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Abstract. Fully convolutional networks (FCNs) are powerful models for
semantic segmentation. But convolutional networks fail to perform well
in recognizing and parsing images with spatial variation. In this paper, a
novel Capsule network called Fully CapsNet is proposed. We introduce
Capsule to FCN and improve Equivariance of the neural network in
image segmentation. Compared with traditional FCN based networks, a
trained Fully CapsNet shows robustness in recognizing image pixels with
more or less spatial variation. Each capsule layer is connected by dynamic
routing algorithm. The effectiveness of the proposed model is verified
through PASCAL VOC. Results show that Fully CapsNet outperforms
the FCN in understanding both original images and rotated images.

Keywords: Fully convolutional network · Semantic segmentation
Capsule network · PASCAL VOC

1 Introduction

Image segmentation is one of the main research field in image processing. Seman-
tic segmentation can understand images at pixel level. Image semantic segmenta-
tion can be regarded as the gist of image understanding which plays an important
role in many applications. For example, street view recognition in robot guid-
ing system [17], determination of landing site of UAV [6] and wearable device
application [9] etc.

The idea of semantic segmentation has been raised before deep learning
is popularized. Many semantic algorithms such as Thresholding methods [7],
Clustering-based segmentation methods [16] and Graph partitioning segmenta-
tion methods [11,14] have been proposed in computer vision. The work of seman-
tic segmentation at that time was to segment the image according to low-level
visual cues. For instance, abstracting images to the form of graphs and then
achieve semantic segmentation on the basis of Graph theory. Other methods
require supporting information such as bounding box and scribbled lines. These
algorithms perform poorly when applied to complex images without enough
supporting information. Semantic segmentation algorithms attracted growing
research interests as deep learning popularized. Fully convolutional networks
(FCN) [10,13] and deep convolutional Nets [2–4] for semantic segmentation are
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widely employed by deep learning based approaches. Key observation of FCN is
that the fully connected layers in classification networks can be viewed as con-
volutions with kernels that cover their entire input regions. Feature maps still
need to be upsampled because of pooling operations in CNNs. Instead of using
simple bilinear interpolation, deconvolutional layers can learn the interpolation
by themselves. However, information of images losses because of pooling layers.
Therefore, skip connections are introduced to address this problem from higher
resolution feature maps [13].

One of the main drawbacks of convolutional networks is their lacking in ‘com-
prehension’ to images. Human vision builds up coordinate frames when recog-
nizing images. Coordinate frames effect the way human observe images through
comprehension to space. However, coordinate frame does not exist in convolu-
tional networks. A novel neuron structure called ‘Capsule’ proposed by Hinton
in [12] manages to solve this problem. Hinton et al. believes that the relationship
between objects and observers (e.g. pose of objects) should be described by a
set of neurons instead of a single neuron. Priori knowledge of coordinate frames
can then be expressed effectively. This set of neuron in general is called ‘Cap-
sule’. Furthermore, Capsule network offers equivariant mapping, which means
that both location information and pose information of objects can be reserved.
Routing tree in Capsule networks maps the partial hierarchy of the target, there-
fore each part is assigned to a whole. In summary, Capsule network is robust to
rotation, translation and other forms of transformations.

In this paper, we managed to leverage both FCN and Capsule network and
proposed a novel neural network called Fully CapsNet. To our best knowledge,
this is the first work to modify neural structure in FCN with Capsule for semantic
segmentation. Fully CapsNet introduces the principle of capsule to Fully convo-
lutional network. It adds several capsule layers and linked each layer by dynamic
routing algorithm [12]. Fully CapsNet improves the robustness of convolutional
network to pose transformation of objects as well as accuracy in semantic seg-
mentation.

The rest of this paper is organized as follows: Related literatures for the
construction of our model are introduced in Sect. 2. In Sect. 3, details of the
proposed work is demonstrated and reviewed. The network structure of Fully
CapsNet is presented in Sect. 4. Comparison experiments are demonstrated and
discussed in Sect. 5. Segmentation results are evaluated on PASCAL VOC where
Fully CapsNet will show the significant outperformance compared to the original
FCN.

2 Related Work

2.1 Deconvolutional Network

Deconvolutional network is first proposed by Zeiler et al. in [18], which is a frame-
work that permits the unsupervised construction of hierarchical image represen-
tations. Compared with CNN, which obtain feature map from input images con-
voluted by feature filter, deconvolutional network restores input images through
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feature map convoluting feature filter. For each input image x, there are several
feature z to represent its latent features, and feature filters F can be obtained
through learning the given images X = {x1, x2, . . . , xN}. The trained filters can
be then used to infer the feature map when a new image is given.

The input of the first layer of deconvolutional network is the original image
and the output is the feature map z1 extracted from the input image. The rest of
the layers has an input of the previous layer’s output feature map zL−1 and an
output of feature map zL. Several cost functions are introduced to optimize the
parameters F and z. To learn the parameters in filters, deconvolutional network
alternately minimizes cost functions over the feature maps while keeping the
filters fixed (i.e. perform inference). The trained filters can be then used to infer
the feature map when a new image is given.

Deconvolutional network is a powerful tool for mid and high level feature
learning. Visualization and understanding of each feature map obtained from
convolutional layers can be achieved through deconvolution.

2.2 VGG

VGG is a convolutional neural network model proposed by Simonyan et al. in
[15]. VGG is made up a concise structure. There are 5 convolutional layers, 3 fully
connected layers and a softmax output layer. Each layer is separated by a max-
pooling layer and the activation unit of the hidden layer adopts ReLu function.
In this paper a VGG-16 structure is adopted. VGG-16 contains 16 layers in
the framework in total. Small-scale kernel function is one of the main feature of
VGG. Convolutional layers in VGG consist of several small-scale kernel functions
(3 × 3), where kernel functions in other structure such as AlexNet [8] are bigger
in size (7 × 7). On the one hand, the amount of parameters can be reduced by
bringing down the size of kernel functions. On the other hand, more nonlinear
mapping can be carried out, which can increase the fitting and expressing ability
of the network.

Our work is similar to [5] in the sense that an architectural change to layers
is proposed. The authors propose to modify several layers in VGG.16 to formu-
lating them as CapsNets, creating a new class of FCN, called Fully CapsNet.
The idea can be extended to other forms of FCNs.

3 Preliminaries

3.1 Fully Convolutional Network

FCN is proposed by Long et al. in [13]. It replaces the fully connected layers
with several convolutional layers. A net with only layers of convolutional layers
computes a nonlinear filter is called fully convolutional network. Each layer of
data in a convolutional network is a three-dimensional array of size h × w × d,
where h and w are spatial dimensions, and d is the feature or channel dimension.
The first layer is the input image, with pixel size h × w, and d color channels.
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Locations in higher layers correspond to the locations in the image they are
path-connected to, which are called their receptive fields. Writing xij for the
data vector at location (i, j) in a particular layer, and yij for the following layer,
these functions compute outputs yij by

yij = fks({xsi+δ}) (1)

where k is called the kernel size, s is the stride, and fks determines the layer
type. This functional form is maintained under composition, with kernel size and
stride obeying the transformation rule:

fks · gk′s′ = (f · g)k′+(k−1)s′,ss′ (2)

A real-valued loss function composed with an FCN defines a task. If the loss func-
tion is a sum over the spatial dimensions of the final layer, l(x; θ) = Σij l

′(xij ; θ),
its gradient will be a sum over the gradients of each of its spatial components.
Thus stochastic gradient descent on l computed on whole images will be the
same as stochastic gradient descent on l′, taking all of the final layer receptive
fields as a minibatch. In order to obtain the original size of image, an upsam-
pling layer or deconvolutional layer is applied in FCN. It simply reverses the
forward and backward passes of convolution. However, upsampling produces
coarse segmentation maps because of loss of information during pooling. Thus,
skip architecture is introduced to FCN. A skip architecture is learned end-to-
end to refine the semantics and spatial precision of the output. In addition, FCN
ignores spatial regularization procedure which is normally used in pixel-level
segmentation. Researches have been done regarding to these problems, such as
RFCN [5], ResNet, GoogLeNets [1] etc.

3.2 Capsule Networks

Capsules are locally invariant groups of neurons that learn to recognize the
presence of visual entities and encode their properties into vector outputs, with
the vector length (limited to [0, 1]) representing the presence of the entity. To
achieve the limitation of the vector length, a squashing function (Eq. 3) is used.

vj =
||sj ||2

1 + ||sj ||2
sj

||sj || (3)

where vj is the vector output of capsule j and sj is its total input.
Each capsule can learn to identify certain objects or object-parts in images.

Within the framework of neural networks, several capsules can be grouped
together to form a capsule-layer where each unit produces a vector output instead
of a scalar activation.

Sabour et al. introduced a routing-by-agreement mechanism in [12] for the
interaction of capsules within deep neural networks with several capsule-layers,
which works by pairwise determination of the passage of information between
capsules in successive layers. For each capsule hl

i in layer l and each capsule
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h
(l+1)
j in the layer above, a coupling coefficient cij is adjusted iteratively based

on the agreement (cosine similarity) between hi’s prediction of the output of hj

and its actual output given the product of cij and hi’s activation:

Sj =
∑

i

cij ûj|i, ûj|i = Wijui (4)

where ûij is the prediction vector of all the capsule below, ui is the output of
one capsule and Wij is a weight matrix.

The coupling coefficients cij inherently decide how information flows between
pairs of capsules. Sabour et al. proposed a routing softmax which enables the
coupling coefficients between capsules in layer i and above sum up to 1. The
initial logits bij of coupling coefficients are the log prior probabilities that capsule
i should be coupled to capsule j:

cij =
exp(bij)

Σk exp(bik)
(5)

For a classification task involving K classes, the final layer of the CapsNet can
be designed to have K capsules, each representing one class. Since the length of
a capsule’s vector output represents the presence of a visual entity, the length of
each capsule in the final layer can then be viewed as the probability of the image
belonging to a particular class. The algorithm is shown in Procedure 1 [12].

Procedure 1 . ROUTING ALGORITHM
1: Routing (ûj|i, r, l)
2: for all capsule i in layer l and capsule j in layer l + 1: bij ← 0
3: for r iterations do
4: for all capsule i in layer l: ci ← softmax(bi)
5: for all capsule j in layer l + 1: sj ← ∑

i cij ûj|i
6: for all capsule j in layer l + 1: vj ← squash(sj)
7: for all capsule i in layer l and capsule j in layer l + 1: bij ← bij + ûj|i × vj
8: return
9: end for

4 Fully CapsNet

Capsule network is essentially parallel attention network. Each capsule layer
focuses on linking to the capsules in next layer, which are more active to the
information extracted in the previous capsule layer and then ignore those inactive
capsules. The idea of capsule is more close to that how human react to infor-
mation processing: information processing between neurons are vector instead
of scale. For example, CNNs have the ability to recognize a human face with
all facial features, even they are not in their correct position. This is because
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the pooling layers in CNNs simply learn each of these features separately aban-
doning the spatial connection among them. Capsule, however, builds a feature
group containing both features and their spatial connections. Thus, CapsNet
would not recognize it a human face if the facial features are not in the correct
order. The transition of information between capsules is conducted by dynamic
routing. On the basis of discussion above, the idea of Capsule Network and its
routing algorithm (dynamic routing) is applied in our model.

4.1 Construction of Fully CapsNet

Fully CapsNet is similar in structure to the FCN model in general. A traditional
FCN structure VGG-16 is selected as the feature extractor of Fully CapsNet.
VGG-16 is a mature and widely used Convolutional Neural Network structure
and the original FCN is proposed based on it. Then we modified the output
layer of VGG-16. Instead of upsampling directly with the output of last convo-
lutional layer, several capsule layers are added after them. Firstly, the feature
map from conv.6 is transformed into the form of a vector. Information of the
map is extracted by dynamic routing method and capsules in each layer are
activated according to Margin Loss function. Finally, upsampling (or deconvo-
lution) method is used. Deconvolution helps to restore the size of initial image.
The Skip structure in FCN is also applied in Fully CapsNet in order to fine-tune
the output results. It learns to combine coarse, high layer information with fine,
low layer information. A demonstration for the architecture of Fully CapsNet is
shown in Fig. 1.

Fig. 1. Framework of fully CapsNet
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The whole process can be simplified to several progress: Feature extraction
→ dynamic routing → upsampling, or Encoder → Decoder process.

It is noticeable in Fig. 1 that the size of the featured map in the con61 reshape
stage increased by one dimension. The purpose of reshaping the size is aimed at
preparing for the introduction of Capsule structure.

4.2 Modification on Routing Algorithm

The Dynamic routing algorithm is fully connected in every pixel. In other word,
it requires adequate storage in computers to store data and powerful abilities
for calculation, which is hardly achievable for general users. Thus, we modified
the routing algorithm through a partial connection method. For example, given
a image with the size 20 × 30, the original dynamic routing algorithm requires a
20×30×20×30 (360000 in total) space to store the weighting value between each
pixel, which can be space consuming when the size of input images increase. As
for partial connection method, which splits the original image into 150 (10× 15)
small images of size 2 × 2. Therefore, the space required is reduced to 10 × 15 ×
2 × 2 × 2 × 2 (2400 in total). What’s more, in order to reduce the storage space
for calculations required by Capsule Network the dynamic routing algorithm is
applied only on image data in higher layers, such as data in con6 layers. The
data in higher layers are the feature maps extracted from lower layers, which
contain essential information that represent the nature of the input images. In
this way, the adjusted routing algorithm largely cuts down the usage of storage
and calculation complexity.

Fully CapsNet has the advantage of taking input of arbitrary size and pro-
duce correspondingly-sized output with efficient inference and learning inherited
form FCN. Besides, Fully CapsNet also has the ability of equivariance inherited
from Capsule. It is robust to rotation, translation and other forms of transfor-
mations. In the following section, the effectiveness of Fully CapsNet is verified
and analyzed through PASCAL VOC.

5 Experimental Analysis

The performance of Fully CapsNet is evaluated through a set of experiments,
in which we compare Fully CapsNet with FCN on their accuracy rate. The
experiments are based on PASCAL VOC. The segmentation results are evaluated
by two methods: pixel-wise accuracy rate and MAP value. The PASCAL VOC
dataset is analyzed in Sect. 5.1. Experimental results are displayed and analyzed
in Sect. 5.2.

5.1 Datasets

A major part in computer vision is about object recognition, detection and clas-
sification, which are fundamental functions in application field. Therefore, the
correctness and efficiency of an algorithm is verified through whether or not these
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three functions can be completed. Large quantities of images are then collected
by researchers to be applied to their algorithms. PASCAL VOC Challenge is
a platform where algorithms are contrasted based on the same data set. PAS-
CAL VOC provides adequate standardized image data sets for pixel-wise scene
understanding as well as a common set of tools for accessing the data sets and
annotations. There are twenty object classes in PASCAL VOC and are divided
into four categories: Person, Animal, Vehicle and Indoor objects. In this paper
PASCAL VOC 2012 is selected for semantic segmentation. Figures 2 and 3 shows
the original images and their groundtruth segmentation results obtained from
PASCAL VOC 2012.

Fig. 2. Original images

Fig. 3. Groundtruth

5.2 Segmentation Results and Analysis

The authors qualitatively compare images generated randomly using both Fully
Convolutional Network and Fully CapsNet. Figure 4 shows segmentation results
of a image by the two algorithms, where the first column is the groundtruth
and the second and third column are segmentation results generated by Fully
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CapsNet and Fully Convolutional Network respectively. Obviously, Fully Cap-
sNet’s segmentation results outperforms initial Fully Convolutional Network’s.
The accuracy rate of the segmentation results of other objects are shown in
Table 1.

Fig. 4. Segmentation results of original images

Table 1. Accuracy rate of upright images by the two methods

Object Aeroplane Sofa Bird Boat Bottle Bus Car Cat

Fully caps 0.88 0.62 0.73 0.68 0.48 0.91 0.62 0.86

FCN 0.77 0.37 0.69 0.49 0.60 0.75 0.75 0.78

Object Chair Cow Diningtable Dog Horse Motorbike Person Sheep

Fully caps 0.35 0.94 0.55 0.79 0.79 0.80 0.70 0.88

FCN 0.21 0.63 0.47 0.72 0.64 0.77 0.74 0.72

As it can be seen in Table 1, Fully CapsNet outperforms FCN in segmenting
normal position images. Although segmentation of some objects such as chair
(colored in red) and dining table is not accurate because the background of the
image effects segmentation results in boundary regions.

For example, similar color exists between target objects and backgrounds,
fuzzy object edges etc. All of these factors contribute to low accuracy segmen-
tation rate. Apart from improvements in accuracy, Fully CapsNet also has the
ability in parsing rotated images.

In order to show ‘Equivariance’ in Fully CapsNet, we managed to rotate
several images obtained from the training set and then set them as input of the
trained network. The objects in the selected images are rotated by 5, 10, 15
and 20◦ while the size of each image remain fixed. Figure 5 shows some of the
segmentation results from Fully CapsNet and FCN.

In Fig. 5, the first column of each image shows the ground truth, the second
column shows segmentation results from Fully CapsNet and the third column
shows segmentation results from FCN. It is obvious that Fully CapsNet shows
better equivariance compared with FCN when the pose of objects varies to a
small extent. Take Fig. 5(a) as an example, Fully CapsNet can segment the edge
of the target object while FCN performs badly in segmenting the edges as well
as classifying the target objects. Experiments with more degree of rotation of
the objects are carried out and the results are shown in Table 2.
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(a) Results with 5 degree rotation (b) Results with 10 degree rotation

(c) Results with 15 degree rotation (d) Results with 20 degree rotation

Fig. 5. Results with different rotation degree

Table 2. Segmentation results of rotated objects

Fully CapsNet Aeroplane Bicycle Bird Boat Bottle Bus Car Cat

5 0.85 0.37 0.71 0.66 0.44 0.89 0.60 0.86

10 0.84 0.34 0.71 0.62 0.43 0.88 0.56 0.85

15 0.83 0.34 0.69 0.61 0.42 0.87 0.57 0.85

20 0.80 0.34 0.67 0.59 0.43 0.83 0.54 0.85

FCN Aeroplane Bicycle Bird Boat Bottle Bus Car Cat

5 0.75 0.24 0.62 0.59 0.39 0.84 0.53 0.76

10 0.73 0.24 0.60 0.57 0.38 0.82 0.53 0.77

15 0.73 0.23 0.60 0.53 0.34 0.79 0.51 0.75

20 0.70 0.22 0.60 0.48 0.33 0.76 0.48 0.74

Fully CapsNet Cow Diningtable Dog Horse Motorbike Person Train Sheep

5 0.94 0.54 0.78 0.78 0.79 0.67 0.90 0.87

10 0.90 0.51 0.79 0.78 0.78 0.66 0.88 0.84

15 0.90 0.48 0.77 0.74 0.77 0.64 0.85 0.85

20 0.86 0.49 0.75 0.73 0.75 0.62 0.80 0.83

FCN Cow Diningtable Dog Horse Motorbike Person Train Sheep

5 0.80 0.50 0.82 0.75 0.73 0.63 0.82 0.77

10 0.80 0.47 0.79 0.73 0.72 0.61 0.80 0.73

15 0.78 0.42 0.77 0.72 0.71 0.58 0.79 0.76

20 0.76 0.40 0.74 0.70 0.68 0.55 0.75 0.73
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6 Discussion and Future Work

Fully convolutional networks are powerful deep learning models for semantic seg-
mentation. Motivated by the success of Capsule network over CNNs at improv-
ing the network’s ability to comprehend images, we proposed a Fully CapsNet, a
FCN framework but incorporates Capsule network instead of CNNs as discrim-
inators when modeling image data. Fully CapsNet adapts to recognizing spatial
transformation of objects in trained images. The effectiveness of the model is
verified through PASCAL VOC and compared with original Fully convolutional
network. Results show that Fully CapsNet out performs FCN in parsing both
original images and rotated images.

However, the proposed method shows robustness in recognizing rotated
images only to a small extent of rotation. In addition, Capsule network requires
tremendous space to store data and powerful calculating ability due to its full
connection structure in routing algorithm. Simply applying partial connection
reduces the performance of Capsule network. Further research works need to
handle these problems.
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