
Accurate Spectral Super-Resolution
from Single RGB Image Using

Multi-scale CNN

Yiqi Yan1, Lei Zhang2, Jun Li4, Wei Wei2,3(B), and Yanning Zhang2,3

1 School of Electronics and Information,
Northwestern Polytechnical University, Xi’an, China

yanyiqinwpu@gmail.com
2 School of Computer Science, Northwestern Polytechnical University,

Xi’an, China
zhanglei211@mail.nwpu.edu.cn, {weiweinwpu,ynzhang}@nwpu.edu.cn

3 National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean
Big Data Application Technology, Xi’an, China

4 Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation,
School of Geography and Planning, Sun Yat-Sen University, Guangzhou, China

lijun48@mail.sysu.edu.cn

Abstract. Different from traditional hyperspectral super-resolution
approaches that focus on improving the spatial resolution, spectral super-
resolution aims at producing a high-resolution hyperspectral image from
the RGB observation with super-resolution in spectral domain. However,
it is challenging to accurately reconstruct a high-dimensional continuous
spectrum from three discrete intensity values at each pixel, since too
much information is lost during the procedure where the latent hyper-
spectral image is downsampled (e.g., with ×10 scaling factor) in spectral
domain to produce an RGB observation. To address this problem, we
present a multi-scale deep convolutional neural network (CNN) to explic-
itly map the input RGB image into a hyperspectral image. Through
symmetrically downsampling and upsampling the intermediate feature
maps in a cascading paradigm, the local and non-local image infor-
mation can be jointly encoded for spectral representation, ultimately
improving the spectral reconstruction accuracy. Extensive experiments
on a large hyperspectral dataset demonstrate the effectiveness of the
proposed method.

Keywords: Hyperspectral imaging · Spectral super-resolution
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1 Introduction

Hyperspectral imaging encodes the reflectance of the scene from hundreds or
thousands of bands with a narrow wavelength interval (e.g., 10 nm) into a hyper-
spectral image. Different from conventional images, each pixel in the hyper-
spectral image contains a continuous spectrum, thus allowing the acquisition of
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abundant spectral information. Such information has proven to be quite useful
for distinguishing different materials. Therefore, hyperspectral images have been
widely exploited to facilitate various applications in computer vision community,
such as visual tracking [20], image segmentation [18], face recognition [14], scene
classification [5], and anomaly detection [10].

The acquisition of spectral information, however, comes at the cost of decreas-
ing the spatial resolution of hyperspectral images. This is because a fewer number
of photons are captured by each detector due to the narrower width of the spec-
tral bands. In order to maintain a reasonable signal-to-noise ratio (SNR), the
instantaneous field of view (IFOV) needs to be increased, which renders it dif-
ficult to produce hyperspectral images with high spatial resolution. To address
this problem, many efforts have been made for the hyperspectral imagery super-
resolution.

Most of the existing methods mainly focus on enhancing the spatial resolution
of the observed hyperspectral image. According to the input images, they can
be divided into two categories: (1) fusion based methods where a high-resolution
conventional image (e.g., RGB image) and a low-resolution hyperspectral image
are fused together to produce a high-resolution hyperspectral image [11,22] (2)
single image super-resolution which directly increases the spatial resolution of a
hyperspectral image [12,24,25,27]. Although these methods have shown effective
performance, the acquisition of the input hyperspectral image often requires spe-
cialized hyperspectral sensors as well as extensive imaging cost. To mitigate this
problem, some recent literature [2,4,7,13] turn to investigate a novel hyperspec-
tral imagery super-resolution scheme, termed spectral super-resolution, which
aims at improving the spectral resolution of a given RGB image. Since the input
image can be easily captured by conventional RGB sensors, imaging cost can be
greatly reduced.

However, it is challenging to accurately reconstruct a hyperspectral image
from a single RGB observation, since mapping three discrete intensity values to
a continuous spectrum is a highly ill-posed linear inverse problem. To address
this problem, we propose to learn a complicated non-linear mapping function for
spectral super-resolution with deep convolutional neural networks (CNN). It has
been shown that the 3-dimensional color vector for a specific pixel can be viewed
as the downsampled observation of the corresponding spectrum. Moreover, for
a candidate pixel, there often exist abundant locally and no-locally similar pix-
els (i.e. exhibiting similar spectra) in the spatial domain. As a result, the color
vectors corresponding to those similar pixels can be viewed as a group of down-
sampled observations of the latent spectra for the candidate pixel. Therefore,
accurate spectral reconstruction requires to explicitly consider both the local
and non-local information from the input RGB image. To this end, we develop
a novel multi-scale CNN. Our method jointly encodes the local and non-local
image information through symmetrically downsampling and upsampling the
intermediate feature maps in a cascading paradigm, thus enhancing the spectral
reconstruction accuracy. We experimentally show that the proposed method can
be easily trained in an end-to-end scheme and beat several state-of-the-art meth-
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ods on a large hyperspectral image dataset with respect to various evaluation
metrics.

Our contributions are twofold:

– We design a novel CNN architecture that is able to encode both local and
non-local information for spectral reconstruction.

– We perform extensive experiments on a large hyperspectral dataset and
obtain the state-of-the-art performance.

2 Related Work

This section gives a brief review of the existing spectral super-resolution meth-
ods, which can be divided into the following two categories.

Statistic Based Methods. This line of research mainly focus on exploiting
the inherent statistical distribution of the latent hyperspectral image as pri-
ors to guide the super-resolution [21,26]. Most of these methods involve building
overcomplete dictionaries and learning sparse coding coefficients to linearly com-
bine the dictionary atoms. For example, in [4], Arad et al. leveraged image priors
to build a dictionary using K-SVD [3]. At test time, orthogonal matching pur-
suit [15] was used to compute a sparse representation of the input RGB image. [2]
proposed a new method inspired by A+ [19], where sparse coefficients are com-
puted by explicitly solving a sparse least square problem. These methods directly
exploit the whole image to build image prior, ignoring local and non-local struc-
ture information. What’s more, since the image prior is often handcrafted or
heuristically designed with shallow structure, these methods fail to generalize
well in practice.

Learning Based Methods. These methods directly learn a certain mapping
function from the RGB image to a corresponding hyperspectral image. For exam-
ple, [13] proposed a training based method using a radial basis function network.
The input data was pre-processed with a white balancing function to allevi-
ate the influence of different illumination. The total reconstruction accuracy
is affected by the performance of this pre-processing stage. Recently, witness-
ing the great success of deep learning in many other ill-posed inverse problems
such as image denoising [23] and single image super-resolution [6], it is natural
to consider using deep networks (especially convolutional neural networks) for
spectral super-resolution. In [7], Galliani et al. exploited a variant of fully convo-
lutional DenseNets (FC-DenseNets [9]) for spectral super-resolution. However,
this method is sensitive to the hyper-parameters and its performance can still
be further improved.

3 Proposed Method

In this section, we will introduce the proposed multi-scale convolution neural
network in details. Firstly, we introduce some building blocks which will be
utilized in our network. Then, we will illustrate the architecture of the proposed
network.
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Table 1. Basic building blocks of our network

Double Conv

3 × 3 convolution
Batch normalization

Leaky ReLU
2D Dropout

3 × 3 convolution
Batch normalization

Leaky ReLU
2D Dropout

Downsample

2 × 2 max-pooling

Upsample

Pixel shuffle

3.1 Building Blocks

There are three basic building blocks in our network. Their structures are shown
in Table 1.

Double convolution (Double Conv) block consists of two 3 × 3 con-
volutions. Each of them is followed by batch normalization, leaky ReLU and
dropout. We exploit batch normalization and dropout to deal with overfitting.

Downsample block contains a regular max-pooling layer. It reduces the
spatial size of the feature map and enlarges the receptive field of the network.

Upsample block is utilized to upsample the feature map in the spatial
domain. To this end, much previous literature often adopts the transposed con-
volution. However, it is prone to generate checkboard artifacts. To address this
problem, we use the pixel shuffle operation [17]. It has been shown that pixel
shuffle alleviates the checkboard artifacts. In addition, due to not introducing
any learnable parameters, pixel shuffle also helps improve the robustness against
over-fitting.

3.2 Network Architecture

Our method is inspired by the well known U-Net architecture for image seg-
mentation [16]. The overall architecture of the proposed multi-scale convolution
neural network is depicted in Fig. 1. The network follows the encoder-decoder
pattern. For the encoder part, each downsampling step consists of a “Double
Conv” with a downsample block. The spatial size is progressively reduced, and
the number of features is doubled at each step. The decoder is symmetric to
the encoder path. Every step in the decoder path consists of an upsampling
operation followed by a “Double Conv” block. The spatial size of the features
is recovered, while the number of features is halved every step. Finally, a 1 × 1
convolution maps the output features to the reconstructed 31-channel hyper-
spectral image. In addition to the feedforward path, skip connections are used
to concatenate the corresponding feature maps of the encoder and decoder.

Our method naturally fits the task of spectral reconstruction. The encoder
can be interpreted as extracting features from RGB images. Through downsam-
pling in a cascade way, the receptive field of the network is constantly increased,
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Fig. 1. Diagram of the proposed method. “Conv m” represents convolutional layers
with an output of m feature maps. We use 3× 3 convolution in green blocks and 1× 1
convolution in the red block. Gray arrows represent feature concatenation (Color figure
online).

which allows the network to “see” more pixels in an increasingly larger field of
view. By doing so, both the local and non-local information can be encoded
to better represent the latent spectra. The symmetric decoder procedure is
employed to reconstruct the latent hyperspectral images based on these deep
and compact features. The skip connections with concatenations are essential
for introducing multi-scale information and yielding better estimation of the
spectra.

4 Experiments

4.1 Datasets

In this study, all experiments are performed on the NTIRE2018 dataset [1].
This dataset is extended from the ICVL dataset [4]. The ICVL dataset includes
203 images captured using Specim PS Kappa DX4 hyperspectral camera. Each
image is of size 1392×1300 in spatial resolution and contains 519 spectral bands
in the range of 400–1000 nm. In experiments, 31 successive bands ranging from
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Table 2. Quantitative results on each test image.

RMSE1

BGU 00257 BGU 00259 BGU 00261 BGU 00263 BGU 00265 Average

Interpolation 1.8622 1.7198 2.8419 1.3657 1.9376 1.9454

Arad et al. 1.7930 1.4700 1.6592 1.8987 1.2559 1.6154

A+ 1.3054 1.3572 1.3659 1.4884 0.9769 1.2988

Galliani et al. 0.7330 0.7922 0.8606 0.5786 0.8276 0.7584

Our 0.6172 0.6865 0.9425 0.5049 0.8375 0.7177

RMSE2

BGU 00257 BGU 00259 BGU 00261 BGU 00263 BGU 00265 Average

Interpolation 3.0774 2.9878 4.1453 2.0874 3.9522 3.2500

Arad et al. 3.4618 2.3534 2.6236 2.5750 2.0169 2.6061

A+ 2.1911 1.9572 1.9364 2.0488 1.3344 1.8936

Galliani et al. 1.2381 1.2077 1.2577 0.8381 1.6810 1.2445

Ours 0.9768 1.3417 1.6035 0.7396 1.7879 1.2899

rRMSE1

BGU 00257 BGU 00259 BGU 00261 BGU 00263 BGU 00265 Average

Interpolation 0.0658 0.0518 0.0732 0.0530 0.0612 0.0610

Arad et al. 0.0807 0.0627 0.0624 0.0662 0.0560 0.0656

A+ 0.0580 0.0589 0.0612 0.0614 0.0457 0.0570

Galliani et al. 0.0261 0.0268 0.0254 0.0237 0.0289 0.0262

Ours 0.0235 0.0216 0.0230 0.0205 0.0278 0.0233

rRMSE2

BGU 00257 BGU 00259 BGU 00261 BGU 00263 BGU 00265 Average

Interpolation 0.1058 0.0933 0.1103 0.0759 0.1338 0.1038

Arad et al. 0.1172 0.0809 0.0819 0.0685 0.0733 0.0844

A+ 0.0580 0.0589 0.0612 0.0614 0.0457 0.0610

Galliani et al. 0.0453 0.0372 0.0331 0.0317 0.0562 0.0407

Ours 0.0357 0.0413 0.0422 0.0280 0.0598 0.0414

SAM (degree)

BGU 00257 BGU 00259 BGU 00261 BGU 00263 BGU 00265 Average

Interpolation 3.9620 3.0304 4.2962 3.1900 3.9281 3.6813

Arad et al. 4.2667 3.7279 3.4726 3.3912 3.3699 3.6457

A+ 3.2952 3.5812 3.2952 3.0256 3.2952 3.2985

Galliani et al. 1.4725 1.5013 1.4802 1.4844 1.8229 1.5523

Ours 1.3305 1.2458 1.7197 1.1360 1.9046 1.4673

400–700 nm with 10 nm interval are extracted from each image for evaluation. In
the NTIRE2018 challenge, this dataset is further extended by supplementing 53
extra images of the same spatial and spectral resolution. As a result, 256 high-
resolution hyperspectral images are collected as the training data. In addition,
another 5 hyperspectral images are further introduced as the test set. In the
NTIRE2018 dataset, the corresponding RGB rendition is also provided for each
image. In the following, we will employ the RGB-hyperspectral image pairs to
evaluate the proposed method.
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Fig. 2. Sample results of spectral reconstruction by our method. Top line: RGB ren-
dition. Bottom line: groundtruth (solid) and reconstructed (dashed) spectral response
of four pixels identified by the dots in RGB images.

4.2 Comparison Methods and Implementation Details

To demonstrate the effectiveness of the proposed method, we compare it with
four spectral super-resolution methods, including spline interpolation, the sparse
recovery method in [4] (Arad et al.), A+ [2], and the deep learning method in [7]
(Galliani et al.). [2,4] are implemented by the codes released by the authors.
Since there is no code released for [7], we reimplement it in this study. In the
following, we will give the implementation details of each method.

Spline Interpolation. The interpolation algorithm serves as the most primitive
baseline in this study. Specifically, for each RGB pixel pl =

(
r, g, b

)
, we use

spline interpolation to upsample it and obtain a 31-dimensional spectrum (ph).
According to the visible spectrum1, the r, g, b values of an RGB pixel are assigned
to 700 nm, 550 nm, and 450 nm, respectively.

Arad et al. and A+. The low spectral resolution image is assumed to be a
directly downsampled version of the corresponding hyperspectral image using
some specific linear projection matrix. In [2,4] this matrix is required to be
perfectly known. In our experiments, we fit the projection matrix using training
data with conventional linear regression.

1 http://www.gamonline.com/catalog/colortheory/visible.php.

http://www.gamonline.com/catalog/colortheory/visible.php
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(a) Training curve (b) RMSE1 test curve (c) RMSE2 test curve

(d) rRMSE1 test curve (e) rRMSE2 test curve (f) SAM test curve

Fig. 3. Training and test curves.

Galliani et al. and Our Method. We experimentally find the optimal set
of hyper-parameters for both methods. 50% dropout is applied to Galliani et
al., while our method utilizes 20% dropout rate. All the leaky ReLU activation
functions are applied with a negative slope of 0.2. We train the networks for 100
epochs using Adam optimizer with 10−6 regularization. Weight initialization
and learning rate vary for different methods. For Galliani et al., the weights are
initialized via HeUniform [8], and the learning rate is set to 2×10−3 for the first
50 epochs, decayed to 2×10−4 for the next 50 epochs. As for our method, we use
HeNormal initialization [8]. The initial learning rate is 5×10−5 and is multiplied
by 0.93 every 10 epochs. We perform data augmentation by extracting patches
of size 64× 64 with a stride of 40 pixels from training data. The total amount of
training samples is over 267, 000. At the test phase, we directly feed the whole
image to the network and get the estimated hyperspectral image in one single
forward pass.

4.3 Evaluation Metrics

To quantitatively evaluate the performance of the proposed method, we adopt
the following two categories of evaluation metrics.

Pixel-Level Reconstruction Error. We follow [2] to use absolute and relative
root-mean-square error (RMSE and rRMSE) as quantitative measurements for
reconstruction accuracy. Let I

(i)
h and I

(i)
e denote the ith element of the real and

estimated hyperspectral images, Īh is the average of Ih, and n is the total number
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of elements in one hyperspectral image. There are two formulas for RMSE and
rRMSE respectively.

RMSE1 =
1
n

n∑

i=1

√(
I
(i)
h − I

(i)
e

)2

RMSE2 =

√√
√
√ 1

n

n∑

i=1

(
I
(i)
h − I

(i)
e

)2

rRMSE1 =
1
n

n∑

i=1

√(
I
(i)
h − I

(i)
e

)2

I
(i)
h

rRMSE2 =

√√
√
√
√ 1

n

n∑

i=1

(
I
(i)
h − I

(i)
e

)2

Ī2h

Spectral Similarity. Since the key for spectral super-resolution is to recon-
struct the spectra, we also use spectral angle mapper (SAM) to evaluate
the performance of different methods. SAM calculates the average spectral
angle between the spectra of real and estimated hyperspectral images. Let
p
(j)
h ,p

(j)
e ε R

C represents the spectra of the jth hyperspectral pixel in real and
estimated hyperspectral images (C is the number of bands), and m is the total
number of pixels within an image. The SAM value can be computed as follows.

SAM =
1
m

cos−1

⎛

⎝
m∑

j=1

(p(j)
h )T · p(j)

e∥
∥
∥p(j)

h

∥
∥
∥
2
·
∥
∥
∥p(j)

e

∥
∥
∥
2

⎞

⎠

4.4 Experimental Results

Convergence Analysis. We plot the curve of MSE loss on the training set and
the curves of five evaluation metrics computed on the test set in Fig. 3. It can
be seen that both the training loss and the value of metrics gradually decrease
and ultimately converge with the proceeding of the training. This demonstrates
that the proposed multi-scale convolution neural network converges well.

Quantitative Results. Table 2 provides the quantitative results of our method
and all baseline methods. It can be seen that our model outperforms all competi-
tors with regards to RMSE1 and rRMSE1, and produces comparable results
to Galliani et al. on RMSE2 and rRMSE2. More importantly, our method sur-
passes all the others with respect to spectral angle mapper. This clearly proves
that our model reconstructs spectra more accurately than other competitors. It
is worth pointing out that reconstruction error (absolute and relative RMSE)
is not necessarily positively correlated with spectral angle mapper (SAM). For
example, when the pixels of an image are shuffled, RMSE and rRMSE will
remain the same, while SAM will change completely. According to the results
in Table 2, we can find that our finely designed network enhances spectral super-
resolution from both aspects, viz., yielding better results on both average root-
mean-square error and spectral angle similarity.
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Fig. 4. Visualization of absolute reconstruction error. From left to right: RGB rendi-
tion, A+, Galliani et al., and our method

Visual Results. To further clarify the superiority in reconstruction accuracy.
We show the absolute reconstruction error of test images in Fig. 4. The error is
summarized over all bands of the hyperspectral image. Since A+ outperforms
Arad et al. in terms of any evaluation metric, we use A+ to represent the sparse
coding methods. It can be seen that our method yields smoother reconstructed
images as well as lower reconstruction error than other competitors.

In addition, we randomly choose three test images and plot the real and
reconstructed spectra for four pixels in Fig. 2 to further demonstrate the effec-
tiveness of the proposed method in spectrum reconstruction. It can be seen that
only slight difference exists between the reconstructed spectra and the ground
truth.

According to these results above, we can conclude that the proposed method
is effective in spectral super-resolution and outperforms several state-of-the-art
competitors.

5 Conclusion

In this study, we show that leveraging both the local and non-local informa-
tion of input images is essential for the accurate spectral reconstruction. Fol-
lowing this idea, we design a novel multi-scale convolutional neural network,
which employs a symmetrically cascaded downsampling-upsampling architecture
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to jointly encode the local and non-local image information for spectral recon-
struction. With extensive experiments on a large hyperspectral images dataset,
the proposed method clearly outperforms several state-of-the-art methods in
terms of reconstruction accuracy and spectral similarity.
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