30], model training and evalua-
tion are performed on the 3,862 video snippets from the training set and the 555
snippets from the validation set, respectively. The snippets are fully annotated,
and are at frame rates of 25 or 30 fps in general. There are 30 object categories.
They are a subset of the categories in the ImageNet DET dataset. During train-
ing, besides the ImageNet VID train set, we also used a subset of the ImageNet
DET train set which include the 30 categories.

Implementation Details. We use the stride-reduced ResNet-101 with dilated
convolution in conv5 to reduce the effective stride and also increase its receptive
field. The RPN is trained at 15 anchors corresponding to 5 scales and 3 aspect
ratios, and apply non-maximum suppression (NMS) with an IoU threshold of
0.7 to select the top 300 proposals in each frame for training/testing our R-
FCN detector. Then, like the Focal Loss [11] and online hard example mining
method [22], we also select a certain number of hard region (with high loss) from
the proposals produced by the RPN to make training more effective and efficient.
By setting different weights for hard and non-hard proposals, the training can
puts more focus on hard proposals. Note that, in this strategy, data forward and
gradient backforward propagate through the same network.

In both training and testing, we use single scale images with shorter dimen-
sion of 400 pixels. In SGD training, 4 epoches (400K iterations) are performed
on 2 GPUs, where the learning rates are 10~* and 10~ for the first 3 epoches
and the last 1 epoch iterations, respectively.
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For testing we apply NMS with IoU threshold of 0.3. For better analysis,
the ground truth objects in validation set are divided into three types: slow,
medium, fast according to their motion speed, just like [29] and we also report
their mAP scores respectively, so we can do a more detailed analysis and in-depth
understanding.

4.2 Results

Overall Results. Method R-FCN is the still-image method baseline which is
trained on single-frame using ResNet-101. Note that we train the network on only
two GPUs and do not add bells and whistles like multi-scale training/testing in
order to facilitate comparison and draw clear conclusions. We investigate the
effect of T', however, limited by the memory, we only test 7' = 1,2 for encoding
ConvLSTM. From the Table 1, the performance for single-frame testing is 73.19%
mAP, but rises to 74.5% with our ConvLSTM based method. This 1.3% gain in
accuracy shows that the ConvLSTM can effectively promotes the information
from nearby frames in feature map lavel. Besides, when T increases (from 1 to
2), the performance also has an obvious growth (from 73.65% to 74.5%). As to
runtime, the proposed ConvLLSTM based method has about twice as fast, which
is in accord with theory. Some example results are shown in Fig. 3.

Table 1. Performance comparison on the ImageNet VID validation set. The average
precision (in %) for each class and the mean average precision over all classes is shown.

Method airplane antelope bear bicycle bird bus car cattle dog cat elephant fox
still(R-FCN) 88.11 83.26 83.33 63.55 70.29 74.40 56.81 69.64 74.15 78.98 77.06 89.64
ConvLSTM-based(T=1)| 88.70 82.35 83.67 63.66 70.81 75.27 57.44 68.89 72.73 77.93 77.09 89.96
ConvLSTM-based(T=2)| 89.30 83.43 84.21 64.75 71.61 76.54 58.29 69.95 73.56 78.86 77.67 90.55

Method giant-panda hamster horse lion lizard monkey motor-cycle rabbit red-panda
still(R-FCN) 80.51 85.56 69.57 47.22 76.64 49.09 81.75 60.89 83
ConvLSTM-based(T=1) 81.2 87.0 69.36 54.64 76.94 47.99 81.72 62.78 82.72
ConvLSTM-based(T=2) 81.88 87.98 70.33 53.34 77.37 49.33 82.48 63.77 83.29

Method sheep snake squirrel tiger train turtle water-craft whale zebra|mAP (%) [speed (fps)
still(R-FCN) 54.49 71.37 48.77 91.06 77.43 77.86 66.67 74.14 90.41 73.19 4.08
ConvLSTM-based(T=1)[56.55 71.9 48.2 91.27 78.5 78.4 67.03 74.46 90.36 73.65 7.9
ConvLSTM-based(T=2)|57.37 72.63 49.09 91.83 79.3 79.17 67.93 75.06 91.11 74.5 7.8

Table 2. Comparison of various approaches.

Method mAP (%)
R-FCN 73.19
R-FCN + conv 73.25
ConvLSTM (T = 2) | 74.5




106 X. Wang et al.

Table 3. Detection accuracy of different motion speeds.

Method mAP (%) slow | mAP (%) medium | mAP (%) fast
R-FCN 82.5 71.8 51.2
ConvLSTM-based (T = 1) | 82.6 72.4 51.7
ConvLSTM-based (T = 1) | 82.6 74.1 52.8

Fig. 3. Example video clips where the proposed ConvLSTM based method improves
over the single-frame baseline (using ResNet-101). The first three lines are results by
single-frame baseline and the last three lines are results by the proposed method.
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When comparing our 74.5% mAP against the other methods, we make the
following observations. The ILSVRC 2015 winner [9] combines two Faster R-
CNN detectors, multi-scale training/testing, context suppression, high confi-
dence tracking [26] and optical-flowguided propagation to achieve 73.8%. The
deep feature flow [30], a recognition ConvNet (ResNet) is applied to key frames
only and an optical flow FlowNet [2] is used for propagating the deep feature
maps via a flow field to the rest of the frames, achieve 73.1% mAP at a higher
detection speed.

Ablation Study. To take out the effect of the increased parameter size, we
replace the ConvLSTM with two convolution layers, the Table 2, shows it only
has a small increase in mAP. The fact is enough to prove that is ConvLSTM
with gates control that aggregate the information in the image sequence.

Motion Speed. Evaluation on motion groups (Table3) shows that detecting
fast moving objects is very challenging: mAP is 82.5% for slow motion, and
it drops to 51.2% for fast motion. It shows that “fast motion” is an intrinsic
challenge and it is critical to consider motion in video object detection. When T’
changes, the medium speed objects improve the most increased by 2.3% (from
71.8% to 74.1%), while the fast have a little increment and the slow almost
unchanged, that is to say T has a different influence on different speed. It is
reasonable that T' control the range of the dependence, when T increase, more
motion information are catched.

5 Conclusion and Future Work

This work presents an accurate, end-to-end and principled learning framework
for video object detection using ConvLSTM, and its main goal is to reach the
accuracy-speedup tradeoff. Moreover, it would be complementary to existing
box-level framework for better accuracy in video frames. More annotation data
(e.g., YouTube-BoundingBoxes [18]) may be benefit to improvements. And there
is still large room to be improved in fast object motion. We believe these open
questions will inspire more future work.
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