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Abstract. Automation of security inspections is crucial for improving
the efficiency and reducing security risks. In this paper, we focus on auto-
matically recognizing and localizing prohibited items in airport X-ray
security images. A top-down attention mechanism is applied to enhance
a CNN classifier to additionally locate the prohibited items. We intro-
duce a high-level semantic feedback loop to map the targets semantic
signal to the input X-ray image space for generating task-specic atten-
tion maps. And the attention maps indicate the location and general
outline of prohibited items in the input images. Furthermore, to obtain
more accurate location information, we combine the lateral inhibition
and contrastive attention to suppress noise and non-target interference
in attention maps. The experiments on the GDX-ray image dataset have
demonstrated the efficiency and stability of the proposed scheme in both
single target detection and multi-target detection.
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1 Introduction

Airport security is an important guarantee for aviation safety. Prohibited item
detection using X-ray screening plays a critical role in defending passengers from
the risk of crime, and terrorist attacks [1]. However, during the security screen-
ing, uncontrollable human factors always reduce the accuracy and efficiency of
inspection [2]. Establishing an efficient and intelligent security inspection sys-
tem is crucial to promoting the safe operation of civil aviation and ensuring the
safety of passengers. The core work of X-ray screening is to distinguish what
type of the prohibited items and detect where they are. To achieve automatic
security, the computer is required to replace the security inspector to answer
the two questions of “What” and “Where”. Automatic and intelligent security
detection for X-ray images remains an open question. Most of challenges come
from the following points: (1) different imaging modes; (2) clutter background;
(3) angle variation of the items in imaging; (4) color variation caused by material
difference of the items [3–5].
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In recent years, some deep neural networks have achieved remarkable perfor-
mance in the areas of target recognition and detection. Compared with tradi-
tional algorithms, deep learning algorithms have stronger generalization ability
and can achieve higher recognition accuracy. Motivated by the convolutional neu-
ral network (CNN), [1] has presented a strategy based on deep features to deal X-
Ray image recognition problems on a public GDX-ray dataset. A deep multi-layer
CNN approach is employed in [6] for the end-to-end entire feature extraction,
representation and classification process, which achieves 98.92% detection accu-
racy. Usually, common CNNs can only complete the task of image classification.
For object detection, the more complex the model is, the more labor-intensive
supervision information is required. For example, several network architectures
have good performance in object recognition and location such as single shot
multibox detector (SSD) and faster region-based convolutional neural networks
(Faster R-CNN). However, they all require strong supervision information for
training, e.g., bounding boxes or segmentation masks. Collecting such a large
amount of labeled data is often expensive and time-consuming. Especially for
security images, the position of the prohibited items requires professional secu-
rity personnel to mark. Taking into account this actual situation of security
images, these methods cannot be effective in practical applications.

Recently, the work of Cao [7,8], Zhang et al. [9] provide a new idea for intel-
ligent security inspection. Attention mechanism based CNN has achieved great
detection performance on nature image set. For target recognition tasks, CNNs
have strong anti-jamming and anti-blocking capabilities. For target localization
tasks, the attention feedback mechanism can enable the network to achieve the
prohibited item localization, while not requiring a strong supervised learning [7].
The attention mechanism can then find out which areas of the image can cause
CNN to extract these features that activate the output node. This is very similar
to the working mechanism of the human visual cortex: When dealing with these
stimuli, we also know where these stimuli come from [8].

In this paper, we apply the model proposed by Cao [7] on the automatic
prohibited item detection system to prove that the attention mechanism can also
perform well on X-ray image processing. Considering the large amount of noise
and interference between prohibited items in the security image, we combined
the lateral inhibition [8] and contrastive attention [9] to establish a neuronal
stimulus inhibition model. When performing the feed-back propagation, it can
effectively suppress noise and interference. Furthermore, to make the algorithm
suitable for the security X-ray image set, we optimized the two suppression
methods. Finally, the semantic information of the target is mapped to the image
space as an attention map, and we can know which areas of the image are most
relevant to the target.

The main contributions of this paper are summarized as follows: (1) We
introduce the semantic feedback model in CNNs and obtain a cursory target
attention map. (2) To cope with noise and interference in the security image,
we combine two neural suppression algorithms to establish a neuronal stimulus
inhibition model. (3) To improve the practicality of our model, we develop a
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multi-target detection strategy. (4) We perform experiments on the GDX-ray
dataset, and our method achieves significant performance in both single-target
and multi-target detection.

2 High-Level Semantic Feedback Model

When searching for objects, the top-down attention of a person plays the role of
regulating neurons in the visual cortex according to the current task and prior
knowledge. Same as most attention models [7], we use a CNN to model visual
cortex neurons and apply the high-level semantic feedback mechanism on the
CNN framework. It can layer-by-layer calculate correlations between each layer
neurons and CNN output semantic notes. As shown in Fig. 1, in the feed-forward
propagation process of CNN, an X-ray security image of a gun is mapped to one-
dimensional semantic space by a CNN classifier, and target category information
is obtained. In the feed-back propagation, the semantic information is mapped
to image space by semantic feedback model, and the attention map of the gun
is shown in the input image.

Fig. 1. Attention mechanism based model. (a) and (b) represent feed-forward and
feed-back propagation for a convolutional neural network. (a) Given an input image,
the output neuron corresponding to the predicted category is activated after the feed-
forward propagation and represented by the red dot. (b) In the feed-back propagation,
the red dots represent neurons positively related to the output neuron and are activated
layer by layer. Finally, we can use the neurons that are activated in the input layer to
obtain attention maps. (Color figure online)

The feedback model is much like the backpropogation in the training process.
But the signal of the backpropogation changes to the semantic information of the
output layer, not the value of loss function. On this basis, the correlation between
each convolutional layer and semantic neurons can be calculated by deconvolute
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the output with the parameters of the convolutional layer, and is denoted as αl.
This backpropagation is performed from top to bottom as described in Eq. (1),
where “∗” represents deconvolution. In this way, the attention map of the targets
is generated which marks the most relevant pixel region in the image to the
semantic node, so as to achieve the positioning and segmentation of the targets,
as shown in Fig. 2.

αN−1 = xN ∗ wN−1 αl−1 = αl ∗ wl−1 l = 2, 3, 4, . . . , N, (1)

where xl denotes the output of the layer, and xN denotes the output of the
network. wl represents the convolution kernel parameters on layer l.

Fig. 2. Result by high-level semantic feedback model for different targets respectively.
(a) The input image. (b), (c) Output maps for gun and knife respectively.

3 Neuronal Stimulus Inhibition Model

In the previous section, the attention maps are rather rough, often accompanied
by noise and interference. It is because that the X-ray image has a complex
background and clutter. Most kinds of noise come from the defect caused by the
non-linearity of the network. Since activated patterns can not only be derived
from target objects but also derived from background and disturbed objects,
there will be a lot of non-target interference in the picture. In order to meet
the requirements for precise location of prohibited item, we take the following
measures to deal with these noises and interference.

3.1 Lateral Inhibition Mechanism

Lateral inhibition mechanism can enhance the contrasts between the neurons,
and has provided good performance on natural images processing [8,10,11]. For
further filtering the activated neurons, we apply the lateral inhibition mechanism
on the top-down procedure of the CNN frame. Different from [8], in order to deal
with a lot of noise in the security X-ray image, we use the output of the previous
layer to normalize the suppression coefficient of the current layer. According to
the distribution of the value in attention maps, we choose distribution cosine
function to evaluation the inhibition values, such as Eqs. (2) and (3).

wave
ij =

cos(wij)
cos(xij)

(2)
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wdif
ij =

∑
uv duve

−duvδ(wuv − wij)
cos(xij)

, (3)

w
′
ij =

⎧
⎨

⎩

wij if wij > (a ∗ wave
ij + b ∗ wdif

ij )

0 if wij < (a ∗ wave
ij + b ∗ wdif

ij )
, (4)

where wij denotes an element in the normalized attention map of this layer at
location (i, j). wave

ij denotes the mean inhibition coefficient, and wdif
ij denotes the

differential inhibition coefficient. wuv denotes the elements in the sliding window
centered on wij , and duv denotes the Euclidean distance between wuv and wij .
w̄ij denotes the mean of the elements in the sliding window. xij denotes the
outputs of layer l − 1. w

′
ij denotes the new value of the element in the attention

map.
Those two kinds of coefficients are standardized by a and b, which we setting

a = 0.2 and b = 0.8. Under the combined effect of these two suppression methods,
noise in the attention map can be well suppressed, as shown in Fig. 3. The results
prove that the lateral inhibition mechanism has excellent performance in our
model.

Fig. 3. Comparison between original attention map and the results of lateral inhibition.
(a) The input images. (b), (c) Original attention maps for gun and knife respectively.
(d), (e) Attention maps after lateral inhibition for gun and knife respectively.

3.2 Contrastive Top-Down Attention

The lateral inhibition model excels in suppressing noise, but when the security
image contains multiple prohibited targets, the accuracy of the model is dis-
turbed. In Figs. 3(d)(e), the attention map of a gun is disturbed by the lines
around the gun, while the attention map of a knife is interfered by the gun. This
is consistent with our previous discussions that other targets in the input image
will interfere with the attention map. It has been proved in [9] that using the
negation of the original weights of layer can obtain the next level of non-targets
signal, and here it is denote as P

′
1 in Eq. (5).

P
′
1 = EP (−W1) = A1

⊗
((−W1)+(P0/((−W1)+TA1))), (5)

where P0 represents the probability correlation matrix in the top layer. P
′
1 rep-

resents the probability correlation matrix of the non-targets signal. W+ is the
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plus weight of the top layer, while −W is the negation. A1 is the response value
of the second layer neurons. EP () represents the function of −W that calculate
the non-targets signal.

Because there are too many sundries in the security X-ray images, even in
the non-target signal, there are still some target signals. If we immediately sub-
tract it from the semantic signal, the target signal in semantic information will
be loss, as shown in Fig. 4(a). Instead of immediately subtracting P

′
1 from the

semantic signal as the [9] did, we use the improved algorithm to obtain more
complete semantic information in Eq. (6). In our method, after performing the
lateral inhibition on P

′
1, the target signal in P

′
1 will be suppressed. When we

subtract it from the semantic signal, the target signal can be better preserved,
as shown in Fig. 4(b). In this way, we also complete the organic combination
of the two algorithms, as shown in Fig. 5. We use contrast attention to remove
non-target interference in semantic signal. Furthermore, we add lateral suppres-
sion layers in the top-down feedback path to optimize the contrast attention and
suppress noise. As shown in Figs. 6(d)(e), it is obvious that compared with the
contrastive attention algorithms, the combined algorithms has more powerful
ability to suppress noise in the attention map.

S = Lat(EP (W1)) − Lat(EP (−W1)), (6)

where S is the target signal. Lat() is the lateral inhibition function.

Fig. 4. (a) The result of contrastive top-down attention method. (b) The result of our
method

4 Multi-target Detection Strategy

Our model can be used not only for single-target detection but also for multi-
target detection. In order to detect every type of threat targets in security X-ray
images as much as possible, we designed the following multi-target inspection
process:

(1) Given an X-ray image and perform forward to obtain probability values of
various types of threat objects.

(2) Judge the objects with a probability value greater than r as the suspected
targets, where r is determined in advance.
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Fig. 5. Neuronal stimulus inhibition model. The red dot represents the target signal
and the blue dot represents the non-target signal. The yellow dot represents the target
signal in P

′
1 (Color figure online)

Fig. 6. Comparison between contrastive top-down attention maps and the results of
combined algorithm. (a) The input images. (b), (c) Contrastive top-down attention
maps for gun and knife respectively. (d), (e) Attention maps obtained by the combi-
nation of two algorithms.

(3) Activate the CNN output node corresponding to the target type and perform
feed-backward propagation using feedback models.

(4) Obtain response-based attention maps for suspected object at the data layer
and display it on the input image.

5 Experiments

To quantitatively demonstrate the effectiveness of the attention mechanism
based CNN, we carry out the experiments on the GDX-ray dataset. As men-
tioned before, our model should answer two questions: what and where. So, we
use the above security inspection strategy to verify the model’s recognition and
location capabilities.
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5.1 Dataset

The security image data set used for training and testing in this paper comes
from the GDX-ray dataset. The dataset captures single-target and multi-target
X-ray security images of guns, knives, darts, and other dangerous goods from
multiple angles. However, the original purpose of the database was created to
study the traditional computer vision algorithms. If it is used to train the CNN
model, there are the following disadvantages: (1) The samples set is very small.
There are few single-target images used to train the classification network, and
it is easy to cause overfitting; (2) The background is monotonous. Therefore,
we performed data augmentation [12] on the GDX-ray dataset. We cut it to
2/3 of the security images original size. The cropped position is random, and
we pick out 10 images containing the complete target from the cropped images.
Then rotate these 10 images at, 90, 180, and 270◦ and flip horizontally. Finally
one image can be expanded to 80 images. We expanded the data set to 5000
pictures containing 4 object categories. We extracted 90% of the pictures from
the dataset as a training set, and another 10% as a testing set.

5.2 CNN Classifiers

Although data augmentation has been carried out, the existing data volume is
not enough for the CNN network to fully learn the characteristics of various
threat targets. So we use the transfer learning strategy to train the CNN model.
The Google net which is pretrained with ImageNet 2012 training set is obtained
from Caffe Model Zoo website. We replace the last fully connected layer of the
network with a convolutional layer and initialize it. In the training process, the
learning rate of the bottom network is set to 0.0001, and the learning rate of
the top network is set to 0.001. After 30 iterations with batchsize set of 8, the
network tends to convergence.

5.3 Experimental Results

Our model has achieved a classification accuracy of 97.6%. We apply the atten-
tion mechanism to single-target and multi-target detection. In order to better
coordinate with the security inspector, we directly display the salience map of the
target on the input image, 65% positioning is correct after judging by security
professionals, as shown in Table 1.

When there is only a single target in the image, even if the gun’s pose and
the complexity of image background have changed as shown in Figs. 7(a)(b),
the target salience map generated by our method can still provide accurate
positioning. When there are multiple targets of the same kind in the image as
shown in Figs. 7(c)(d), each target is effectively marked in the salience map.
When there are multiple types of targets in the image, our model can generate
a salience map for each type of target after the multi-target detection process
proposed in Sect. 4.
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Table 1. Detection accuracy of single-target detection.

Category Recognition accuracy Positioning accuracy

Revolver 95.6% 53%

Gun 98.3% 73.5%

Revolver 99.2% 79.3%

Knife 97.2% 54.1%

Fig. 7. Results of single-target and multi-target detection. (a), (b) Single-target
salience maps. (c), (d) Salience maps of similar multiple targets. (e), (f) Multi-target
salience maps.

To quantitatively evaluate the localization effectiveness of our model, we use
the above salience map to generate the bounding box, as shown in Fig. 8, which
preserves 99% energy of the salience map. Each bounding box in a testing image
is compared with the ground-truth bounding box, and the IoU (Intersection over
Union) is calculated by Eq. (7). We compare the localization performance of our
attention model with the traditional deconvolution method in Table 2.

IoU =
area(C)

⋂
area(G)

area(C)
⋃

area(G)
, (7)

where area(C) is the area of candidate bound, and area(G) is the area of ground-
truth bound.

Our model can produce highly discriminative salience maps, which is essen-
tial for prohibited item detection. Due to the introduction of neuronal stimulus
inhibition, the salience maps generated by high-level semantic feedback model
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Table 2. Localization IoU of our attention model and the traditional deconvolution
method.

Method Localization IoU

Deconvolution 34.3%

Ours 56.6%

Fig. 8. Results of target localization. (a) The result of our method. (b) The result of
deconvolution method.

are highly relevant to the target objects. We get better localization performance
than the traditional deconvolution method, as shown in Fig. 8. To evaluate Real-
Time performance of our method, we perform the target detection on 2700 X-Ray
security images. It takes only 0.76 seconds to process an image on average. So the
effectiveness of our method is good enough to meet the needs of real applications.

6 Conclusion

In this paper, we applied an Attention Mechanism based CNN model to achieve
detection for prohibited item in airport security X-ray images. It can achieve
recognition and location of prohibited item but only need weak supervision train-
ing. Our model jointly reasons the outputs of class nodes and the activation of
hidden layer neurons during the feedback process. High level semantic is cap-
tured and mapped to the image space as an attention map after suppressing
noise and interference.

During the inspection process, the CNN can tell the security inspectors the
category of prohibited item. At the same time, the attention maps of the pro-
hibited item can remind the security inspectors where the dangerous goods are,
facilitating the reinspection. We believe that Attention Mechanism based Con-
volutional Neural Network provides a new direction for automated security.
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