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Abstract. In this paper we introduce a novel feature descriptor based on deep
learning that trains a model to match the patches of images on scenes captured
under different viewpoints and lighting conditions. The patch matching of
images capturing the same scene in varied circumstances and diverse manners is
challenging. Our approach is influenced by recent success of CNNs in classi-
fication tasks. We develop a model which maps the raw image patch to a low
dimensional feature vector. As our experiments show, the proposed approach is
much better than state-of-the-art descriptors and can be considered as a direct
replacement of SURF. The results confirm that these techniques further improve
the performance of the proposed descriptor. Then we propose an improved
Random Sample Consensus algorithm for removing false matching points.
Finally, we show that our neural network based image descriptor for image
patch matching outperforms state-of-the-art methods on a number of benchmark
datasets and can be used for image registration with high quality.
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1 Introduction

Finding correspondences between image patches is one of the most widely studied
issues in computer vision. Many of the most widely used approaches, like SIFT [1] or
SUREF [2] descriptors which have made a critical and wide impact in various computer
vision tasks, are based on hand-crafted features and have limited ability to deal with
negative factors such as noise which makes a search of similar patches more difficult.
Recently, a variety of methods based on supervised machine learning have been suc-
cessfully applied for learning patch descriptors which are always low dimensional
feature vectors [3-5]. These methods are significantly superior to the hand-crafted
approaches and promote our research in learned feature descriptors.

The discussion about comparison between learned feature descriptors and tradi-
tional handcrafted feature descriptors never stops. The deep feature has achieved the
superior performance for many classification tasks, even fine-grained object recogni-
tion. While the performance improvements with CNN based descriptors come at the
cost of extensive training time. Another issue in the area of matching patches is the
limited benchmark data. The handcrafted local feature has been a subject of study in
computer vision for almost twenty years, the recent progress in deep neural network
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has led to a particular interest-learnable local feature descriptor. Specially, the features
from the trained model of a convolutional network on ImageNet [12] can improve over
SIFT in [9]. [10, 11] train a siamese deep network with hinge loss which have created
great improvements in image patch matching (Fig. 1).

Fig. 1. We propose a new method for jointly learning key-point detection and patch-based
representations in depth images towards the key-point matching objective.

The strategies of our novel feature descriptor learning are as follows: Our descriptor
include feature point detector, orientation estimation and descriptor three parts, During
the training phase, we use the image patches centroids and orientations of the key-
points used by the Structure-from-Motion algorithm that we ran on images of a scene
captured under distinct viewpoints and brightness to produce image patches. Siamese
architecture is utilized to minimize a loss function with the similarity metric to be small
for positive image patchpairs but large for negative image patchpairs. Then we conduct
images registration with different viewpoints and illumination using our trained novel
convolutional descriptor. We measure the key-point similarities by correlation of
descriptors and we perform the final transformation by a new variant of Random-
Sample-Consensus (RANSAC). As our experiments show, this new approach produces
accurate registration results on images with different viewpoints and illumination
settings.

In this paper we propose a descriptor based on CNN whose convolutional filters are
learned to robustly detect feature points in spite of lighting and viewpoint changes.
More over, we also use deep learning-based approach to predict stable orientations.
Lastly, the model extract features directly from raw image patches with CNNs trained
on large volumes of data. Those improve the performance of traditional hand-crafted
method and has reduced matching error and increased registration accuracy.

The rest of the paper is organized as follows. In Sect. 2, we present related work
focusing on patch matching problem and image registration. Section 3 describes the
proposed method. In Sect. 4, we discuss implementation details and our experimental
results, respectively. We provide conclusions in Sect. 5.
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2 Related Work

Image registration via patch matching always revolves about matching the selecting
feature descriptor and removing mismatched points via a Random-Sample Consensus
algorithm to calculate the transform model. In this section, we will therefore discuss
these two elements separately.

2.1 Feature Descriptors

Feature descriptors which are robust to transformations such as viewpoint or illumi-
nation changes have been widely applied for finding similar and dissimilar image
patches in computer vision tasks. The feature descriptors are carefully designed from
general measurement methods such as moment invariants, histograms of gradients in
the past few years. SIFT [1] is computed from local histograms of gradient orientations
and is distinguishable. However, the matching procedure is time-consuming owing to
that the dimension of feature vector is high. Therefore, SURF [2] uses a low-
dimensional vector representations to speed up the computation.

Nowadays, the trend has alternated from manually-designed methods to learned
descriptors. Specially, end-to-end learning of patch descriptors using CNN has been
developed in several works [9-11] and are far well compared to the state-of-the-art
descriptors. It was demonstrated in [9] that the features from the trained model of a
convolutional network on ImageNet [12] can improve over SIFT. Additionally, training
a siamese deep network with hinge loss in [10, 11] based on positive and negative
patch pairs, create vital improvements in matching achievement.

2.2 Image Registration

Image registration is useful in studying computer vision tasks such as getting the
ultimate information from a combination of a great deal of divergent origins catching
the same information in diverse circumstances and various manners and there are a
great number of related literatures. Image registration methods [13, 14] perform an
important part in scores of applications like image fusion. Early methods solve reg-
istration based on the gradients of the image such as [15]. Developed methods are using
key-points [16, 17] and invariant descriptors to capture the geometric alignment.

According to the style of image acquisition, the utilization of Image registration can
be divided into the following categories.

Multi-view Analysis. Capture images of similar object or scenes from multiple
viewpoints to gain a better representation of the scanned object or scene. Examples
include mosaicing of images and shape recovery from the stereo.

Multi-temporal Analysis. Images of the same scene are captured at different times
usually under various conditions to notice alternations in the spectacle which emerge
between the consecutive images acquisitions. Examples include motion tracking.
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Multi-modal Analysis. Acquiring the images of the same spectacle via different
sensors to merge the information obtained from a variety of sources to gain the
minutiae of the spectacle.

An Image Registration task includes key-point detection, patch matching, con-
version model assessment, image transformation determined.

3 Method

In this section, we first develop the complete feature descriptor. Then, So as to get the
global transformation between the feature points, we introduce an approach which is an
iterative RANSAC method to remove error matching from the same information in
varied circumstances or diverse viewpoints after matching feature points.

3.1 Our Network Architecture

We select Faster R-CNN [8] with shared weights as the foundation for our network
architecture due to that it is trained for the work of target detection and can offer us
block representations and a trainable methods for choosing those patches. Then, image
patches are linked to our ORI-EST network to predict stable orientations. After the
image blocks has been rotated, image patches of both branches are connected to a fully
connected layer to extract the feature vectors (Fig. 2).
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Fig. 2. Overview of our siamese architecture. Each branch uses VGG-16 as the base
representation network. Features from conv5_3 are fed into both the Region Proposal network
(RPN) and the region of interest (Rol) pooling layer, while their Rols are fed to the Rol pooling
layer, ORI-EST network and a fully connected layer to extract the feature vectors.
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3.2 Descriptor

The descriptor can be formalized simply as

d = hy(py), (1)

where h(.) denotes the descriptor convolutional neural network, p its parameters, and py
is the rotated patch from the Orientation Estimator. During the training phase, we use
the image patches centroids and orientations of the key-points used by the Structure-
from-Motion (SfM) algorithm to produce image patches p,.

To optimize the proposed network, we have to use a loss function which is able to
discriminate positive and negative image patch pairs. More specifically, we train the
weights of the network by using a loss function which prompts similar examples to be
close, and dissimilar pairs to have Euclidean distance larger or equal to a margin
m from each other.

1
2N, neg

1 N 5
LMatchLoss(Pl7P27 l) - mezi:l ID +

SV (1= ){max(0,m — D)}, (2)

where N, is the number of positive and negative pairs are represented by Ny,
(N = Npos + Nyeg), | is a binary label is a positive (I = 1) or negative (I = 0) for
choosing whether the input pair consisting of patch P; and P, , m > 0 is the margin for
negative pairs and D = ||h(P;) — h(P;)|| is the Euclidean Distance between feature
vectors h(Py) and h(P,) of input images P; and P;.

3.3 Orientation Estimation

SIFT determines the main orientation based on the histograms of gradient direction.
SURF uses Haar-wavelet responses of sample points to extract the dominant orienta-
tion in the neighborhood of feature points.

We give a new orientation estimation approach for image patches. First, we
introduce our convolutional neural networks then show details of our model. Given a
patch p from the region computed by the detector, the Orientation Estimator estimates
an orientation

szw(p)a (3)

where f denotes the Orientation Estimator CNN, and w its parameters.
We minimize a loss function ) ; L; over the parameters w of a CNN, with

Lori—EstLoss(P;) = th (Pilafw (Ptl)) —hy (Pizvfw (Pf)) H; (4)

where the pairs p; = {p}, ptz} are pairs of image patches from the training dataset,
fw (pl*) means the orientation computed for image patch p; using a CNN with
parameters w, and h(p;,0;) is the descriptor for patch p; and orientation 0;.
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3.4 Feature Point Detectors

Each Faster R-CNN branch has a novel score loss for training the key-point detection
stage, which is an uncomplicated but valid mean to recognize possibly stable key-
points in training images. The score loss fine-tunes the parameters of the Region
Proposal Network (RPN) of the Faster R-CNN [8] to obtain high-scoring proposals in
regions of the image maps. We then use them to generate a score map whose values are
local maxima at these positions. The region S proposed by the detector for patch P is
computed as:

S=2gulp), (5)

where g, (p) denotes the detector itself with parameters u

I Vo
Ls(s7 )= 7 21:1 litogs, ) (6)

- 1+Npos 1+Npos

where ; is the label for the i key-point from image I whose value depends whether the
key-point belongs to a positive or negative pair, S is the score of the key-point and y is a
regularization parameter.

LScoreLoss(pi) = ||hﬂ (pil7fw (g,u (pzl)))) —hy (Pizyfw (g,u(ptz))) ||§ —|—)»L5(S, l)v (7)

A is a regularization parameter.

3.5 Image Registration

Image registration is the procedure of aligning two or more images of the same scene
which are captured from various sensors at different times or at multiple view-points.
Image registration is significant in getting a better map of any alteration of a scene or
object over a long time.

It is unavailable to use the group of all matches M to compute the final global
transformation 7 between the images Iy and /; in that a majority of matches in M are
outliers. Therefore, it is necessary to apply RANSAC [18] for rejecting outliers before
compute the transformation 7. Moreover, In order to improve the accuracy of the
transformation, we form the transformation 7 by our iterative RANSAC outliers
rejection approach (Fig. 3).

RANSAC

Coarse Fine
iterative _iterative

Fig. 3. Overview of RANSAC process, we propose a new RANSAC method for removing error
key-point matching which is consisted of coarse and fine iterative.
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The methods of iterative RANSAC are consisted of coarse iteration and fine iter-
ation. The coarse iteration use RANSAC in a conventional way. We get a group of
matches M, by computing for each key-point p € Iy its best match ¢* € I;. Obviously,
this group includes inlier and outlier matches. The RANSAC outliers rejection
approach is as follows, we sample subgroups of matches my,..., my,... € M, and
compute via least square the transformation 7; that most adapts these matches to each
subgroup m;. Therefore if our transformation 7 is characterized by n parameters, then
we have |my| = {%1 since each match induces two linear constraints.

Ultimately, we choose T* derived from the best group of matches m* as the best
transformation which has the greatest agreement in other matches. The number of other
matches is formalized as M, — m*. A match agrees with a transformation if

Xp Xgr
sy | — | Yo < RansacDistance, (8)
1 1

2

the Ransac Distance in the first iteration is r d.. T, is expressed as the transformation
that is found by RANSAC in the coarse iteration.

In the fine iteration we duplicate the same procedure as the coarse iteration, but use
this initial guess T, to limit the group of all matches in fine iteration M;. More pre-
cisely, p € Iy can be matched to ¢g* € I; only if their distance under 7, (like Eq. (8)), is
less than MatchDistance. In fine iteration, MatchDistance = md; and
RansacDistance = rd.. We denote by T} the transformation found by our fine iteration.

The parameters of the mapping function are computed with the established feature
correspondence obtained from the previous step. Then, the mapping functions are
applied for aligning the sensed image with the reference image.

4 Experimental Validation

In this section, we first present the datasets we used. We then present qualitative results,
followed by a thorough quantitative comparison against a number of state-of-the-art
baselines. The experiment was running on a machine with Ubuntu, Tensorflow,
NVIDIA GeForce GTX 1080, Intel (R) Core (TM) i7-6700K CPU @ 4.00 GHz,
16 GB RAM. It took about one day to train our model. Our Input image size is about
2000 x 1000 and the runtime of testing process is about 12.5 s per image.

4.1 Dataset

We use the following two datasets to evaluate our method under illumination changes
and multiple viewpoints, the Webcam dataset [6], which includes 710 images of 6
scenes with apparent illumination alternations but captured from the same viewpoint.
The Strecha dataset [7], which involves 19 images of two scenes captured from
manifest different viewpoints.
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4.2 Qualitative Examples

We compare our method to the following combination of feature point detectors and
descriptors, as reported by the authors of the corresponding papers: SIFT, SURF, ORB
[19], PN-Net [20] with SIFT detector, and MatchNet [11] with SIFT detector.

A qualitative evaluation of the key-points shown in Fig. 4 reveals the tendency of
the other methods to generate more key-points than ours. This demonstrates that our
method is much less susceptible to the image noise, and validates our claim for learning
the key-point generation process jointly with the representation.

Fig. 4. Qualitative local feature matching examples of left: SURF and right: ours. Matches
recovered by each method are shown in green color circles. SURF returns more key-points than
ours. (Color figure online)

We compute the transformation 7 by RANSAC [18] rejection method. Figure 5
shows image key-points correct matching results, for both SURF and Ours. As
expected, ours returns more correct correspondences.

These results show that our method outperforms traditional methods in matching
correct key-points. Additionally, our method is much more reliable to the image under
different conditions, and correct the mistakes of the original detectors.

4.3 TIterative RANSAC and Image Registration

The transformation T for every sample of matches from M is computed by least-
squares. In order to ensure the accuracy of the transformation, we compute the trans-
formation T by our iterative RANSAC outliers rejection method. Figure 6 shows image
key-points correct matching results, for both RANSAC and our iterative RANSAC. As
expected, ours returns more correct correspondences.

These results demonstrate that our method compares favorably with traditional
RANSAC method in removing outliers.
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Fig. 5. The figure shows the matching results after the traditional RANSAC. Feature matching
examples of left: SURF and right: ours. Correct matches recovered by each method are shown in
red color lines and the green color circles. Ours matches more key-points than SURF. (Color
figure online)

Fig. 6. The figure shows the matching results after the traditional RANSAC and our iterative
RANSAC. Local feature matching examples of left: RANSAC and right: our iterative RANSAC.
Matches recovered by each method are shown in red color lines and the descriptor support
regions with green color circles. RANSAC matches less key-points than our iterative RANSAC
matches. (Color figure online)

We use the Webcam dataset and the Strecha dataset to evaluate our method under
illumination changes and multiple viewpoints. As our experiment show, most of the
scenes are out door and with static objects but not include moving objects with a large
obvious change in position. Our future work will focus on the registration for video
frames under the scenes which are indoor and with some moving objects.
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4.4 Quantitative Evaluation

In this section, we first present qualitative results, followed by a thorough quantitative
comparison against a number of state-of-the-art feature descriptor baselines, which we
consistently outperform. We then present our iterative RANSAC qualitative results,
followed by traditional RANSAC (Fig. 7), (Tables 1 and 2).

0.08
0.06

0.04
= | I i
0 | — J—
SIFT SURF MatchNet PN-Net Ours

B Webcam B Strecha

Fig. 7. Average matching score for all baselines.

Table 1. Average correct matching ratio for all baselines.

SIFT | SURF | ORB | MatchNet | PN-Net | Ours
Webcam | .0422 | .0398 | .0304 | .0402 .0531 |.0613
Strecha | .0076|.0025 |.0022 |.0018 .0033 | .0166

Table 2. Average correct matching ratio for different RANSAC.

RANSAC | Our iterative RANSAC
Webcam | .0588 .0613
Strecha |.0157 .0166

5 Conclusions

We introduce a novel deep network architecture that combines the three components
training a novel feature descriptor model to match the patches of images of a scene
captured under different viewpoints and lighting conditions. The unified framework
simultaneously learns a key-point detector, orientation estimator and view-invariant
descriptor for key-point matching. Furthermore, we introduced a new score loss
objective that maximizes the number of positive matches between images from two
viewpoints. To remove false matching points, we propose an improved Random
Sample Consensus algorithm.
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Our experimental results demonstrate that our integrated method outperforms the

state-of-the-art. A future performance improvement could be to study better structures
of the orientation estimator network which could make the local feature descriptor even
more robust to rotation transformations.
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