
Multi-flow Sub-network and Multiple
Connections for Single Shot Detection

Ye Li1, Huicheng Zheng1,2,3(B), and Lvran Chen1

1 School of Data and Computer Science, Sun Yat-sen University,
Guangzhou, China

zhenghch@mail.sysu.edu.cn
2 Key Laboratory of Machine Intelligence and Advanced Computing,

Ministry of Education, Guangzhou, China
3 Guangdong Key Laboratory of Information Security Technology,

Guangzhou, China

Abstract. One-stage object detection methods are usually more com-
putationally efficient than two-stage methods, which makes it more likely
to be applied in practice. However, one-stage methods often suffer from
lower detection accuracies, especially when the objects to be detected
are small. In this paper, we propose a multi-flow sub-network and mul-
tiple connections for single shot detection (MSSD), which is built upon
a one-stage strategy to inherit the computational efficiency and improve
the detection accuracy. The multi-flow sub-network in MSSD aims to
extract high quality feature maps with high spatial resolution, suf-
ficient non-linear transformation, and multiple receptive fields, which
facilitates detection of small objects in particular. In addition, MSSD
uses multiple connections, including up-sampling, down-sampling, and
resolution-invariant connections, to combine feature maps of different
layers, which helps the model capture fine-grained details and improve
feature representation. Extensive experiments on PASCAL VOC and MS
COCO demonstrate that MSSD achieves competitive detection accuracy
with high computational efficiency compared to state-of-the-art methods.
MSSD with input size of 320 × 320 achieves 80.6% mAP on VOC2007 at
45 FPS and 29.7% mAP on COCO, both with a Nvidia Titan X GPU.
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1 Introduction

In recent years, many outstanding object detection methods based on deep learn-
ing have been proposed. They are mainly divided into two categories: two-stage
methods and one-stage methods. The two-stage methods usually achieve better
detection performance, while the one-stage methods are usually more computa-
tionally efficient. However, when an object detection method is to be applied in
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practice, the detection accuracy and computational efficiency must be considered
together.

It is a feasible idea to design an advanced one-stage method which has good
accuracy while maintain the advantage of in computationally efficiency. Some
advanced one-stage methods, such as DSSD [5], RetinaNet [6], and BPN [7] sac-
rifice computational efficiency when improving the accuracy. In order to improve
the accuracy while maintaining the computational efficiency, this paper analyzes
the deficiencies of the one-stage methods. Many experimental results show that
one-stage methods are weak in small object detection and feature representa-
tion. To address these issues, we propose a single shot detector with multi-flow
sub-network and multiple connections (MSSD). The main motivations and cor-
responding operations of MSSD are as follows.

First, this paper tries to solve the difficulty in small object detection. Since
low-level features are important for small object detection, as mentioned in [9],
this paper proposes a multi-flow sub-network module to optimize the low-level
feature representation by obtaining deeply non-linear transformation and differ-
ent receptive fields. Then, this paper tries to enhance the feature representation
of the model. A common method is to employ a complex backbone network such
as ResNet101 [10], but this will lead to low computational efficiency. This paper
enhances feature representation by reusing different feature maps through mul-
tiple connections, which has little affect on computational efficiency. Thanks to
the multi-flow sub-network and multiple connections, MSSD achieves state-of-art
results with a lightweight backbone network, such as ResNet18 [10], while main-
taining the real-time computational speed. Different from SSD, we introduce
shortcut connections to the extra feature layers to strengthen feature propaga-
tion and further reduce the number of detected feature maps to improve the
generalization of the network.

The contributions of this paper can be summarized as follows:

1. A multi-flow sub-network module is proposed to obtain high quality feature
maps with high spatial resolution, sufficient non-linear transformation, and
multiple receptive fields, which is beneficial for object detection, especially
for small instances.

2. A multiple connection module is proposed to enhance feature representation
by encouraging feature reuse rather than using complex backbone networks.

3. The extra feature layers are modified to strengthen feature propagation and
improve the network generalization.

4. MSSD achieves the state-of-the-art results on PASCAL VOC 2007, 2012 [1]
and MS COCO [2].

2 Related Work

Object Detection. Early object detection methods like those based on DPM
[11] and HOG [12] employ hand-crafted features, and the detection system con-
sist of three modules: region selection, feature extraction, and classification. With
the development of deep convolutional networks, deep learning based methods
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have attracted great attention. These methods can be roughly divided into two
categories, two-stage methods and one-stage methods.

Two-stage methods, such as RCNN [13], Fast RCNN [14], and Faster RCNN
[15], consist of two parts, where the first one generates candidate object propos-
als, and the second one classifies the candidate regions and determines its accu-
rate location using convolutional neural networks. Such methods are superior
in accuracy, but difficult to achieve real-time performance. Methods like Mask-
RCNN [3], R-FCN [24], and CoupleNet [4] achieve state-of-the-art accuracies
with complex backbone networks. However, the resulting huge computational
cost restricts their applications in practice.

One-stage methods, represented by YOLO [16] and SSD [8], convert the
object detection problem into a regression problem. Such methods implement
end-to-end training and detection, and do not require the generation of candidate
regions, which ensures their high computational efficiency. However, the accuracy
of one-stage methods trails that of two-stage methods. Some methods like DSSD
[5] and RetinaNet [6] use complex backbone network to achieve high accuracy
comparable to two-stage methods but sacrifice computational speed.

Receptive Fields. There are several methods to improve feature representation
by constructing feature map with different receptive fields. [20] uses a multi-scale
input layer to construct an image pyramid to achieve multiple levels of recep-
tive field sizes. GoogLeNet [21] uses filters of different sizes to obtain feature
map with different receptive fields. The deformable-net [22] replaces the original
fixed position sample with the offset sample, so that the sample point position
can change with the image content. In addition, DICSSD [18] and RBFnet [19]
use dilated convolution [17] to obtain feature map with different receptive fields.
The multi-flow sub-network of MSSD also employ dilated convolution. How-
ever, compared with DICSSD which only uses dilated convolution directly on all
detected feature maps, MSSD combines dilated convolution, group convolution
and bottle-net into a sub-network module and performs much better. Unlike
RBFnet whose module is complicated and motivated by biological vision, the
multi-flow sub-network of MSSD has simple structure (each branch is the same
in topology) and is proposed to solve the difficulty of small object detection.

Short-Path Methods. Among the various connection methods currently used,
some methods only use resolution-invariant connections such as DenseNet [23];
some methods only use up-sampling and resolution-invariant connections, such
as DSSD; and some methods only use down-sampling connections, such as
ResNet [8]. In contrast to them, the multiple connections of MSSD includes
up-sampling, down-sampling, and resolution-invariant connections. To the best
of our knowledge, in the one-stage object detection methods, MSSD is the first
one to combine such multiple connections.
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3 MSSD

The pipeline of the MSSD proposed in this paper is shown in Fig. 1, which
consists of five parts. The first is a backbone network. The second is the extra
feature layers (conv8 1–conv10 1) with shortcut connections marked in yellow.
The third part is two dilated convolutional layers (conv6, conv7), used to connect
the backbone network and the extra feature layers. The fourth is a multiple
connection module that makes full use of the five detected feature maps. The
fifth is the multi-flow sub-network module proposed for addressing the problem
of small object detection.

Fig. 1. The network structure of MSSD. The backbone is a pre-trained ResNet18 whose
average pooling layer and fc layer are removed. B1 to B4 are layers of ResNet18 and
the size of the feature map after B3 is 38 × 38 × 256. The yellow connections between
different extra feature layers are three convolutional layers which are used to connect
different feature maps. (Color figure online)

3.1 The Multi-flow Sub-network Module

The multi-flow sub-network module aims to solve the problem in small object
detection. The poor performance of small object detection is mainly due to the
fact that the spatial resolutions of the high-level feature maps are too low and
the receptive fields are too large.

In high-level feature maps, the model tends to focus on large objects, ignoring
small objects. Although the low-level feature maps have high spatial resolution,
they have insufficient nonlinear transformation due to a limited number of con-
volutional layers and nonlinear active layers they passed. Therefore, it is also
difficult to detect small objects. In addition, each feature map used for detec-
tion has a fixed receptive field size, which is undoubtedly not the best choice for
detecting objects with different sizes and shapes.
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The multi-flow sub-network module is shown in Fig. 2. The module consists
of multiple branches, each with four convolutional layers (each convolutional
layer followed by a batch normalization layer and ReLU layer). The conv1 of
each branch is a dilated convolutional layer [17] with different parameters, so
that different branches can obtain feature maps of different receptive fields. This
paper refers to the bottleneck architecture in GoogLeNet [21], so conv2 and conv4
are designed as convolutional layers with 1× 1 kernel sizes. In addition, conv3
uses group convolution. These two operations allow MSSD to obtain feature
maps with good feature representations without much increase in computation.
Each of the branches is the same except for conv1, but the parameters between
these same structures are not shared. At the end of the module, the feature
maps extracted from the multi-flow sub-network module are concatenated with
the original feature map and a feature map with high spatial resolution, suffi-
ciently complex nonlinear transformation, multiple receptive fields and context
information is obtained.

In addition, since the lowest-level feature maps (which produce more than
70% default boxes) are significant to objects detection (especially to small object
detection), the multi-flow sub-network module is only used to process the lowest-
level detected feature map.

Fig. 2. Structure of the multi-flow sub-network

3.2 The Multiple Connection Module

Many methods like CoupleNet [4], R-FCN [24], and DSSD [5] enhance feature
representation by using complex backbone networks, but sacrifice computational
efficiency. In this paper, in order to enhance feature representation, five feature
maps extracted from the model are reused by multiple connections such as up-
sampling convolution, down-sampling convolution, and resolution-invariant con-
volution. Without sacrificing computational speed, 5 high quality feature maps
were extracted for detecting. The specific operation of the multiple connection
module is shown in Fig. 3.

Each detection point may obtain different number of feature maps obtained
through different connection methods. These different feature maps are comple-
mentary. In this paper, the feature maps obtained from up-sampling convolution



Multi-flow Sub-network and Multiple Connections for Single Shot Detection 173

Fig. 3. Detection point

and resolution-invariant convolution are combined together through element-
sum operation. The new feature map will be concatenated with the feature
map obtained through down-sampling convolution. Then, the high quality fea-
ture maps are obtained. For example, if the detection point get Feature map1,
Feature map2 and Feature map3, Feature map2 and Feature map3 are firstly
combined together through element-sum operation. Then the new feature map
will be concatenated with Feature map1 to get the final feature map. If the
detection point only get Feature map1 and Feature map2, Feature map2 will
be concatenated with Feature map1 to get the final feature map. This kind of
well-designed structure makes the information of the feature maps fully utilized,
and helps the model to capture more fine-grained details. Finally, these 5 high
quality feature maps are used to calculate the final detection results by following
SSD, more details of which can be found in [8].

3.3 The New Extra Feature Layers Module

The original SSD method is very classic, which employs 6 layers to produce 6
detected feature maps. More specifically SSD divides the target objects in the
image into six parts according to their sizes. Each part corresponds to a size
range, and then the network extract six feature maps that are responsible for
different sizes of objects. However, such kind of design is not very generalized.
When different data sets are trained and tested, it is necessary to repartition
the six detection ranges, often resulting in some inconveniences.

Therefore, when designing the new extra feature layers of MSSD, this paper
removes the original con11 1 and conv11 2 that generate the 1× 1 feature map,
which reduces the number of detected feature maps and enhances the gener-
alization. In addition, in order to improve the expression ability of the model,
conv8 3, conv9 3, and conv10 3 are introduced in the new extra feature layers.
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What’s more, we introduce three shortcut connections in the new extra feature
layers to strengthen feature propagation.

4 Experiments

In order to verify the reliability and effectiveness of the proposed object detection
method, experiments are conducted on two benchmarks: PASCAL VOC and
MS COCO. We follow nearly the same training policy as SSD [8], including loss
function (e.g., smooth L1 loss for localization and softmax loss for classification),
matching strategy, data augmentation and hard negative mining, while learning
rate scheduling is slightly changed.

The details of the MSSD network structure are as follows: The MSSD uses
the pre-trained ResNet18 as the backbone network. The multi-flow sub-network
module uses four branches. The conv1 of each branch network uses dilated con-
volution and the corresponding dilation parameters are {2, 4, 6, 8}, respectively.
The group parameter of the group convolution layer for each branch is 4. In
addition, all experiments are carried out on one Nvidia Titan X GPU.

4.1 PASCAL VOC

There are two types of experiments conducted on PASCAL VOC, one is trained
on the union set of 2007 trainval and 2012 trainval, tested on 2007 test set.
The other one is trained on union set of 2007 trainval and 2012 trainval and
2007 test, tested on the 2012 test set. In the experiments of PASCAL VOC,
the training setting of MSSD is basically the same as that of SSD [8]. We use
the SGD algorithm to train the network. The initial learning rate is 10−3, the
momentum is 0.9, the weight decay is 0.0005, and the batch size is 32. Due to
resource limitations, batch size is 16 when training MSSD512. The number of
MSSD training iterations is 120k. When the number of iterations are 80k, 90k,
100k, and 110k, the learning rates are reduced to 5× 10−4, 1× 10−4, 5× 10−5,
and 1× 10−5, respectively. The results of two types of experiments are shown in
Table 1 and 2, respectively.

Compared with all the one-stage methods and two-stage methods in Table 1,
MSSD512 achieves the best detection accuracy while maintaining the real-time
computational speed. MSSD achieves better performance than the baseline SSD
in detection accuracy and computational speed. MSSD300 v and MSSD512 v
achieve comparable performance with MSSD300 and MSSD512, respectively,
which further verifies the effectiveness of the contributions we proposed.

In order to ensure the reliability and stability of MSSD, this paper also
shows the test results of MSSD in PASCAL VOC2012. From Table 2, we can see
that MSSD still achieved excellent performance. MSSD300 exceeds SSD300 2.5%
in detection accuracy and achieves better performance than OHME++ which
employs a larger input size.
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Table 1. PASCAL VOC 2007 detection results. All methods are trained on VOC
2007 trainval sets and VOC 2012 trainval sets, and tested on VOC 2007 test set with
a Nvidia Titan X GPU. Only the batch size of MSSD512 is 16 during training.

Method Backbone Input size mAP FPS

Faster RCNN [15] VGG16 ∼1000 × 600 73.2 7

R-FCN [24] ResNet101 ∼1000 × 600 80.5 9

CoupleNet [4] ResNet101 ∼1000 × 600 81.7 8.7

SSD300 [8] VGG16 300 × 300 77.2 46

SSD512 [8] VGG16 512 × 300 79.8 19

RSSD300 [25] VGG16 300 × 300 78.5 35

YOLOv2 [26] Darknet-19 544 × 544 78.6 40

FSSD300 [27] VGG16 300 × 300 78.8 –

DSOD300 [28] DS/64-192-48-1 300 × 300 77.7 –

DSSD321 [5] ResNet101 321 × 321 78.6 9.5

DICSSD300 [18] VGG16 300 × 300 78.1 40.8

RefineDet320 [29] VGG16 320 × 320 80.0 40.3

RefineDet512 [29] VGG16 512 × 512 81.8 24.1

BPN320 [7] VGG16 320 × 320 80.3 32.4

BPN512 [7] VGG16 512 × 512 81.9 18.9

MSSD300 v VGG16 300 × 300 80.0 43.0

MSSD512 v VGG16 512 × 512 81.6 20.0

MSSD300 ResNet18 300 × 300 80.3 55.7

MSSD320 ResNet18 320 × 320 80.6 45.4

MSSD512 ResNet18 512 × 512 81.9 21.4

Table 2. PASCAL VOC 2012 detection results. All methods are trained on union
set of PASCAL VOC 2007 trainval and PASCAL VOC 2012 trainval and PASCAL
VOC2007 test, and tested on PASCAL VOC 2012 test set. For more details about our
results, please see http://host.robots.ox.ac.uk:8080/anonymous/5BMTAL.html

Method Backbone Input size mAP

Faster RCNN [15] VGG16 ∼1000 × 600 70.4

R-FCN [24] ResNet101 ∼1000 × 600 77.6

SSD300 [8] VGG16 300 × 300 75.8

DSSD321 [5] ResNet101 321 × 321 76.3

RefineDet320 [29] VGG16 320 × 320 78.1

MSSD300 ResNet18 300 × 300 78.3

http://host.robots.ox.ac.uk:8080/anonymous/5BMTAL.html
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4.2 MS COCO

In order to further verify the effectiveness of MSSD, especially to assess the per-
formance of MSSD in small object detection, this paper also conducted experi-
ments on MS COCO. MSSD is trained on trainval35k (2014 train + 2014 val35k)
and the training policy of MSSD is also almost the same as that of SSD [8]. We
train the network using SGD with momentum 0.9, weight decay 0.0005 and batch
size 32. The number of MSSD training epochs is 120. In the top 5 epochs, we
apply the “warmup” technique to gradually increase learning rate from 1× 10−6

to 1× 10−3. When the number of epochs are 80 and 100, the learning rate are
reduced to 1× 10−4 and 1× 10−5, respectively.

Table 3. MS COCO 2017 test-dev detection results. Our MSSD are trained on
trainval35k.

Method Backbone Data AP AP50 AP75 APS APM APL

Faster RCNN [15] VGG16 trainval 21.9 42.7 – – – –

OHME++ [30] VGG16 trainval 25.5 45.9 26.1 7.4 27.7 40.3

YOLOv2 [26] DarkNet-19 trainval35k 21.6 44.0 19.2 5.0 22.4 35.5

SSD300 [8] VGG16 trainval35k 25.1 43.1 25.8 6.6 25.9 41.4

DSSD321 [5] ResNet101 trainval35k 28.0 46.1 29.2 7.4 28.1 47.6

RefineDet320 [29] VGG16 trainval35k 29.4 49.2 31.3 10.0 32.0 44.4

MSSD300 ResNet18 trainval35k 29.1 49.6 30.1 11.2 31.2 43.4

MSSD320 ResNet18 trainval35k 29.7 50.4 30.8 12.8 32.1 42.8

Table 3 shows that MSSD300 exceeds SSD300 3.9% in AP. MSSD320 achieves
state-of-the-art detection accuracy. In the small object detection, all the meth-
ods in Table 3 are exceeded by MSSD320. This fully proves that the multi-flow
network module for small object detection is very effective. Compared to most
of other state-of-the-art one-stage methods (such as RefineDet) and two-stage
methods (such as OHME++), MSSD achieves higher detection accuracy in the
same condition.

4.3 Ablation Study

In order to verify the role of the three innovations of MSSD, a series of confir-
matory experiments were also conducted in this paper. All confirmatory exper-
iments were trained on the union set of PASCAL VOC 2007 trainval and 2012
trainval, and tested on the 2007 test set. The input image size for all experiments
was 300× 300. The experimental results are shown in Table 4.

The primitive model v1 is SSD with a ResNet18 backbone network. At this
time, the mAP is 76.9. If the multi-flow sub-network module is added to the
model v1, the model v2 is obtained, and the mAP of v2 is 78.6. The multiple
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Table 4. Results of the confirmatory experiments.

Component MSSD300

v1 v2 v3 v4

Multi-flow sub-network
√ √ √

Multiple connection module
√ √

New extra feature layers
√

mAP 76.9 78.6 79.8 80.3

connection module is introduced into the model v2, and the model v3 is obtained.
The mAP of v3 is 79.8. Finally, we remove the conv11 1 and conv11 2 of the extra
feature layers of v3 and introduce shortcut connections and three convolution
layers to obtain new extra feature layers. At this point the model is v4, and the
mAP becomes 80.3.

Table 4 shows that each key component in this paper can bring about
improvements in the detection performance. In addition, as the number of key
components increases, the model performs better, which further confirms the
reliability and effectiveness of MSSD.

4.4 Visualization

In order to understand the detection effect of MSSD more intuitively, this section
presents some of the results of MSSD testing on PASCAL VOC 2007, as shown
in Fig. 4.

Fig. 4. Detection examples on PASCAL VOC 2007 test set with MSSD512 model.

5 Conclusion

This paper analyzes deficiencies of the existing object detection methods and pro-
poses a multi-flow sub-network and multiple connections for single shot detection
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(MSSD). MSSD maintains real-time computational speed and achieves better
detection accuracy than state-of-the-art methods. Compared with the existing
object detection method, MSSD achieved the state-of-the-art detection accuracy
with a smaller input size and a higher computational speed. MSSD has suc-
cessfully achieved the original intention of this paper. It helps object detection
method to be applied in practice better, and also contributes to the solution of
the difficulty in small object detection and weak feature representation, which are
commonly found in one-stage methods. MSSD has achieved good performance
on PASCAL VOC and MS COCO. In the future, we may consider combining
relevant knowledge in the field of transfer learning and further migrate more
information.
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