
Multi-attention Guided Activation
Propagation in CNNs

Xiangteng He and Yuxin Peng(B)

Institute of Computer Science and Technology, Peking University, Beijing, China
pengyuxin@pku.edu.cn

Abstract. CNNs compute the activations of feature maps and propa-
gate them through the networks. Activations carry various information
with different impacts on the prediction, thus should be handled with dif-
ferent degrees. However, existing CNNs usually process them identically.
Visual attention mechanism focuses on the selection of regions of inter-
est and the control of information flow through the network. Therefore,
we propose a multi-attention guided activation propagation approach
(MAAP), which can be applied into existing CNNs to promote their
performance. Attention maps are first computed based on the activa-
tions of feature maps, vary as the propagation goes deeper and focus on
different regions of interest in the feature maps. Then multi-level atten-
tion is utilized to guide the activation propagation, giving CNNs the
ability to adaptively highlight pivotal information and weaken uncorre-
lated information. Experimental results on fine-grained image classifi-
cation benchmark demonstrate that the applications of MAAP achieve
better performance than state-of-the-art CNNs.
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1 Introduction

Neural networks have advanced the state of the art in many domains, such as
computer vision, speech recognition and natural language processing. Convolu-
tional Neural Networks (CNNs) [1], one type of the popular and classical neural
networks, have been widely used in computer vision due to its strong power in
feature learning, and have achieved state-of-the-art performance in image clas-
sification [2], object detection [3], semantic segmentation [4] and so on.

Recent advances of CNNs focus on designing deeper neural network struc-
ture, which promote the performance of image classification. In 2012, Krizhevsky
et al. designed an 8-layer convolutional neural network, called AlexNet [5], which
contains 5 convolutional layers and 3 fully-connected layers. In 2014, VGGNet
[2] was designed and its depth was increased to 16/19 layers by using an archi-
tecture with very small (3 × 3) convolutional filters, which achieved significant
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improvement on image classification. In 2016, He et al. designed a residual net-
work with the depth of up to 152 layers, 8 times deeper than VGGNet, called
ResNet [6], which also had a 1000-layer version.

These popular CNNs take images as inputs, conduct convolutional operation
on each pixel, compute the activations of feature maps and propagate the acti-
vations through the networks layer by layer. Activations carry various informa-
tion with different impacts on prediction, thus should be handled with different
degrees of attention. However, existing CNNs usually process the activations
identically in the propagation process, leading to the fact that the pivotal infor-
mation is not highlighted and the uncorrelated information is not weakened,
which is contradictory with visual attention mechanism that pays high atten-
tion to pivotal information, such as regions of interest. For addressing above
problems, an intuitive idea is to adaptively highlight or weaken the activations
based on their importance degrees for final prediction. The importance degree
can be defined as attention.

Attention is a behavioral and cognitive process of selectively concentrating
on a discrete aspect of information [7]. Tsotsos et al. state that visual atten-
tion mechanism seems to involve at least the following basic components [8]: (1)
the selection of regions of interest in the visual field, (2) the selection of feature
dimensions and values of interest and (3) the control of information flow through
the network. Therefore, we apply visual attention mechanism to guide the acti-
vation propagation in CNNs, selecting the activations of interest and feature
values of interest, as well as controlling the activation propagation through the
network based on the attention. Karklin et al. indicate that neurons in primary
visual cortex (V1) respond to the edge over a range of positions, and neurons
in higher visual areas, such as V2 and V4, are more invariant to image prop-
erties and might encode shape [9]. According to the studies on visual attention
mechanism, different level attentions focus on different attributes of objects.

Inspired by these discoveries about visual attention mechanism, we propose
a multi-attention guided activation propagation approach (MAAP), which can
be applied into existing CNNs to improve the performance, and give CNNs the
ability to adaptively highlight pivotal information and weaken uncorrelated infor-
mation. The main contributions of the proposed approach can be summarized
as follows:

(i) Low-level Attention Guided Activation Propagation (LAAP).
Neurons in primary visual cortex (V1) respond to the edge over a range
of positions, which is significant for discovering the shape of the object.
Inspired by this discovery, we first extract the attention map based on the
activations of feature maps output from the first convolutional layer as the
low-level attention, and then guide the activation propagation based on the
low-level attention, enhancing the pivotal activations that carry key infor-
mation such as the edge of the object. Low-level attention guided activation
propagation feeds such key information forward to the high-level convolu-
tional layer, which helps to localize the object as well as learn discriminative
features.
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(ii) High-level Attention Guided Activation Propagation (HAAP).
Neurons in higher visual areas (V2 and V4) might encode shape, which is
significant for recognition. Inspired by this discovery, we first extract the
attention map output from high-level convolutional layer, and then apply
the high-level attention to guide the activation propagation, preserving
the pivotal activations that carry key information such as the object and
removing the uncorrelated activations that carry less significant informa-
tion such as background noise. Then we feedback the activations to the
input data to eliminate the background noise, which carries uncorrelated
information. High-level attention guide activation propagation to feed acti-
vations backward to the input data, which finds the region of interest and
boosts discriminative feature learning.

(iii) Multi-level Attention Activation Propagation (MAAP). Low-level
attention and high-level attention jointly guide activation propagation in
CNNs to promote the discriminative feature learning, and enhance their
mutual promotions to achieve better performance. The two activation prop-
agation strategies have different but complementary focuses: LAAP focuses
on enhancing the pivotal activations, while HAAP focuses on reducing the
uncorrelated activations. With the guide of multi-level attention, activa-
tions are propagated through CNNs with different weights, where the key
information is enhanced through the forward propagation and the uncor-
related information is removed through the backward propagation, which
boost the performance of CNNs.

···
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Fig. 1. Overview of the multi-attention guided activation propagation approach.

2 Multi-attention Guided Activation Propagation

Researchers state discovery of visual attention mechanism: different level visual
areas of cerebral cortex concentrate on different aspects of the visual information
[10]. Like neurons in V1 and V2 respond to the edge and shape of the object
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respectively [9], neurons in convolutional layers have similar functions. For exam-
ple, neurons in low-level convolutional layers focus on the edge of the object
and neurons in high-level convolutional layers pay attention to the shape of the
object. Inspired by this discovery, we propose a multi-attention guided activa-
tion propagation approach (MAAP), applying the low-level and high-level visual
attention into activation propagation, which can be inserted into the CNNs, and
its overview is shown in Fig. 1.

For a CNN, in the training phase: (1) We adopt the low-level attention guided
activation propagation (LAAP) after the first convolutional layer to give the
activations variant weights based on their attention values. (2) We employ the
high-level attention guided activation propagation (HAAP) after the last con-
volutional layer, and feedback the activations to the input data, which is to
drop the background noise and preserve the region of interest at the same time.
(3) We utilize alternative training strategy to train the CNNs with LAAP and
HAAP. The three components are presented in the following paragraphs. The
high-level attention is performed on the input data, and frequent data modifica-
tion is time-consuming and not sensible, so only LAAP is adopted in the testing
phase.

2.1 Low-Level Attention Guided Activation Propagation

Neurons in convolutional layers have higher activation to some specific spatial
positions of the input data, and have the pattern that focusing on the signif-
icant and discriminative features which is help for recognizing the image. We
extract the feature maps from some specific convolutional layers in the widely-
used CNN, e.g. VGGNet [2], and visualize their average feature map in Fig. 2.
We can observe that: (1) Low-level convolutional layer focuses on the edge of the
object just like neurons in primary visual cortex (V1). (2) Average feature map
generated from middle-level convolutional layers has some noises, which are not
helpful for recognition.

Therefore, we consider enhancing the significance of the key information,
such as the edge shown in the sub figure of “Conv1 1” in Fig. 2. An intuitive
idea is to give the pivotal activations with higher weights. We propose low-level

Conv1_1 Conv2_1 Conv3_1 Conv4_1 Conv5_1

Fig. 2. Visualization of average feature maps in convolutional layers. “Conv1 1” to
“Conv5 1” indicate the name of the convolutional layers in VGGNet [2].



20 X. He and Y. Peng

attention activation propagation approach, which consists of attention extraction
and activation enhancement. The detailed processing is shown in Fig. 3.

Attention Extraction. For a given image I, we first extract its feature maps
F = {F1, F2, . . . , Fn} from the first convolutional layer in the CNN, such as
AlexNet [5], VGGNet [2] and ResNet [6]. n indicates the number of neurons in
this convolutional layers, and Fn indicates the feature map extracted from the
first convolutional layer responding to the n-th neuron. Each feature map is a
2D matrix with the size of mh × mw. Then we calculate their average feature
map, denoted as FA, its definition is:

FA =
1
n

n∑

1

Fi (1)

For each element in the average feature map FA, we perform sigmoid function
to normalize it to the range of [0, 1]. Then we get the attention map, where the
element indicates the importance of each activation in the feature maps to the
recognition. Each element in attention map A is calculated as follows:

Ai,j =
1

1 + e−FAi,j
(2)

where i and j indicate the spatial position of element in the attention map A.

Activation Enhancement. After generating the attention map A, we apply it
to guide the activation propagation. For each feature map Fi ∈ F , we calculate
the new feature map F ′

i based on the attention map as follows:

F ′
i = (1 + A) ∗ Fi (3)

where ∗ denotes element wise product. Through the activation enhancement
manipulation, we infuse the attention information to the feature outputs of con-
volutional layer, in order to guide the feature learning processing by highlighting
the pivotal activations.

2.2 High-Level Attention Guided Activation Propagation

From Fig. 2 we can observe that the high-level convolutional layer (as “Conv5 1”
shown in Fig. 2) concentrates on the shape of the whole-object, just like the
higher visual areas of cerebral cortex (V2 and V4). Inspired by this, we pro-
pose high-level attention guided activation propagation, dropping the uncorre-
lated information of the input data, such as background noise, and preserving
the region of interest of the input data at the same time. We implement this
through attention extraction and activation elimination, which are presented in
the following paragraphs.
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Fig. 3. Overview of low-level attention guided activation propagation approach.

Attention Extraction. The attention extraction is the same with the process
in LAAP. First, we extract the attention map A from the last convolutional
layer. Second, we perform binarization operation on the attention map with an
adaptive threshold, which is obtained by OTSU algorithm [11], and take the
bounding box that covers the largest connected region as the discriminative
region R.

Activation Elimination. We propagate the attention activation backward to
modify the input data D to the new data D∗as follows:

D∗
i = A∗ ∗ Di (4)

where i indicates the i-th channel of the input data. We experiment with 6
definitions of A∗:

(i) A-RoI: Retrain the region of R and remove the uncorrelated region.
(ii) A-uncorrelated: Set values of pixels outside the region of R as 0. Modify

A as follow:

Ai,j =

{
1 , pixel (i, j) inside R

0 , pixel (i, j) outside R
(5)

(iii) A-enhance: Enhance the region of R in the input data and set values of
pixels outside R as 0. Modify A as follow:

Ai,j =

{
Ai,j + 1 , pixel (i, j) inside R

0 , pixel (i, j) outside R
(6)
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(iv) A-reduce: Preserve the region of R in the input data and reduce the value
of pixels outside R based on the attention activations. Modify A as follow:

Ai,j =

{
1 , pixel (i, j) inside R

Ai,j , pixel (i, j) outside R
(7)

(v) A-allsoft: Directly adopt the extracted attention map A as A∗.
(vi) A-allsoft+1: Inspired by residual learning [6], we plus the original input

data with the new data. Modify A as follow:

A = A + 1 (8)

2.3 Alternative Training of MAAP

Considering that the high-level attention is performed on the input data, frequent
data modification is time-consuming and not sensible, we design an alternative
training strategy for the application of MAAP in CNNs, which is described as
Algorithm 1.

Algorithm 1. Alternative Training
Input: Training data D, maximal iterative epoch itm.
Output: Trained CNN model N .
1: Initialize N , such as pre-training on the large scale dataset, ImageNet [12].
2: for epoch = 1, ..., itm do
3: Compute attention map A and feature maps F of first convolutional layer.
4: Modify feature maps F as formula (3).
5: Perform a feed-forward pass.
6: Compute the loss and perform back-propagate manipulation.
7: if loss is converged then
8: Stop this phase of training.
9: end if

10: end for
11: Perform feed-forward pass to compute attention map A of last convolutional layer.

12: Modify input data D as formula (4).
13: Repeat 2 to 10.
14: return N .

3 Experiments

Fine-grained image classification task aims to recognize hundreds of subcat-
egories belonging to the same basic-level category, such as 200 subcategories
belonging to the category of bird. It is a challenging task due to the large vari-
ances in the same subcategory and small variances among different similar sub-
categories. It covers a lot of domains, such as animal species [13], plant breeds
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Table 1. Classification results on CUB-200-2011 dataset.

Method Accuracy (%)

AlexNet VGGNet ResNet

Baseline 59.0 72.2 76.0

+LAAP 59.7 72.9 76.4

+HAAP 62.2 78.0 78.1

+MAAP 63.0 78.2 78.7

[14], car types [15] and aircraft models [16]. We choose fine-grained image classi-
fication to evaluate the effectiveness of our MAAP approach. We conduct exper-
iments on the widely-used CUB-200-2011 [13] dataset for fine-grained image
classification. Accuracy is adopted to evaluate the effectiveness of our proposed
approach, which is widely used in fine-grained image classification [17,18].

CUB-200-2011 dataset [13] is the most widely-used dataset in fine-grained
image classification task, which contains 11788 images of 200 subcategories
belonging to the same basic-level category of bird. It is split into training and test
sets, with 5994 images and 5794 images respectively. For each image, detailed
annotations are provided: an image-level subcategory label, a bounding box of
object, and 15 part locations. In our experiments, only image-level subcategory
label is utilized to train the CNNs.

3.1 Implementation

We implement our MAAP approach as two layers: enhancement layer and elim-
ination layer, which are corresponding to low-level attention guided activation
propagation and high-level attention guided activation propagation respectively.
We implement the two layers based on the open source framework Caffe1 [19].

Table 2. Results of adopting dropout in different convolutional layers of AlexNet.

Net AlexNet conv1 conv2 conv3 conv4 conv5

Accuracy (%) 59.0 57.8 58.7 58.7 57.9 58.7

To verify the effectiveness of our proposed MAAP approach, we insert MAAP
into the state-of-the-art CNNs: AlexNet with 8 layers [5], VGGNet with 19
layers [2] and ResNet with 152 layers [6]. Following Algorithm 1, it consists of 3
steps in the training phase. (1) Each of these CNNs is pre-trained on the 1.3M
training data of ImageNet [12]. (2) We make some modifications for each CNN.
In general, for each CNN, we follow the original settings, only incorporate it

1 http://caffe.berkeleyvision.org/.

http://caffe.berkeleyvision.org/
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Table 3. Comparisons of different definitions of A∗ in high-level attention guided
activation propagation.

Net AlexNet A-RoI A-uncorrelated A-enhance A-reduce A-allsoft A-allsoft+1

Accuracy (%) 59.0 62.2 58.2 52.6 59.5 55.3 55.3

with our MAAP approach. Specifically, we make the following modifications: For
AlexNet, we insert our implemented enhancement layer after “relu1”, resulting
in a mapping resolution of 55 × 55. For VGGNet, we insert enhancement layer
after “relu1 1”, resulting in a mapping resolution of 224 × 224. For ResNet, we
insert enhancement layer after “conv1 relu”, resulting in a mapping resolution of
112×112. And then we fine-tune each CNN on CUB-200-2011 dataset, obtaining
the first CNN with enhancement layer. (3) We further insert our implemented
elimination layer. For AlexNet, we insert elimination layer after “relu5”, resulting
in a mapping resolution of 13×13. For VGGNet, we insert elimination layer after
“relu5 4”, resulting in a mapping resolution of 14 × 14. For ResNet, we insert
elimination layer after “res4b2 branch2b relu”, resulting in a mapping resolution
of 14 × 14. And then we fine-tune each CNN on CUB-200-2011 dataset. Finally,
we obtain the final CNNs.

3.2 Effectiveness of MAAP in State-of-the-Art CNNs

This subsection presents the experimental results and analyses of adopting our
MAAP in 3 state-of-the-art CNNs, and analyzes the effectivenesses of the com-
ponents in our MAAP. Table 1 shows the results of MAAP incorporated with
AlexNet, VGGNet and ResNet respectively on CUB-200-2011 dataset. From the
experimental results, we can observe:

(i) The application of low-level attention guided activation propagation
(LAAP) improves the classification accuracy via enhancing the pivotal
information in the forward propagation to help the high-level convolutional
layers learn the shape of the object, which boosts the discriminative feature
learning. Compared with the results of CNNs themselves, without adopt-
ing our proposed MAAP approach, LAAP improves 0.7%, 0.7%, and 0.4%
respectively.

(ii) The application of high-level attention guided activation propagation
(HAAP) improves the classification accuracy, via retaining the region of
interest and removing the background noise of the input data at the same
time. Comparing with the results of CNNs themselves, HAAP improves
3.2%, 5.8%, and 2.1% respectively.

(iii) Combination of LAAP and HAAP via alternative training achieves more
accurate results than only one of them is adopted, e.g. 63.0% vs. 59.7%
and 62.2% of AlexNet, which shows the complementarity of LAAP and
HAAP. The two activation propagations have different but complemen-
tary focuses: LAAP focuses on enhancing the discriminative features, while
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HAAP focuses on dropping the background noise. Both of them are jointly
employed to boost the discriminative feature learning, and enhance their
mutual promotion to achieve the better performance.

3.3 Comparison with Dropout

Low-level attention guided activation propagation can be regarded as weighting
activations of feature maps. Dropout [20,21] randomly drops units from the
neural networks during training. It can be regarded as weighting activations,
which is a special case of low-level attention guided activation propagation with
weights equal to 0 or 1. So we present the results of adopting traditional dropout
in different convolutional layers of AlexNet in Table 2. For AlexNet, we add
dropout layer after “relu1”, “relu2”, “relu3”, “relu4”, “relu5” respectively, which
are denoted as “conv1” to “conv5” respectively in Table 2. We can observe that
no matter where to add dropout layer, the classification accuracy is not improved.
It is because that dropout is performed randomly on units, which may lead to
that key information is lost in a large probability in convolutional layers. The
experimental results of comparison with dropout show that our proposed MAAP
is highly useful for improving the performance of CNNs.

3.4 Effectivenesses of A∗ in HAAP

In high-level attention guided activation propagation, we conduct experiments
with 6 definitions of A∗. From Table 3, we can see that A-RoI and A-reduce bring
improvements for classification performance. It is because that they all focus
on reducing the impact of background noise and preserving the key information
simultaneously. The other definitions retain negative impact of background noise
more or less.

4 Conclusion

In this paper, the multi-attention guided activation propagation approach
(MAAP) has been proposed to improve the performance of CNNs, which explic-
itly allows CNNs to adaptively highlight or weaken activations of feature maps
in the propagation process. The activation propagation can be inserted into
state-of-the-art CNNs, enhancing the key information and dropping the less sig-
nificant information. Experimental results show that the application of MAAP
approach achieves better performance on fine-grained image classification bench-
marks than the state-of-the-art CNNs.

The future work lies in two aspects: First, we will adopt the low-level atten-
tion to guide the feature learning of higher convolutional layers and vice versa.
Second, we will also attempt to apply the attention mechanism to compress the
neural networks. Both of them will be employed to further improve the effec-
tiveness and efficiency of CNNs.
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