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Abstract. Due to the different distributions of training and testing
datasets, the performance of the trained model based on the training
set can rarely achieve the most optimal. Inspired by the successful appli-
cation of domain adaptation in the object recognition area, we apply
domain adaptation methods to CNN based local feature descriptors
based on their own traits. Different from previous domain adaptation
methods that focus only on the fully connected layer, we apply max-
imum mean discrepancy (MMD) criterion to both the fully connected
layer and the convolutional layer, which makes the primary local filters
of CNN adaptive to the target dataset in an unsupervised manner. Exten-
sive experiments on Photo Tour and HPatches dataset show that domain
adaption is effective to local feature descriptors, and, more importantly,
the convolutional layer adaption can further improve the performance of
traditional domain adaptation.
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1 Introduction

One of the most extensively studied problems in computer vision area is to
find correspondences between images according to local feature descriptors that
embed local features into vectors. Compared with global features, local feature
represents only part of the image so that it is more robust to illuminations.
Recently, local descriptors based on CNN architectures have been proved to sig-
nificantly outperform handcrafted local descriptors [4,21,23], meanwhile large
datasets are available for training [20,22]. However, due to the distribution dis-
crepancies of different datasets, trained models based on patches from training
sets may not generalize the most optimal results in the testing sets, which is
mainly caused by potential variations between domains. For example, patches
of the training sets are extracted from images of buildings while patches from
testing sets are mainly from decorations indoors or natural scenery. Therefore,
it is a natural adoption of domain adaptation methods to explore the domain-
invariant structure between the source domain (labeled training set) and the
target domain (unlabeled testing set).
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Recent studies have demonstrated that the deep neural networks can learn
transferable features to establish knowledge transfer by exploring the invariant
factors between different datasets so as to make features robust to noise [13].
However, most of the studies focus on object recognition and a systematic study
of the application of domain adaptation in local descriptors is yet to be done.
Therefore, in this work, we will investigate the application of domain adaptation
in local descriptors. Our contributions include: (1) we investigate the perfor-
mance of different CNN based local descriptors, combining maximum mean dis-
crepancy (MMD) criterion. Extensive experiments on Photo Tour and HPatches
dataset show that domain adaption is effective to local feature descriptors; (2)
Different from previous domain adaptation methods that focus only on the fully
connected layer, we jointly calculate MMD from both the fully connected layer
and the Convolutional layer of the network considering local descriptors’ own
traits, which can further improve the performance of traditional domain adap-
tation.

2 Related Work

2.1 Local Descriptors

End-to-end learning local descriptors based on CNN architectures have been
investigated in many studies, and the improvement has been shown over state of
art descriptors [4,21,23]. In [21], feature layers and metric layers are learnt in
the same network. Therefore, the final hinge-based loss can be optimized using
the last abstract metric layer of the network. MatchNet [24] also includes both
feature extracting layers and metric layers while using entropy loss to update
the network.

On the contrary, [4,23] directly use the last feature layer as the feature
descriptor of the input patch without training of the metric layer so that it
can be judged by traditional evaluation criterion. Based on Siamese network,
Deepdesc [4] trains the network using L2 distance meanwhile adopting a mining
strategy to select training samples. However, it requires large quantity of sam-
ples to guarantee its performance. TFeat [23] uses Triplet network to decrease
the distance between matching pairs and increase the distance between non-
matching pairs. Based on triplet loss, L2-Net [26] also proposes a progressive
sampling method with consideration of the intermediate layers.

Another important observation is that multi-scale network architectures can
achieve better results compared with single-scale network architectures.

2.2 Domain Adaptation

Transfer learning [19] aims to build a learning model that can follow different
probability distributions according to different domains [3,8,10,16,19]. Recent
studies of deep domain adaptation embed an adaptive layer into the deep net-
work to enhance the transfer ability [5–7,13,14,25]. The deep domain confusion
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network (DDC) by Tzeng et al. [5] uses two CNNs with shared weights, according
to the source and target domain respectively. The network of the source domain
is updated by the originally defined loss function when the difference between
the two domains is calculated by the MMD metric of the adaptive layer. DDC
only adjusts a single layer of the network, which may limit the transfer ability of
the multi-layer network. Therefore, Long et al. [13] proposed the deep adapta-
tion network (DAN) combining multi-layer adaptation using multi-kernel MMD
metric to match the shift of different domains. In order to avoid mutual influence
of layers, a joint adaptation network (JAN) [12] based on a joint maximum mean
discrepancy (JMMD) criterion was proposed to align the shift of the joint dis-
tribution of multiple layers in the network. Besides, there are several extensions
of DAN aimed at aligning the distributions of both the classifier and the feature
layer. In this work, we only investigate domain adaptation methods based on
feature layers.

3 Model

3.1 Maximum Mean Discrepancy (MMD)

In standard CNN architecture, the features of the last layer tend to transfer
from general to specific because it is tailored for the source data at the expense
of degraded performance on the target task [13]. Hence, in order to get the
most optimal performance, after pre-training on the training set, we require the
distributions of the features of the fully connected layer from the source and the
target domain to be similar. This can be achieved by adding an MMD metric to
the original loss function, which can limit the target error by the source error
plus a discrepancy metric between the source and the target [18].

MMD is an efficient metric that can compare the distributions of two datasets
using a kernel two-sample test [11]. Given two distributions S and T, MMD is
defined as:

MMD(XS ,XT ) =
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where Φ is a kernel function that maps the original data to a reproducing kernel
Hilbert space (RKHS) and ‖Φ‖H ≤ 1 defines a set of functions in the unit ball
of RKHS. This MMD metric considers the distribution of each domain to reduce
the mismatch in a latent space. Subsequently, Tzeng et al. [5] and Long et al. [13]
extended the MMD metric to a multi-kernel MMD metric. Multi-kernel MMD
enhances the two-sample test power meanwhile minimizes the Type II error, i.e.,
the failure of rejecting a false null hypothesis [13]. Its final result is calculated
by a weighted summation of several single kernel tests:
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where ku stands for one single MMD test and the {βu} is limited in the way
to make each kernel more representative. The multi-kernel MMD improves the
testing power of MMD and leads to a more optimal result.

3.2 Adaptative Networks

Based on the idea of domain adaptation, we first combine MMD metric with
TFeat [23] to exploit data from both the source and the target domain. Figure 1
gives an illustration of the proposed combined model. TFeat (Fig. 1-left) is a
typical CNN based local descriptor. It is comprised of 2 Convolutional layers
and one fully connected layer. For each layer, it is followed by an activation
f l = tanh(x). The objective function of TFeat is:

λ(δ+, δ−) = max(0, μ + δ+ − δ−) (3)

where δ+ = ‖Net(x+) − Net(x)‖2 is the L2 distance between the matching
pairs (x+, x), and δ− = ‖Net(x−) − Net(x)‖2 is the L2 distance between the
non-matching pairs (x−, x), and μ is a constant. The objective function aims to
make δ− > μ + δ+, so the distance between non-matching pairs will be longer
and between matching pairs will be shorter.

Fig. 1. Left is the original TFeat Network. It is comprised of 2 Convolutional lay-
ers(blue) and one fully connected layer(green). Right shows the modified adaptive
model. (Color figure online)

In previous studies, deep networks are pre-trained on ImageNet [17], but our
network is rather shallow so we only pre-train TFeat on the original training
sets. Then we fix the Convolutional layers and update the fully connected layer
using the new loss function,

L = LC + λMMD(XS ,XT ) (4)

where LC is the original loss function λ(δ+, δ−). MMD is used for calculating
the discrepancy between the training set and the testing set. λ > 0 is a penalty
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parameter that can control the balance between the task specification and the
discrepancy between two domains. As pointed out by Gretton et al. [1], kernel
choice is important for the testing power of MMD because different kernel will
map the probability distribution into different RKHS. Therefore, we choose the
performance of multi-kernel MMD on the local descriptor learning.

3.3 Joint Adaptation of the Fully Connected Layer and the
Convolutional Layer

In [21], it has been pointed out that it is important to jointly use information
from the first layer of the network. Therefore, we consider the modification of the
MMD loss calculation to fit features from the first layer into the MMD metrics,

L = LC + λϕ(MMDfc(XS ,XT ),MMDcov(XS ,XT )) (5)

where ϕ(a, b) is a way to combine the MMD loss from both fully connected layer
and the first Convolutional layer.

To train the network with multi-layer MMD, there are two ways. On the
one hand, we could define ϕ(a, b) = a + b, which means we directly add up
two MMD results from two separate layers, as Fig. 2(a) illustrates. On the other
hand, As [12] points out, separate adaptation of different layers will exert a
mutual influence on the conditional distribution of each layer, therefore ϕ(a, b)
could be defined as ϕ(a, b) = a ∗ b, where ∗ means the joint distribution of the
features from the two layers. The modified version is illustrated in Fig. 2(b).

Fig. 2. Two architectures to apply MMD loss

3.4 Dimension Reduction

In [1], it is proved that high dimension will decrease the power of MMD to cal-
culate the discrepancies between different distributions. Allowing for the high
dimensions of the Convolutional feature maps, we need to reduce the dimension
before calculating the MMD metrics. For convenience, we consider simple ways
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of average pooling. As the dataset (Fig. 3) shows, location information in patches
are less important for domain adaptation since different subsets contains com-
pletely different scenes. Therefore, when considering dimension reduction, we
could adopt average pooling to get a smoother distribution of pixel tensity in
the patch.

4 Experiment

We combine the CNN based local descriptors with MMD metric, focusing on the
improvement of the performance that domain adaptation can offer.

4.1 Photo Tour Dataset

Photo Tour dataset [20] is a standard benchmark for patch training and testing.
It consists of around 1M patches from each distinct scene: Notredame(N, grand
building), Liberty(L, statue), Yosemite(Y, natural park), which we could think
as three subsets. Each subset consists of three components: two patches and
their label that shows whether they are matching pair(label = 1) or non-matching
pair(label = 0). Figure 3 gives an illustration of the structure of the dataset, which
mainly shows pairs of patches and their labels from three different subsets. For
each learning task, we take one subset as training set and another as testing
set so that there are 6 ways of subset combination. We evaluate the domain
adaptation performance on the 6 learning tasks, N → L, N → Y, L → N, L →
Y, Y → N, Y → L(training set→testing set).

We use FPR95 to calculate the error rate when the matching accuracy
achieves 95%.

(a) Notredame(N) (b) Liberty(L) (c) Yosemite(Y)

Fig. 3. Photo tour dataset examples

4.2 HPatches Dataset

HPatches dataset [22] is a standard benchmark for patch testing. It consists of
around 2M patches from 116 scenes. This dataset evaluates the local descrip-
tors on three tasks: patch verification, image matching and patch retrieval. We
evaluate the domain adaptation by training the networks on Photo Tour dataset
and testing on Hpatches.
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4.3 Evaluation Protocol

For evaluation on Photo Tour dataset, we mainly evaluate the performance fol-
lowing the protocol below.

TFeat Network. We first extract 5M triplets from the training set and find
the best results in certain epochs as the pre-trained model following the original
procedure in [23]. Then we use 5M labeled triplets from the training set and
5M random selected unlabeled triplets from the testing set to update the fully
connected layer of the pre-trained network using new loss function and fix the
Convolutional layer, and evaluate the descriptors’ performance using FPR95. As
for joint adaptation of both fully connected layer and Convolutional layer, we
update the whole network after pre-training.

Fig. 4. Siamese network
(Color figure online)

Siamese Network. Siamese Network [21] (as
Fig. 4 shows) is another typical CNN based local
descriptors. It consists of 3 Convolutional lay-
ers(blue), two maxpooling layers(red) and two fully
connected layers(green) while the output of the last
layer is a number representing whether these two
patches are matching or not. Compared with TFeat,
Siamese Network is trained with matching and non-
matching pairs instead of triplets. Its objective func-
tion adopts a hinge-based loss. For adaptation, it
follows the above protocol.

4.4 Parameters

When using multi-kernel MMD and considering a
family of m Gaussian kernels {ku}mu=1, we mainly follow the procedure in [13] to
set the varying bandwidth γu. We use stochastic gradient descent (SGD) with 0.9
momentum and the learning rate is set to 0.1 at the beginning and is gradually
decreased.

5 Results

5.1 Performance Changes on λ Variation

On TFeat Network, we first investigate the effect of the parameter λ. Table 1
illustrates the variation of the error rate with λ ∈ {0.005, 0.008, 0.01, 0.02} on
tasks N → and the number of MMD kernel is set to 3. We can see from the
variation that when λ varies, the error rate first decreases and then increases
forming a notching curve. It shows that it is important to find the balance
between learning more specific deep features and adapting to target domain.



Deep Local Descriptors with Domain Adaptation 351

Table 1. Performance changes on λ variation.

λ 0 0.005 0.008 0.01 0.02

Error rate 7.3 6.14 5.95 5.87 5.88

5.2 Domain Adaptation on Photo Tour Dataset with Fully
Connected Layer

For the convenience of implementation, we set λ to 0.01 for all tasks, which
means results that Table 2 below shows can be decreased in an effective way even
though the performance is not the most optimal. It demonstrates that MMD can
effectively transfer features across domains and further boost the performance
of our networks.

Table 2. Results of six learning tasks combining local descriptors with domain adap-
tation. The first row shows the original results and the second row shows results after
domain adaptation.

Method N → L N → Y L → Y L → N Y → N Y → L

TFeat 7.30 7.34 8.52 3.10 3.10 9.09

TFeat-fc 5.87 6.56 6.95 2.70 2.79 8.10

Decrease(%)↓ 19.60 10.60 18.40 12.90 10.0 10.90

Siamese 13.17 12.07 18.42 6.48 8.22 16.90

Siamese-fc 11.58 11.07 17.24 5.93 7.28 13.89

Decrease(%)↓ 12.07 8.29 6.41 8.49 11.44 17.81

5.3 Domain Adaptation on HPatches Dataset with Fully Connected
Layer

In [22], experiments show that TFeat Network has achieved higher results. There-
fore, we tested TFeat Network on HPatches after domain adaptation. We could
see from Fig. 5 that all of the three tasks have gained 2% increase, which proves
the effectiveness of domain adaptation.Also, verification tasks between same
sequence and matching tasks between illumination changes could gain bigger
increase. Also, domain adaptation influences more on tough tasks.

5.4 Multi-layer Adaptation

In previous work, domain adaptation only considers fully connected layers. Given
local descriptors’ own traits, which implies that the first Convolutional layer
contains important information, we add Convolutional layer to layer adaptation.
Table 3 shows the comparison of different ways of layer combination. First of all,
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Fig. 5. HPatches evaluation:for each task, ‘+’ represents results after domain adapta-
tion. The mean values of the results before and after domain adaptation are put on the
right, which shows that all the mean values get 2% increase. ‘differ’ and ‘same’ stand
for different and same sequences verification. ‘view’ and ‘illum’ show matching under
changes of view or illumination.

we adopt the traditional way to only update the fully connected layer. Then,
we simply sum the MMD losses from the fully connected layer and the first
Convolutional layer respectively. We can see from the results that error rate can
be reduced because of the extra information the first layer offers. However, as
[12] points out that the update of the former layers will change the distribution
of the following layers so the joint MMD losses are also calculated following [12].
We can see from the results that improvement can be further achieved.

Table 3. Error rates with different ways of combining MMD losses from fully connected
and Convolutional layers

Method TFeat-fc TFeat-(fc+cov) TFeat-(fc*cov)

FPR95(%) 5.87 5.51 5.45

5.5 Performance with Respect to Dimension Reduction

First we run several experiments of average pooling to find the variation tendency
of the performance with different scale of pooling size. We can see from the figure
that the error rate first decreases and then increases which means there is a
balance between reducing the dimension and keeping enough feature information
(Table 4).

Table 4. Error rates with different average pooling size. The first row shows the final
dimension of the first layer after pooling.

Dimension 5408 1152 800 512 128

Error rate 5.76 5.71 5.77 5.8 6.02
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(a) fc layer adaptation (b) fc+cov adaptation (c) fc*cov adaptation

Fig. 6. The changes of feature maps with three ways of adaption

6 Discussion

6.1 First Layer Filter Visualization

For one original patch on the right, Fig. 6 shows
the changes of feature maps with three ways of
adaptation(TFeat-fc, TFeat-(fc+cov), TFeat-(fc*cov)).
From the first layer filter visualization, we could see
the color of features from fc adaptation to fc+cov adap-
tation change more strongly while there are still little
changes from fc+cov adaptation to fc*cov adaptation,
which shows different ways of domain adaptation indeed
influence the features of the first Convolutional layer.

(a) before adaptation (b) after adaptation

Fig. 7. t-SNE visualization of deep features before and after domain adaption

6.2 t-SNE Visualization

Seeing from t-SNE visualization [15] (Fig. 7), features from the source(blue) and
the target(red) become more collective and mixed with each other after adap-
tation while most of the original features of the source lie outside the target
features.
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7 Conclusion

In this work, we investigate the application of domain adaptation in local descrip-
tors. Experiments results have proven that domain adaptation methods can
further enhance the performance of CNN architecture based local descriptors.
Besides, the results also demonstrate that it is important to jointly use infor-
mation to calculate MMD loss from both the first layer and the last layer. It is
also interesting to consider how to reduce the high dimension of features from
the Convolutional layers so that the joint distribution can be better learnt from
domain adaptation. Meanwhile, deeper architecture will further boost the per-
formance.

References

1. Gretton, A., Sejdinovic, D., Strathmann, H., et al.: Optimal kernel choice for large-
scale two-sample tests. In: Advances in Neural Information Processing Systems, pp.
1205–1213 (2012)

2. Ramdas, A., Reddi, S.J., Poczos, B., et al.: On the high-dimensional power of
linear-time kernel two-sample testing under mean-difference alternatives. arXiv
preprint arXiv:1411.6314 (2014)

3. Gong, B., Grauman, K., Sha, F.: Connecting the dots with landmarks: discrimina-
tively learning domain-invariant features for unsupervised domain adaptation. In:
International Conference on Machine Learning, pp. 222–230 (2013)

4. Simo-Serra, E., Trulls, E., Ferraz, L., et al.: Discriminative learning of deep con-
volutional feature point descriptors. In: 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 118–126. IEEE (2015)

5. Tzeng, E., Hoffman, J., Zhang, N., et al.: Deep domain confusion: maximizing for
domain invariance. arXiv preprint arXiv:1412.3474 (2014)

6. Tzeng, E., Hoffman, J., Darrell, T., et al.: Simultaneous deep transfer across
domains and tasks. In: 2015 IEEE International Conference on Computer Vision
(ICCV), pp. 4068–4076. IEEE (2015)

7. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. arXiv preprint arXiv:1702.05464 (2017)

8. Zhang, K., ScholKopf, B., Muandet, K., Wang, Z.: Domain adaptation under target
and conditional shift. In: International Conference on Machine Learning, pp. 819–
827 (2013)

9. Duan, L., Tsang, I.W., Xu, D.: Domain transfer multiple kernel learning. IEEE
Trans. Pattern Anal. Mach. Intell. (TPAMI) 34(3), 465–479 (2012)

10. Ghifary, M., Kleijn, W.B., Zhang, M.: Domain adaptive neural networks for object
recognition. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS (LNAI),
vol. 8862, pp. 898–904. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13560-1 76

11. Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.P., Smola, A.J.: Integrating
structured biological data by kernel maximum mean discrepancy. Bioinformatics
22(14), e49–e57 (2006)

12. Long, M., Zhu, H., Wang, J., et al.: Deep transfer learning with joint adaptation
networks. arXiv preprint arXiv:1605.06636 (2016)

13. Long, M., Cao, Y., Wang, J., et al.: Learning transferable features with deep adap-
tation networks. arXiv preprint arXiv:1502.02791 (2015)

http://arxiv.org/abs/1411.6314
http://arxiv.org/abs/1412.3474
http://arxiv.org/abs/1702.05464
https://doi.org/10.1007/978-3-319-13560-1_76
https://doi.org/10.1007/978-3-319-13560-1_76
http://arxiv.org/abs/1605.06636
http://arxiv.org/abs/1502.02791


Deep Local Descriptors with Domain Adaptation 355

14. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with
residual transfer networks. In: Advances in Neural Information Processing Systems
(NIPS), pp. 136–144 (2016)

15. van der Maaten, L.J.P., Hinton, G.E.: Visualizing high-dimensional data using
t-SNE. Mach. Learn. Res. 9, 2579–2605 (2008)

16. Sugiyama, M., Nakajima, S., Kashima, H., et al.: Direct importance estimation
with model selection and its application to covariate shift adaptation. In: Advances
in Neural Information Processing Systems, pp. 1433–1440 (2008)

17. Russakovsky, O., et al.: ImageNet Large Scale Visual Recognition Challenge. Tech-
nical report. arXiv:1409.0575 (2014)

18. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.:
A theory of learning from different domains. Mach. Learn. 79(1–2), 151–175 (2010)

19. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 13451359 (2010)

20. Winder, S., Hua, G., Brown, M.: Picking the best daisy. In: IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2009, pp. 178–185. IEEE (2009)

21. Zagoruyko, S., Komodakis, N.: Learning to compare image patches via convolu-
tional neural networks. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4353–4361. IEEE (2015)

22. Balntas, V., Lenc, K., Vedaldi, A., et al.: HPatches: a benchmark and evaluation
of handcrafted and learned local descriptors. In: Computer Vision and Pattern
Recognition (CVPR), vol. 4, no. 5, p. 6 (2017)

23. Balntas, V., Riba, E., Ponsa, D.: Learning local feature descriptors with triplets
and shallow convolutional neural networks. BMVC 1(2), 3 (2016)

24. Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C.: MatchNet: unifying feature
and metric learning for patch-based matching. In: Computer Vision and Pattern
Recognition, pp. 3279–3286. IEEE (2015)

25. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
arXiv preprint arXiv:1409.7495 (2014)

26. Tian, Y., Fan, B., Wu, F.: L2-Net: deep learning of discriminative patch descriptor
in euclidean space. In: Conference on Computer Vision and Pattern Recognition,
pp. 6128–6136. IEEE Computer Society (2017)

http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.7495

	Deep Local Descriptors with Domain Adaptation
	1 Introduction
	2 Related Work
	2.1 Local Descriptors
	2.2 Domain Adaptation

	3 Model
	3.1 Maximum Mean Discrepancy (MMD)
	3.2 Adaptative Networks
	3.3 Joint Adaptation of the Fully Connected Layer and the Convolutional Layer
	3.4 Dimension Reduction

	4 Experiment
	4.1 Photo Tour Dataset
	4.2 HPatches Dataset
	4.3 Evaluation Protocol
	4.4 Parameters

	5 Results
	5.1 Performance Changes on  Variation
	5.2 Domain Adaptation on Photo Tour Dataset with Fully Connected Layer
	5.3 Domain Adaptation on HPatches Dataset with Fully Connected Layer
	5.4 Multi-layer Adaptation
	5.5 Performance with Respect to Dimension Reduction

	6 Discussion
	6.1 First Layer Filter Visualization
	6.2 t-SNE Visualization

	7 Conclusion
	References




