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Abstract. Multi-object tracking is still a challenge problem in complex
and crowded scenarios. Mismatches will always happen when objects
have similar appearance or are occluded with each other. In this paper,
we appeal for more attention to the consistency of the trajectories and
propose a part-based deep network which employs ROI pooling method
to extract full and part-based features for the objects. An occlusion detec-
tor is proposed to predict the occlusion degree and guide the procedure
of part-based feature fusion and appearance model update. In this way,
the feature extraction speed of our tracker is faster, and the objects can
be associated correctly even if they are partly occluded. Besides, we train
the network based on siamese architecture to learn a dissimilarity metric
between pairs of identities. Extensive experiments with multiple evalua-
tion metrics show that our tracker can associate the objects consistently
and gain a significant improvement in tracking accuracy.
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1 Introduction

Multi-object tracking (MOT) is an important computer vision task and has
a wide application in surveillance, robotics, and human-computer interaction.
With recent development of object detectors, MOT has been formulated as
tracking by detection framework. Most multi-object tracking benchmarks such
as MOT16 [16] provide the tracking video sequences and detection results with
public detectors. The key issue of the multi-object tracker is to associate tracklets
and corresponding detection responses into long trajectories. Tracklets denote
the trajectory set which is established up to current frame.

Recent tracking-by-detection methods could be categorized into batch and
online methods. The batch methods process video sequences in a batch mode
and take into consideration the frames from the future time steps. These meth-
ods always solve the association problem by optimization methods. For example,
[17] formulates the MOT problem as minimization of a continuous energy. [5]
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models the MOT problem as the min-cost network flow and finds the optimiza-
tion solution with convex relaxation. Such systems may obtain a nearly global
optimal solution but are not suitable for practical application. The online MOT
methods only consider the observations up to current frame and associate the
tracklets and detection responses frame by frame. The baseline of these online
trackers is to build different models to measure the affinities between tracklets
and detection responses. Then an online association algorithm is applied to get
global optimum. Motion model, appearance model and interaction model are
most frequently adopted to build affinity matrix. In [13], integral channel fea-
tures are adopted to build a robust appearance model. [6] proposes a nonlinear
motion model to get reliable motion affinity. [20] establishes an LSTM interaction
model to explore the group behavior and compute the matching likelihoods.

In complex and crowded scenarios, many objects are presented with similar
appearance and may be occluded with each other. Mismatches always occur in
such scenarios. The result is that the tracker can not associate objects consis-
tently. However, the consistency of the trajectories plays an important role in the
follow up works such as trajectory prediction and analysis. Spatial constraints
and motion model can not handle such problems. To address this problem, a
robust appearance model must be established. Appearance model could improve
the tracker’s ability to associate objects consistently and reduce the mismatch
rate. Some online trackers [12] adopt raw pixels or histogram as appearance
model. These trackers may get a rapid speed but could not distinguish objects
with similar appearance. Recent development on convolutional neural network
has drove people to train a deep network to extract deep appearance feature.
[1,26] measure appearance similarity with a person re-identification network.
However, all these trackers need to crop the objects from images first, then put
them into the network in a batch mode. Pre-processing procedure and frequent
forward propagations make these trackers time consuming.

The MOTA [2] metric is the widely accepted metric for multi-object tracking
evaluation, but it is not capable of evaluating the consistency of the trajectories,
and the reasons are explained in Sect. 3.1. In this paper, we adopt ID switch
rate and IDF1 score to evaluate the consistency of the trajectories, which is
initially proposed for evaluating the ID consistency for cross camera multi-object
tracking.

In this paper, we propose a part-based deep network combined with a
confidence-based association metric to address above problems. The main con-
tributions are summarized as below: (i) We propose a part-based deep network
which employs ROI pooling method [10] to extract part-based deep appearance
feature for all objects by just one forward propagation. The network is trained
based on the siamese architecture [7], and this makes our tracker gain the ability
to associate correctly even if the objects are partly occluded; (ii) we propose
an occlusion detector which could predict the occlusion degree and guide the
procedure of part-based similarity fusion and appearance model update; (iii)we
appeal for more attention to the consistency of the trajectories and conduct
extensive experiments with multiple evaluation metrics introduced in [19] and
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[2] on MOT benchmark. The results demonstrate our tracker can associate the
objects consistently and gains a significant improvement in tracking accuracy.

2 MOT Framework

The baseline of our tracker is confidence-based association metric. Appearance,
motion and shape models are established to measure the affinities between track-
lets and object detections. In Sect. 2.1, the structure of fast part-based deep
network is described in detail. Section 2.2 introduces the network training pro-
cedure. Section 2.3 describes the confidence-based association metric.

2.1 Fast Part-Based Deep Network

Fig. 1. The feature extraction pipeline of traditional deep network and our part-based
deep network

Network Structure. Traditional deep appearance network in MOT field usu-
ally takes as input the object regions cropped from the original image in a batch
mode. But it is time consuming and needs to do some pre-processing work. The
more objects one frame contains, the more times for forward propagation.

The main structure of our part-based deep network is shown in Fig. 1. The
network takes as input the entire image and a set of detection responses. The
whole image is first processed by several convolutional layers and max pooling
layers to generate a shared feature map. Then the ROI pooling method is adopted
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to generate five feature maps for each detection: the left body (LB), right body
(RB), upper body (UB), down body (DB) and full body (FB). Five types of
features are fed into the fully-connected layers separately, and the follow up
normalization layers normalize the output to obtain the final feature vectors.
In this way, our network could extract deep features for all objects by just one
forward propagation. Beyond that, an occlusion detector based on the shared
feature map is adopted to detect occlusion degree in current detection response,
and then guide the procedure of part-based similarity fusion and appearance
model update.

The detailed processing steps about ROI pooling are as below: At first, the
ROI pooling layer maps the position and scale of the object from original image
to the shared feature map, and gets the corresponding ROI window. Then divides
the h∗w ROI window into an H∗W grid of sub-window of approximate size h/H∗
w/W and maxpools the values in each sub-window into corresponding output
grid cell [10]. By adopting ROI pooling layer, the speed for feature extraction
gains an improvement compared with other trackers based on deep appearance
model.

Part-Based Model. For MOT task, occlusion is still a challenge problem
waited to be solved. This can easily cause fragmented trajectories and ID
switches especially for online trackers. Mismatches have a great damage to the
consistency of the trajectories. We adopt a part-based appearance network com-
bined with a simple occlusion detector to address this problem. It is easy to
implement based on the ROI pooling method with almost no speed loss. Persons
detected by high position cameras would be easy to be occluded up and down,
but they are more likely to be occluded left and right when detected by low
position cameras. In this place, we do not design elaborate part detector for the
sake of high feature extraction speed and rely more on the representative abil-
ity of deep feature. The detected persons are simply divided into UB, DB, LB
and RB to overcome multi-view occlusion. During forward propagation, the ROI
pooling layer extract features for FB and four divided parts, then a slice layer
is added to separate features generated from different parts. So when the object
is partly occluded, part-based feature is still reliable for appearance similarity
computation. At the same time, the part feature is extracted from the shared
convolutional feature map, and there is almost no speed loss for the added part
modular.

Occlusion Detector. We propose a novel occlusion detector to detect whether
there exist occlusion in current detection and guide the procedure of part-based
similarity fusion and appearance model update. At first, the width and height
of the detected bounding boxes are enlarged to 1.2 times of original to get more
context information. Then the ROI pooling layer is employed to extract corre-
sponding features from the shared feature maps. Follow up classifier takes the
features as inputs and outputs the occlusion label, which is composed of three
fully-connected layers followed by one softmax layer. The occlusion detector
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could classify the detections into three types: severe-occluded, part-occluded and
non-occluded. For severe-occluded detections, appearance similarity is no more
reliable and would not be adopted for final similarity computation. For part-
occluded detections, the part-based appearance feature is still reliable would
be adopted to measure appearance similarity. For non-occluded detections, FB
feature vectors would be employed.

2.2 Network Training

The training procedure is divided into two stages, at first, the part-based deep
network is trained based on siamese architecture, then the occlusion detector is
trained based on the pretrained base network.

Siamese Architecture Training. To make the deep network gain the ability
to distinguish different persons, we select part ALOV300++ sequences [22] which
take person as tracking object and MOT training sequences [16] as base training
dataset. Then generate positive and negative pairs by randomly sampling same
and different identities from video sequences. The part-based deep appearance
network is trained based on siamese architecture to learn a dissimilarity metric
between pairs of identities. As shown in Fig. 2, we design a siamese network
composed of two branches sharing with same structure and filter weights. Each
branch has the same architecture with part-based deep network. Two branches
are connected with five loss layers for network training. We employ the margin
contrastive loss, and the calculation formula is as below:

Fig. 2. The structure of siamese training.

L (xi, xj , yij) =
1

2
∗ yij ∗ D +

1

2
(1 − yij)max(0, ε − D) (1)

Where D = ||xi, xj ||2 is the Euclidean distance of two normalized feature vector:
xi and xj , yij indicates whether the object pairs are same identities, ε is the
minimum distance margin that different pairs of objects should satisfy. We set ε
to 1 during experiment. The final training loss is the sum of five kinds of losses.
After training the siamese architecture network with margin contrastive loss,
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the part-based deep network could generate good feature representations that
are close by enough for positive pairs, whereas they are far away at least by a
minimum for negative pairs, and a simple cosine distance metric could measure
the appearance similarity.

Occlusion Detector Training. The MOT16 dataset provides the visibility
ratio for each annotated bounding box, and we divide these bounding boxes
into three types. Bounding boxes with visibility ratio lower than 0.9 and higher
than 0.4 is regarded as part-occluded detections, otherwise would be regarded
as non-occluded and severe-occluded detections respectively.

After training the part-based network with siamese architecture, the weights
of base network are frozen, and the occlusion detector is added after the base
network and is trained with softmax loss. To improve the generalization ability of
the occlusion detector, the data augmentation metric is adopted during network
training. We flap and crop the object, change the brightness, contrast, sharpness
and saturation of the images with a certain probability. Finally two components
are integrated together to get the final model.

2.3 Association Procedure

The association between tracklets and object detections could be formulated
as an assignment problem, We adopt a modified version of confidence-based
association metric [1] to solve this problem.

Affinity Computation. The representation of tracklet T t
i and detection Dt

j at
frame t is defined as below:

T t
i ={P t−d:t

i (x, y, w, h), Aq
i (FB, UB, DB, LB, RB), confi, Ki(m, p)} (2)

Dt
j ={x, y, w, h, Fj(FB, UB, DB, LB, RB), Olabel} (3)

where P t−d:t
i (x, y, w, h) is the positions and shapes of the objects from frame

t − d to frame t. K(m, p) is a kalman motion model and m, p denote the mean
and covariance matrix respectively. At frame t+1, Ki(m, p) predicts the object’s
position P t+1

i (x, y, w, h) and calculates the motion and shape affinity as Eqs. 4
and 5, where Dt+1

j is the j-th object in frame t+1. Once the tracklet is associated
with new detections, the detected bounding box is employed to update K(m, p).
Besides, K(m, p) is also adopted to estimate positions for missed objects.
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Aq
i (FB,UB,DB,LB,RB) is a queue which stores part-based deep appearance

feature vectors in q frames. Fj(FB,UB,DB,LB,RB) is the appearance feature



186 C. Xu and Y. Zhou

vectors of detection Dj , Olabel is the occlusion label. The largest cosine dis-
tance between corresponding feature vectors in Fj and Aq

i queue is regarded as
appearance similarity. When Dj is non-occluded, FB feature vector is employed
for similarity computation and Aq

i would be updated by five types of feature vec-
tors. When Dj is part-occluded, the maximum similarity of four divided parts
would be employed. The corresponding feature vector which is employed for
similarity computation would be adopted to update Aq

i , and when Dj is severe-
occluded, the appearance similarity would not be adopted and Aq

i would not be
updated. During experiment, parameter q and d are set to 6 as most occlusions
in MOT dataset last for less than 6 frames. Two linear SVMs are trained to fuse
two or three types of affinities in severe-occlusion and other occasions, and yield
the final affinity in range of [0,1].

Association Procedure. A simple Hungarian algorithm is employed to
obtain the global optimum based on affinity matrix. An affinity threshold τ1
is set to filter unreliable associations whose affinity score is lower. During asso-
ciation, the tracklets with long length and high association affinities in previous
frames should be more reliable and associated first. So each tracklet is modeled
with a confidence score confi which is calculated as Eq. 6, where simk is the
association score in previous steps. A confidence threshold τ2 is set to divide
the tracklets into high confidence tracklets and low confidence tracklets. The
association procedure is performed on them hierarchically and is summarized in
Algorithm 1.

confi =
∑length(Ti)

k=2 simk

length(Ti) − 1
(1 − e−w3∗length(Ti)) (6)

Algorithm 1. The Association Procedure
Input:

The set of object detections in the current frame D = {1, ..., N}; The set of trajec-
tories associated up to current frame T = {1, ..., M};

1: Divide the tracklets into high confidence tracklets Th and low confidence tracklets
T l according to the confidence threshold τ2;

2: Calculate the affinity matrix between D and Th, associate them with hungarian
algorithm, remove unreliable association whose score is below τ1

3: Use the same procedure as step 2 to associate T l and unassociated detections.
4: Update the tracklet confidence using Equ.6, update the kalman filter and the

appearance queue, remove the tracklets which have been unassociated for more
than Tmax frames;

5: Calculate the IOU affinity matrix between unassociated detections in consecutive
frames and generate new tracklets if three detections in successive frames are asso-
ciated;
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3 Experiment

3.1 Evaluation Metrics

A good tracker should find correct numbers of objects and associate them with
correct tracklets when a new frame arrives. At the same time, a good tracker
should also track each object consistently and overcome the mismatch phe-
nomenon. Based on the above criteria, most trackers adopt MOTA as main
metric to evaluate their trackers’ performance, which is calculated as below:

MOTA = 1 −
∑

t(FNt + FPt + IDSWt)
∑

t GTt
(7)

In above formula, FN indicates the number of missed objects, FP indicates the
number of false positives, IDSW indicates the number of mismatches. However,
in most cases, the number of FN is one order higher than FP and two order
higher than IDSW. This means the reduction of IDSW is of little significance for
the improvement of MOTA. In addition, a mismatch should not be treated equal
with a FP. With recent development of the precision of detectors, the number of
FP and FN has dropped a lot, so we appeal for more attention to the consistency
of trajectories. The score of MOTA is a good indicator of the tracking accuracy,
but not capable of evaluating the consistency, so we adopt ID switch rate, ID
precision, ID recall and IDF1 introduced in [19] to evaluate the consistency of
the trajectories. IDF1 is calculated by matching trajectories to the ground-truth
so as to minimize the sum of discrepancies between corresponding pairs. Unlike
MOTA, it penalizes ID switches over the whole trajectory fragments with wrong
ID, and can evaluate how well computed identities conform to true identities
[19].

Besides above evaluation metrics, following common metrics are also adopted
to evaluate our tracker comprehensively:

MT: Mostly tracked targets [2]. The ratio of ground-truth trajectories that
are covered by a track hypothesis for at least 80% of their respective life span.

ML: Mostly lost targets [2]. The ratio of ground-truth trajectories that are
covered by a track hypothesis for at most 20% of their respective life span.

MOTP: Multiple Object Tracking Precision [2]. The misalignment between
the annotated and the predicted bounding boxes.

3.2 Thresholds Selection

To obtain robust affinity threshold τ1 and confidence threshold τ2, we test our
tracker with grid search method on MOT16 train dataset. The relationship
between MOTA and two thresholds is shown in Fig. 3. We set τ1 to 0.4 and
set τ2 to 0.3 for the rest experiments. The Fig. 3 also demonstrates that adopt-
ing confidence-based association metric could improve tracking accuracy.
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Fig. 3. Thresholds selection on MOT16 train dataset

3.3 Runtime

To investigate the feature extraction speed of our part-based deep appearance
network comprehensively, we test our network and other trackers which adopt
deep appearance model and take image patches as inputs on the same platform.
The feature extraction speed is tested on a Quadro M4000 GPU and Intel E5V3
CPU and shown in Table 1. Dan and Pdan denote our full-part and part-based
deep appearance network respectively. Compared with other trackers, our deep
model gets faster speed with smaller batch size, and there is just a minor speed
loss for the added part model. The speed for confidence-based association is not
very fast and is about 5.16 fps, which is mostly owning to the large number of
objects, but our part-based deep appearance network could be transplanted to
other association metric conveniently.

Table 1. The speed and consumption for feature extraction

App model Lmp [23] AMIR [20] DeepSort [24] Dan Pdan

Batch size 16 patches 16 patches 16 patches 1 frame 1 frame

Speed(fps) 2.47 2.42 16.19 20.75 19.10

3.4 Experiment Result

Table 2 shows the tracking results on MOT16 test dataset, Hist means histogram
appearance model, and Dan-OD denotes full-part deep network without the
guidance of occlusion detector for appearance model update. Trackers marked
with * adopt same detections supplied in [26]. The results show that adopt-
ing part-based deep appearance network and occlusion detector could improve
tracking accuracy and consistency obviously. Compared with histogram appear-
ance model, the ID switches reduce from 1014 to 762, both ID precision and ID
recall have a certain improvement. The reduction of mismatches also increases
the rate of MT, this means our tracker is more capable of getting consistent and
long trajectories.
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Table 2. Tracking results on MOT16 test Dataset with private detector

Trackers MOTA↑ IDSW↓ IDF1 ↑ IDP↑ IDR↑ MOTP↑ MT↑ ML↓
KDNT* [26] Batch 68.2 933 60.0 66.9 54.4 79.4 41.0% 19.0%

MCMOT-HDM [15] Batch 62.4 1394 51.6 60.7 44.9 78.3 31.5% 24.2%

IOU [4] Batch 57.1 2167 46.9 59.8 38.6 77.1 23.6% 32.9%

DeepSort* [24] Online 61.4 781 62.2 72.1 54.7 79.1 32.8% 18.2%

Sort* [3] Online 59.8 1423 53.8 65.2 45.7 79.6 25.4% 22.7%

EAMTT-16 [21] Online 52.5 910 53.3 72.7 42.1 78.8 19.0% 34.9%

COMOT+Hist* Online 58.7 1014 59.9 62.7 57.3 77.8 30.2% 18.3%

COMOT+Dan-OD* Online 60.3 957 61.0 66.5 56.3 78.0 33.1% 18.4%

COMOT+Dan+OD* Online 61.1 873 61.4 68.4 56.0 78.3 32.9% 18.7%

COMOT+Pdan* Online 62.8 762 62.6 71.5 55.7 78.3 34.9% 18.3%

Table 3. Overall performance on MOT17 test dataset with public detections

Tracker MOTA↑ IDSW↓ IDF1↑ IDP↑ IDR↑ MT↑ ML↓
FWT-17 [11] Batch 51.3 2648 47.6 63.2 38.1 21.4% 35.2%

MHT-DAM [14] Batch 50.7 2314 47.2 63.4 37.6 20.8% 36.9%

IOU17 [4] Batch 45.5 5988 39.4 56.4 30.3 15.7% 40.5%

EAMTT-17 [21] Online 42.6 4488 41.8 59.3 32.2 12.7% 42.7%

GM-PHD [8] Online 36.4 4607 33.9 54.2 24.7 4.1% 57.3%

COMOT(ours) Online 46.8 2, 121 49.2 68.7 38.3 15.3% 39.1%

Table 4. Tracking results on MOT17 test dataset based on different public detections

Trackers DPM [9] FRCNN [18] SDP [25]

MOTA↑ IDSW↓ MOTA↑ IDSW↓ MOTA↑ IDSW↓
FWT-17 [11] Batch 46.4 833 48.2 780 59.4 1035

MHT-DAM [14] Batch 44.6 593 46.9 742 60.6 979

IOU17 [4] Batch 35.2 1272 44.9 1509 56.3 3207

EAMTT-17 [21] Online 32.0 1244 42.3 1569 53.6 1675

GM-PHD [8] Online 24.5 2155 39.3 920 45.2 1532

COMOT(ours) Online 36.0 756 45.3 618 59.1 747

Tables 3 and 4 demonstrate the overall performance and the separated results
based on different detectors on MOT17 benchmark respectively. The MOT17
benchmark provides three detection results: the DPM [9], FasterRCNN [18] and
SDP detector [25]. As most trakers in MOT ranking list are anonymous submis-
sions, we select trackers with explicit source for comparison. As demonstrated
in Table 3, our tracker achieves competitive performance compared with other
online trackers, both the consistency and accuracy gain a significant improve-
ment. Compared with the FWT-17 [11] tracker, our tracker yields higher IDF1

score and lower ID switch rate, this demonstrates our trajectories are more
consistent. The overall accuracy of our tracker is lower than FWT-17, this is
mostly due to our poor performance on DPM weak detections, and it is the
inherent inferiority between online association and batch association. The batch



190 C. Xu and Y. Zhou

methods take into consideration the frames in future time steps. Some sampled
trajectories are shown in Fig. 4, and the numbers following ‘#’ denote the frame
numbers.

Fig. 4. Sampled trajectories in MOT17 benchmark.

4 Conclusion

In this paper, we propose a part-based deep network which employs ROI pooling
method to extract part-based appearance feature to overcome the part-occlusion
problem. An occlusion detector is proposed to predict the occlusion degree and
guide the procedure of similarity fusion and appearance update. Extensive exper-
iments show our tracker is more capable of getting consistent and long trajecto-
ries. Both the consistency and accuracy are competitive on MOT benchmark.
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