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Abstract. Inner product functional encryption (IPFE), introduced by
Abdalla et al. (PKC2015), is a kind of functional encryption supporting
only inner product functionality. All previous IPFE schemes are bounded
schemes, meaning that the vector length that can be handled in the
scheme is fixed in the setup phase. In this paper, we propose the first
unbounded IPFE schemes, in which we do not have to fix the lengths of
vectors in the setup phase and can handle (a priori) unbounded polyno-
mial lengths of vectors. Our first scheme is private-key based and fully
function hiding. That is, secret keys hide the information of the asso-
ciated function. Our second scheme is public-key based and provides
adaptive security in the indistinguishability based security definition.
Both our schemes are based on SXDH, which is a well-studied standard
assumption, and secure in the standard model. Furthermore, our schemes
are quite efficient, incurring an efficiency loss by only a small constant
factor from previous bounded function hiding schemes.
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1 Introduction

Functional encryption (FE) [9,27] is an advanced cryptographic paradigm that
is expected to drastically enhance the availability of encrypted data. Traditional
encryption schemes can provide only “all-or-nothing” decryption capability over
encrypted data, i.e., an owner of a legitimate decryption key can learn the entire
data from a ciphertext and the others can learn nothing. In contrast, FE allows
a legitimate user to learn some computed results from encrypted data without
revealing any other information. More precisely, FE supporting a function class
F allows an owner of a master secret key msk to issue a secret key skf for any
function f ∈ F , and decrypting a ciphertext ctm of a message m with skf reveals
only f(m) and nothing else.

Although there are several constructions of FE for all circuits [17,18,30],
all are based on currently impractical cryptographic primitives such as indistin-
guishability obfuscation [17] or multi-linear maps [16]. As a result, such general
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purpose FEs are far from practical, and this is why Abdalla et al. [1] initiated the
study of a more specific and practical FE, i.e., inner product functional encryp-
tion (IPFE). In IPFE, an owner of a master secret key msk can issue a secret key
sky for a vector y and decrypting a ciphertext ctx of a vector x with sky reveals
only the inner product 〈x,y〉. The inner product is a simple but interesting func-
tion, because it is sufficient to directly compute weighted means over numerical
data and useful for statistical computations. Furthermore, we can evaluate any
polynomial over the data by encrypting all monomials appearing in the desired
family of polynomials beforehand.

Following the work of Abdalla et al., there arose two main streams of works
on IPFE. The first stream is for public-key based IPFE [2,5], aiming to obtain
the adaptive security, and the second stream is for private-key based IPFE [8,13,
21,22,24,28], aiming to obtain function privacy and better efficiency. Function
privacy is an important property of FE when it is used to delegate computation to
another party. Recently, a multi-input version of IPFE has also been considered
in [3,4,14].

Although most above (single-input) IPFE schemes are efficient and based
on standard assumptions, all have one inconvenient property: they are bounded.
That is, we need to fix the maximum length of vectors to be handled in the
scheme at the beginning. After fixing the maximum length, we cannot handle
vectors whose lengths exceed it. This is very inconvenient because it is almost
impossible in the setup phase to predict which data will be encrypted. One
may think that we can solve the problem by setting the maximum length to a
quite large value. However, the size of a public parameter of bounded schemes
expands at least linearly with the fixed maximum length, and such a solution
incurs an unnecessary efficiency loss. Hence, it is desirable that we do not need
to declare the maximum length of vectors to be handled in the scheme at the
beginning and can make encryption or key generation for vectors with unbounded
lengths. In the context of inner product predicate encryption (IPPE) [20] and
attribute-based encryption [19], there exist unbounded schemes [10,11,23,26],
whose public parameters do not impose a limit on the maximum length of vectors
or number of attributes used in the scheme. Thus, we naturally have the following
question:

Can we construct IPFE schemes that can handle vectors with unbounded
lengths?

Our Contributions. We answer the question affirmatively. More precisely, we
construct two concrete unbounded IPFE (UIPFE) schemes on the basis of the
standard SXDH assumption that are both secure in the standard model.

1. The first scheme is private-key IPFE with fully function hiding, which is the
strongest indistinguishability based security notion when considering function
privacy [13].

2. The second scheme is public-key IPFE with adaptive security, which is a
standard and desirable indistinguishability based security notion [5].
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Table 1. Comparison among private-key schemes that are fully function hiding and
public-key schemes with adaptive security in the standard model. Although Lin also
presented a construction of function hiding scheme [24], her scheme is the selective
secure one and we do not adopt it here. A natural number m ∈ N denotes a length of
a vector associated with the ciphertext or secret key. In our schemes, α denotes a bit
length that is necessary to specify an index set associated with a vector. In the ALS16
scheme, β denotes a bit length that is necessary to specify a vector to be embed into
a secret key. In this table, we omit a group description in a public key.

Private-key scheme

Scheme |msk| |ct| |sk| Pairing Assumption

DDM16 [13] (8m2 + 12m + 28)|Zp| (4m + 8)|G1| (4m + 8)|G2| Yes SXDH

TAO16 [28] (4m2 + 18m + 20)|Zp| (2m + 5)|G1| (2m + 5)|G2| Yes XDLIN

KKS17 [22] (6m + 8)|Zp| (2m + 8)|G1| (2m + 8)|G2| Yes SXDH

Ours 1 |PRF key| 4m|G1| 4m|G2|+ α Yes SXDH

Public-key scheme

Scheme |pk| |msk| |ct| |sk| Pairing Assumption

ALS16 [5] (m + 1)|G| 2m|Zp| (m + 2)|G| 2|Zp|+ β No DDH

Ours 2 28|G1| 28|Zp| 7m|G1| 7m|G2|+ α Yes SXDH

Table 1 compares efficiency among private-key schemes that are fully function
hiding and public-key schemes with adaptive security in the standard model.
Both our schemes achieve almost the same efficiency as the previous bounded
fully function hiding IPFE schemes except the small constant factor. Note that
previous public-key based schemes do not need pairing when instantiated from
a cyclic group [1,5]. However, we do not know how to construct unbounded
public-key based IPFE schemes without pairing.

In UIPFE schemes, we can consider various conditions about encryption, key
generation, and decryption. It is another important merit of UIPFE. For encryp-
tion and key generation, we can consider two cases, consecutive and separate. In
the consecutive setting, each element of a vector is automatically indexed to its
position when the vector is input to an encryption or key generation algorithm,
i.e., for a vector (a, b, c), a’s index is set to 1, b’s index to 2, and c’s index to
3. On the other hand, in the separate setting, an index set is attached to a
vector and encryption and key generation are executed correspondingly to its
index set. In other words, a vector (a, b, c) is indexed by some set, e.g., {1, 5, 6},
and the indices of a, b and c are set to 1, 5, and 6, respectively. A separate
scheme obviously suggests a consecutive scheme with respect to encryption or
key generation. Next, we focus on the conditions of decryption. Similar to [26],
we can classify the decryptable condition of IPFE schemes into three types: ct-
dominant, sk-dominant, and equal. Let Sct be an index set of a ciphertext ct and
Ssk be an index set of a secret key sk. Then ct is decryptable with sk iff Sct ⊇ Ssk

in ct-dominant schemes, Sct ⊆ Ssk in sk-dominant schemes, and Sct = Ssk in
equal schemes. We denote the type of the schemes described above as (E:xx,
K:yy, D:zz) where xx, yy ∈ {con, sep}, and zz ∈ {ct-dom, sk-dom, eq}, which
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means that encryption is xx setting, key generation is yy setting, and decryption
is zz setting. It is not difficult to observe that the setting (E:sep, K:con, D:ct-
dom) is meaningless because only the consecutive part of separate ciphertexts
can be decrypted with any consecutive secret key. For example, for a ciphertext
with an index set {1, 2, 4}, the element indexed as 4 is never used for decryp-
tion in the K:con setting. Hence, it is the same as the (E:con, K:con, D:ct-dom)
setting. Similarly, (E:con, K:sep, D:sk-dom), (E:con, K:sep, D:eq), and (E:sep,
K:con, D:eq) are also meaningless. Thus, we can consider eight types of UIPFE
schemes.

In this paper, we focus on the D:ct-dom setting because we believe it is
the most convenient for real applications. Consider the situation where Alice
holds a huge encrypted database in an untrusted server. When she wants the
server to make some computation over the database, she can obtain the result
by sending a corresponding secret key to the server. If the necessary part of the
database for the computation is very small, the D:ct-dom setting allows Alice
to issue a compact secret key. This is because the size of a secret key of IPFE
schemes typically grows linearly to the length of the corresponding vector. In the
other settings, Alice needs to issue a secret key that is at least larger than some
constant multiple of the size of the database, and this incurs a big efficiency loss.

Both our schemes are the (E:con, K:sep, D:ct-dom) setting, which suggests
(E:con, K:con, D:ct-dom). Some readers may wonder why we do not consider
the most general setting of D:ct-dom, (E:sep, K:sep, D:ct-dom), which suggests
all D:ct-dom schemes. The reason is we can prove the security of our schemes
against adaptive adversaries only in the (E:con, K:sep, D:ct-dom) setting. The
intuitive reason for this limitation is that, in security proofs, reduction algorithms
need to guess the contents of an index set with which an adversary queries an
encryption oracle. This is possible in the E:con setting because the length of
vectors queried by an adversary is a polynomial and a reduction algorithm can
correctly guess the length with a non-negligible probability. In the E:sep setting,
however, the possibility of index sets is exponential and is unpredictable for
reduction algorithms. For this reason, our schemes are secure against selective
adversaries in the (E:sep, K:sep, D:ct-dom) setting. In particular, our public-key
scheme is semi-adaptively secure in the (E:sep, K:sep, D:ct-dom) setting, which
means that the adversary declares a challenge message right after obtaining a
public key in a security game [12]. Note that the fully function hiding private-key
IPFE scheme in the (E:sep, K:con, D:sk-dom) setting is trivial with our scheme
because the roles of ciphertexts and secret keys are the same in fully function
hiding private-key IPFE. In addition, the fully function hiding private-key IPFE
in the (E:con, K:con, D:eq) setting is easily constructible and we describe it in
full version. We summarize our result in Table 2.

1.1 Our Techniques

We use bracket notation to denote elements on the exponent of a group element,
i.e., for ι ∈ {1, 2, T}, [x]ι denotes gx

ι where gι is a generator of a cyclic group Gι.
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Table 2. Summary of our result. A symbol ⊥ indicates that the scheme is meaningless.

Private-key scheme

E:con, K:con E:sep, K:con E:con, K:sep E:sep, K:sep

D:ct-dom full ⊥ full selective

D:sk-dom full full ⊥ selective

D:eq full ⊥ ⊥ open

Public-key scheme

E:con, K:con E:sep, K:con E:con, K:sep E:sep, K:sep

D:ct-dom adaptive ⊥ adaptive semi-adaptive

D:sk-dom open open ⊥ open

D:eq open ⊥ ⊥ open

Private-Key UIPFE. Our starting point is the fully function hiding
unbounded multi-input IPFE (MIPFE) scheme proposed by Datta et al. [14].
In an unbounded MIPFE scheme, an index space for slots are not determined
in the setup phase. Then, roughly speaking, an encryption algorithm can gen-
erate a ciphertext that corresponds to a vector x and an arbitrary index
i ∈ N. Also, a key generation algorithm can issue a secret key that is asso-
ciated with indexed vectors (S, {yi}i∈S) for an arbitrary set S ⊂ N. Only if
a decryptor has all ciphertexts corresponding to elements of the set S, i.e.,
{cti := MIPFE.Enc(pp,msk, i,xi)}i∈S , the secret key for S can be used for legit-
imate decryption and reveals

∑
i∈S〈xi,yi〉. Their scheme is based on the dual

pairing vector spaces (DPVS) framework introduced by Okamoto and Takashima
[25] and utilizes a pseudorandom function (PRF) to handle an unbounded index
space. Consider the unbounded MIPFE scheme in which the vector length is set
to 1 and observe that such a scheme already serves the function of UIPFE in the
D:ct-dom setting. More precisely, to encrypt x := (x1, . . . , xm) ∈ Z

m, the encryp-
tion algorithm computes cti := MIPFE.Enc(pp,msk, i, xi) for all i ∈ [m] and set
ct := (ct1, . . . , ctm). In key generation for an indexed vector (S,y := (yi)i∈S ∈
Z

S), the key generation algorithm computes sk := MIPFE.KeyGen(pp,msk, S,y).
Then MIPFE.Dec(pp, ct, sk) outputs

∑
i∈S xiyi. However, this construction allows

recomposition of ciphertexts due to the property of MIPFE. That is, for
ct1 := (ct1,1, . . . , ct1,m) and ct2 := (ct2,1, . . . , ct2,m), we can decrypt a cipher-
text like (ct1,1, ct2,2, . . . , ct2,m) correctly whereas UIPFE should not allow such
recomposition of ciphertexts.

To prevent such recomposition, each ciphertext of our scheme has a unique
randomness that all elements in a ciphertext share. Decryption is possible only
if an input ciphertext has a consistent randomness, so this unique randomness
prevents recomposed ciphertexts from being decrypted correctly. Essentially, a
ciphertext for index i of the MIPFE scheme by Datta et al. has a form like
[ci]1 := [(xi, 1)Bi]1 and each element of a secret key has a form like [ki]2 :=
[(yi, ri)B∗

i ]2, where Bi is a 2×2 regular matrix, B∗
i := (B−1

i )�, and ri are random
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elements in Zp s.t.
∑

i∈S ri = 0. Bases Bi are generated unboundedly with a
PRF. A decryption algorithm computes [

∑
i∈S〈ci,ki〉]T and it reveals the inner

product
∑

i∈S(xiyi + ri) =
∑

i∈S xiyi. In this construction, switching elements
of one ciphertext that have the same indices as others does not affect the correct
decryption. On the other hand, an element of one ciphertext corresponding to
index i of our scheme has a form like [ci]1 := [(xi, z)Bi]1 where z is a unique
randomness for each ciphertext, whereas each element of a secret key is the same
as in the MIPFE scheme. Then it is easy to confirm that unless all ci for i ∈ S
have the same randomness, [

∑
i∈S〈ci,ki〉]T does not reveal the inner product∑

i∈S xiyi and this construction prevents recomposition of ciphertexts.
Although the concept of the construction is simple, the security proof of

the scheme is rather complicated. The basic proof strategy of our scheme is
the same as that by Tomida et al. [28], who proposed a fully function hiding
bounded IPFE scheme, and this strategy is also employed in [14]. In the case
of unbounded MIPFE and UIPFE, however, we encounter a new challenging
problem that does not appear in bounded IPFE: how to prove collusion resistance
against illegitimate secret keys queried by an adversary. More precisely, in the
D:ct-dom setting, secret keys whose index sets are not included in the index set
of a ciphertext must be useless to decrypt the ciphertext even if their owners
collude. For example, an owner of a ciphertext ct1 for a index set {1, 2, 3} and
two secret keys sk1 and sk2 for index sets {1, 2, 4} and {3, 4} respectively must
not learn any information about underlying vectors in the ciphertext and secret
keys.

In the context of unbounded MIPFE, the problem was solved by cleverly
utilizing symmetric key encryption (SKE). Briefly, ciphertexts for index i contain
a secret key of SKE that is unique to the index i. On the other hand, a secret key
of unbounded MIPFE for an index set S is iteratively encrypted by SKE with
all secret keys of SKE in the set S. Then, unless an owner of the secret key for
a set S has all ciphertexts in the set S, he or she cannot decrypt the secret key
of unbounded MIPFE encrypted by SKE and the secret key is useless to derive
information from ciphertexts corresponding to any proper subset of S. Due to
UIPFE not allowing the recomposition of ciphertexts, however, we cannot apply
a similar technique to UIPFE schemes.

To solve this problem, we introduce a new proof strategy. In fully function
hiding scheme, we consider an adversary that can query many ciphertexts and
secret keys. First, we generate a situation where it is sufficient to consider only
one ciphertext and all secret keys by using hidden spaces of DPVS framework.
We can consider that this is a kind of dual system methodology by Waters [29],
which allows us to reduce the problem of a security for many keys to that for one
key [31]. Then what we need to do next is to ensure that illegitimate keys are
useless to decrypt the ciphertext. For the purpose, we randomize all elements in
illegitimate secret keys whose indices are out of the index set of the ciphertext by
computational argument. That is, the randomization is indistinguishable for all
probabilistic polynomial time (PPT) adversaries under the SXDH assumption. In
the above simple example, it means that the elements for index 4 in both secret
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keys are randomized. The intuitive reason to take this step is to ensure that
partial decryption does not leak any information on underlying vectors. That is,
in the above example, one can correctly compute the term xiyi for indices 1 and 2
with sk1 and 3 with sk2, which is masked by the term zri. What we want to prove
here is that the all zri terms are indistinguishable from independently random
elements in Zp and they completely hide the terms xiyi. Recall that elements in
each secret key contain the random numbers ri such that

∑
i∈S ri = 0. Then, if

at least one of ris in each secret key is randomized, entire ris become completely
random elements in Zp. At this point, partial decryption with illegitimate secret
keys reveals no meaningful information and we can complete the proof.

Public-Key UIPFE. Our public-key UIPFE scheme is technically more intri-
cate than our private-key one. Because we do not need to publish any information
for encryption in the private-key UIPFE scheme, we can utilize PRFs to generate
dual orthonormal bases unboundedly, which is necessary for encryption. More
precisely, an encryption algorithm generates a basis for index i as FK(i) where
FK is a PRF, and encode the i-th element of the vector using the basis. In the
public-key setting, however, a setup algorithm needs to publish information that
is needed to encrypt vectors. Thus an encryptor cannot utilize PRFs to generate
bases because if a key of a PRF is public, the output is no longer pseudorandom.

Our approach to overcome this problem is an indexing technique [26],
which is introduced to construct unbounded inner product predicate encryp-
tion (IPPE) and attribute based encryption (ABE) schemes. Briefly, we add a
two-dimensional prefix that specifies an index to a vector to be encoded, and
only if the indices of a ciphertext and a secret key are equal, the correct inner
product value is computable. In a ciphertext side, an encoding of the i-th element
of a vector x := (x1, . . . , xm) is the form like [ci]1 := [(πi(1, i), xi, z)B]1 and in a
secret key side, the index j of an indexed vector (S,y := (yj)j∈S) is encoded as
[kj ]2 := [(ρj(−j, 1), yj , rj)B∗]2. Then, although all indices share the same dual
orthonormal bases, [〈ci,kj〉]T reveals the meaningful value only if i = j. By this
construction, each element in ciphertexts and secret keys is encoded as if dual
orthonormal bases that are unique to each index were used.

The basic concept of the security proof of our public-key scheme is also similar
to that in [26]. That is, we prove lemmas that say that normal ciphertexts and
secret keys are indistinguishable from ones encoded on “somewhat” random
dual orthonormal bases for each index by amplifying the entropy of the two-
dimensional prefix. More concretely, we use a kind of the following relation in
the security proof. Note that it is just a toy example for an intuitive explanation
and an informal one. That is, for any polynomial m := m(λ), we have the
computational indistinguishability:

{
[(πi(1, i), xi, z, . . .)B]1
[(ρi(−i, 1), yi, ri, . . .)B∗]2

}

i∈[m]

≈c

{
[(πi(1, i), xi, z, . . .)Di]1
[(ρi(−i, 1), yi, ri, . . .)D∗

i ]2

}

i∈[m]

,

where {πi}i∈[m], {ρi}i∈[m]
U←− Zp and Di := WiB. LHS represents normal ele-

ments of a ciphertext and secret key, and RHS represents elements of ones
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encoded on “somewhat” random dual orthonormal bases for each index. Here,
each Wi need not be a completely random matrix, and it is sufficient if Wi is
chosen from some specific distribution for our security proof. This is why we call
Di “somewhat” random. At this point, we can use the proof strategy similar to
that of the private-key IPFE scheme because dual orthonormal bases are gener-
ated somewhat randomly for each index and we have a similar situation to the
private-key IPFE scheme. Although the top-level concept of the techniques are
similar to [26], i.e., indexing and entropy amplification, we cannot directly use
their techniques because the security proof of our scheme is completely different
from that of their scheme. Therefore, we managed to tailor lemmas of entropy
amplification suitable for our scheme.

1.2 Discussion

In this work, we cannot achieve the schemes that have the following two features.
We quickly discuss the difficulty about them.

Public-Key UIPFE Scheme Without Pairing. We briefly explain the rea-
son why constructing unbounded public-key IPFE without pairing is difficult.
First, we recall the bounded scheme without pairing by Abdalla et al. in [1] (and
the scheme in [5] essentially follows the construction of Abdalla et al.). In their
scheme, a master secret key is a randomly chosen vector s ∈ Z

n
p and a public

key is a vector of group elements gs ∈ Gn. To encrypt a vector x ∈ Z
n, an

encryption algorithm choose a random number r ∈ Zp and compute the cipher-
text as ct := (gr, grs+x) ∈ Gn+1. On the other hand, a secret key for a vector
y ∈ Z

n is set as sk := (〈y, s〉,y) ∈ Z
n+1
p , and a decryption algorithm computes

g〈rs+x,y〉/gr〈y,s〉 = g〈x,y〉. To handle vectors with unbounded lengths, an encryp-
tion algorithm or a key generation algorithm needs to generate an element s.t.
grs+x or 〈y, s〉 respectively for a vector s with an arbitrary length from a fixed
public key or master secret key.

As we explained in the technical section, we obtain such a situation by
entropy amplification and it requires computational arguments. However, if
secret keys consist of elements in Zp likely to the scheme by Abdalla et al.,
we cannot apply computational arguments to secret keys. Therefore, it seems
inevitable to encode elements in secret keys on the exponent of group elements
to leverage computational arguments, and it incurs the necessity of pairing in
decryption.

Adaptively Secure (E:sep, K:sep) UIPFE Schemes. As we mentioned,
our proof strategy needs to guess an index set of a ciphertext and inherently we
cannot apply it to (E:sep, K:sep) schemes with adaptive security. We consider
that this difficulty is similar to that to prove adaptive security of multi-use
KP-ABE from static assumptions (this problem is solved in the semi-adaptive
setting [12]). That is, the reduction algorithm needs to embed the instance of an
underlying problem into secret keys depending on the instance that the adversary
outputs in the challenge phase. Hence, the difficulty disappears in the semi-
adaptive setting because the reduction knows the challenge instance before it
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simulates secret keys. We know that we can obtain adaptively secure multi-
use KP-ABE from so-called q-type assumptions [6,7], then we might be able
to obtain adaptively secure (E:sep, K:sep) schemes from q-type assumptions
similarly.

1.3 Concurrent Work

Concurrently and independently, Dufour Sans and Pointcheval also presented
UIPFE schemes [15]. In our term, they proposed public-key (E:sep, K:sep, D:eq)
and (E:sep, K:sep, D:ct-dom) schemes in their paper. Their schemes have short
secret keys, meaning that they contain one group element and a corresponding
vector. However, their schemes rely on the random oracle model and achieve only
the selective security, and their (E:sep, K:sep, D:ct-dom) scheme also relies on a
new interactive assumption. More precisely, they assume that a kind of problem
is hard for all PPT adversaries even if they are allowed to access some oracles.
In addition, their (E:sep, K:sep, D:ct-dom) scheme does not have collusion resis-
tance of illegitimate secret keys, which means that a combination of illegitimate
keys can become a legitimate key.

2 Preliminary

2.1 Notations

For a prime p, Zp denotes a field Z/pZ. For natural numbers n,m ∈ N, [n] denotes
a set {1, . . . , n}, and [m,n] denotes a set {m, . . . , n} (if m > n, [m,n] := φ). For
a set S, s

U←− S denotes that s is uniformly chosen from S. We treat vectors
as row vectors. For a vector x, ||x||∞ denotes its infinity norm. For a field K,
Mn(K) and GLn(K) denote a set of all n × n matrices and all n × n regular
matrices whose elements are in K, respectively. We use a bold upper-case letter
to denote a matrix, e.g., A, and a bold lower-case version of the same letter
with subscript i to denote the i-th row of the matrix, e.g., ai. For example, ai

denotes the i-th row of A. For a regular matrix A, A∗ denotes (A−1)�. For
a generator gι of a cyclic group Gι, a matrix A, and vector a, [A]ι and [a]ι
denote the corresponding matrix and vector on the exponent of gι, respectively.
For vectors x := (x1, . . . , xn) and y := (y1, . . . , yn) ∈ Z

n
p , let e([x]1, [y]2) :=

e(g1, g2)〈x,y〉 be a function that computes the inner product on the exponent by∏
i∈[n] e([xi]1, [yi]2). A function f : N → R is called negligible if f(λ) = λ−ω(1)

and denotes f(λ) ≤ negl(λ).

2.2 Basic Notions

Definition 2.1 (Pseudorandom Functions). A pseudorandom function
(PRF) family F := {FK}K∈Kλ

with a key space Kλ, a domain Xλ, and a range
Yλ is a function family that consists of functions FK : Xλ → Yλ. Let Rλ be a
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set of functions consisting of all functions whose domain and range are Xλ and
Yλ respectively. For any PPT adversary A, the following condition holds,

AdvPRFA (λ) :=
∣
∣
∣Pr[1 ← AFK(·)] − Pr[1 ← AR(·)]

∣
∣
∣ ≤ negl(λ),

where K
U←− Kλ and R

U←− Rλ.

Definition 2.2 (Bilinear Groups). Bilinear groups G:=(p,G1, G2, GT , g1,
g2, e) consist of a prime p, cyclic groups G1, G2, GT of order p, generators g1
and g2 of G1 and G2 respectively, and a bilinear map e : G1 × G2 → GT , which
has two properties.

– (Bilinearity): ∀h1 ∈ G1, h2 ∈ G2, a, b ∈ Zp, e(ha
1 , h

b
2) = e(h1, h2)ab.

– (Non-degeneracy): For generators g1 and g2, e(g1, g2) is a generator of GT .

A bilinear group generator GBG(1λ) takes security parameter 1λ and outputs
bilinear groups G with a λ-bit prime p.

Definition 2.3 (SXDH Assumption). For ι ∈ {1, 2}, we define the following
distribution,

G ← GBG(1λ), a, e, f
U←− Zp, D := (G, [a]ι, [e]ι)

[tβ ]ι := [ae + βf ]ι for β ∈ {0, 1}.

We say the SXDH assumption holds if for any PPT adversary A and both
ι ∈ {1, 2},

AdvSXDH
A (λ) := |Pr[1 ← A(D, [t0]ι)] − Pr[1 ← A(D, [t1]ι)]| ≤ negl(λ).

2.3 Unbounded Inner Product Functional Encryption for (E:con,
K:sep, D:ct-dom)

In this paper, we propose two unbounded inner product functional encryption
schemes. The first scheme is private-key unbounded IPFE that is fully function
hiding and the second one is public-key unbounded IPFE with adaptive security.
Both our schemes can handle (a-priori) unbounded polynomial lengths of vectors
for encryption and key generation, and support a function that we call limited-
norm inner product. As explained in the introduction, our schemes support inner
product in the (E:con, K:sep, D:ct-dom) setting. Informally, for a ciphertext of
a vector whose length is m and a secret key with a set S, only if S ⊆ [m], we
can decrypt the ciphertext with the secret key and learn the inner product value
over the set S. Note that in previous works [3,4], the term bounded-norm is used,
but in this paper, bounded generally refers to vector length. Therefore, we use
limited-norm for the functionality in this paper.

Definition 2.4 (Limited-Norm Inner Product). This function family F
consists of functions fX,Y

S,y : Zm → Z where X,Y ∈ N, S ⊂ N, y := (yi)i∈S ∈ Z
S
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s.t. ||y||∞ ≤ Y , and m ∈ N s.t. S ⊆ [m]. We define the function for every
x := (x1, . . . , xm) ∈ Z

m s.t. ||x||∞ ≤ X as

fX,Y
S,y (x) :=

∑

i∈S

xiyi.

Definition 2.5 (Private-Key Unbounded Inner Product Functional
Encryption). Let X := {Xλ}λ∈N,Y := {Yλ}λ∈N be ensembles of norm-limit.
Private-key unbounded inner product functional encryption (Priv-UIPFE) con-
sists of four algorithms.

Setup(1λ): This algorithm takes a security parameter 1λ, and outputs a public
parameter pp and a master secret key msk.

Enc(pp,msk,x): This algorithm takes pp,msk, and a vector x := (x1, . . . , xm) ∈
Z

m where m := m(λ) is any polynomial. It outputs a ciphertext ctm.
KeyGen(pp,msk, S,y): This algorithm takes pp,msk, a non-empty index set S ⊆

[s] where s := s(λ) is any polynomial, and an indexed vector y := (yi)i∈S ∈
Z

S . It outputs a secret key skS .
Dec(pp, ctm, skS): This algorithm takes pp, ctm and skS and outputs a decrypted

value d ∈ Z or a symbol ⊥.

Correctness. Priv-UIPFE is correct if it satisfies the following condition. For
any λ ∈ N, x ∈ Z

m s.t. m := m(λ) is any polynomial and ||x||∞ ≤ Xλ, index
set S ⊆ [s] s.t. s := s(λ) is any polynomial and S ⊆ [m], and y ∈ Z

S s.t.
||y||∞ ≤ Yλ, we have

Pr

⎡

⎢
⎢
⎣d =

∑

i∈S

xiyi

(pp,msk) ← Setup(1λ)
ctm ← Enc(pp,msk,x)
skS ← KeyGen(pp,msk, S,y)
d := Dec(pp, ctm, skS)

⎤

⎥
⎥
⎦ ≥ 1 − negl(λ).

Security. Priv-UIPFE is fully function hiding if it satisfies the following con-
dition. That is, the advantage of A against Priv-UIPFE defined as follows is
negligible in λ for any PPT adversary A,

AdvPriv-UIPFEA (λ) :=

∣
∣
∣
∣
∣
∣
∣
∣

Pr

[
1 ← AOEnc,0(pp,msk,·),OKG,0(pp,msk,·,·)(pp) :
(pp,msk) ← Setup(1λ)

]

−Pr

[
1 ← AOEnc,1(pp,msk,·),OKG,1(pp,msk,·,·)(pp) :
(pp,msk) ← Setup(1λ)

]

∣
∣
∣
∣
∣
∣
∣
∣

.

Here, OEnc,β(pp,msk, ·) with β ∈ {0, 1} is an encryption oracle that takes
a pair of vectors (x0,x1) ∈ (Zm)2 with the same polynomial length m, and
outputs Enc(pp,msk,xβ). OKG,β(pp,msk, ·, ·) with β ∈ {0, 1} is a key gener-
ation oracle that takes a set S including polynomial indices and a pair of
indexed vectors (y0,y1) ∈ (ZS)2 associated with the index set S, and outputs
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KeyGen(pp,msk, S,yβ). To avoid a trivial attack of A, we have the following con-
dition on A’s queries. Let qct (resp. qsk) be a total number of ciphertext query
(resp. secret key query) of A. For all j ∈ [qct] and � ∈ [qsk], if S� ⊆ [mj ], then

∑

i∈S�

x0
j,iy

0
�,i =

∑

i∈S�

x1
j,iy

1
�,i. (1)

Consider the modified game where the adversary queries all vectors in one-
shot, i.e., {(x0

j ,x
1
j )}j∈[qct] and {(y0

� ,y
1
� )}�∈[qsk], right after obtaining a public

parameter, and then the adversary receive all ciphertexts and secret keys for
queried vectors for β-side. If the advantage of all PPT adversary against the
modified game is negligible, we say that Priv-UIPFE is selectively function
hiding.

Definition 2.6 (Public-key Unbounded Inner Product Functional
Encryption). Let X := {Xλ}λ∈N,Y := {Yλ}λ∈N be ensembles of norm-limit.
Public-key unbounded inner product functional encryption (Pub-UIPFE) con-
sists of four algorithms.

Setup(1λ): This algorithm takes a security parameter 1λ, and outputs a public
key pk and a master secret key msk.

Enc(pk,x): This algorithm takes pk and a vector x := (x1, . . . , xm) ∈ Z
m where

m := m(λ) is any polynomial. It outputs a ciphertext ctm.
KeyGen(pk,msk, S,y): This algorithm takes pk,msk, a non-empty index set S ⊆

[s] where s := s(λ) is any polynomial, and an indexed vector y := (yi)i∈S ∈
Z

S . It outputs a secret key skS .
Dec(pk, ctm, skS): This algorithm takes pk, ctm and skS and outputs a decrypted

value d ∈ Z or a symbol ⊥.

Correctness. Pub-UIPFE is correct if it satisfies the following condition. For
any λ ∈ N, x ∈ Z

m s.t. m := m(λ) is any polynomial and ||x||∞ ≤ Xλ, index
set S ⊆ [s] s.t. s := s(λ) is any polynomial and S ⊆ [m], and y ∈ Z

S s.t.
||y||∞ ≤ Yλ, we have

Pr

⎡

⎢
⎢
⎣d =

∑

i∈S

xiyi

(pk,msk) ← Setup(1λ)
ctm ← Enc(pk,x)
skS ← KeyGen(pk,msk, S,y)
d := Dec(pk, ctm, skS)

⎤

⎥
⎥
⎦ ≥ 1 − negl(λ).

Security. Pub-UIPFE is adaptively secure if it satisfies the following condition.
That is, the advantage of A against Pub-UIPFE defined as follows is negligible
in λ for any stateful PPT adversary A,
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AdvPub-UIPFEA (λ) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣β = 1

(pk,msk) ← Setup(1λ)
(x0,x1) ← AKeyGen(pk,msk,·,·)(pk)
ctm∗ ← Enc(pk,x0)
β ← AKeyGen(pk,msk,·,·)(pk, ctm∗)

⎤

⎥
⎥
⎦

−Pr

⎡

⎢
⎢
⎣β = 1

(pk,msk) ← Setup(1λ)
(x0,x1) ← AKeyGen(pk,msk,·,·)(pk)
ctm∗ ← Enc(pk,x1)
β ← AKeyGen(pk,msk,·,·)(pk, ctm∗)

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Here, the challenge vectors x0 and x1 that A outputs must have the same length
m∗. To avoid a trivial attack of A, we have the following condition on A’s queries.
Let qsk be a total number of secret key query of A. For all � ∈ [qsk], if S� ⊆ [m∗],
then

∑

i∈S�

x0
i y�,i =

∑

i∈S�

x1
i y�,i. (2)

Consider the modified game where the adversary is prohibited to make a
secret-key query before outputting challenge vectors (x0,x1). If the advantage
of all PPT adversary against the modified game is negligible, we say that Pub-
UIPFE is semi-adaptively secure.

3 Private-Key Unbounded Inner Product Functional
Encryption

Our schemes are based on the DPVS framework introduced by Okamoto and
Takashima [25]. We use the following lemma in our Priv-IPFE scheme, which is
implicitly shown in [14].

Lemma 3.1. Let p be a λ-bit prime. For any polynomial m := m(λ) and n :=
n(λ), we have

Pr[∃i,detBi = 0|B1, . . . ,Bm
U←− Mn(Zp)] = 2−Ω(λ).

3.1 Construction

In the following scheme, norm limits Xλ, Yλ are some polynomials in λ. Let
F := {FK}K∈Kλ

be a PRF family with a key space Kλ consisting of functions
FK : {0, 1}λ → M4(Zp).

Setup(1λ): Takes a security parameter 1λ and chooses bilinear groups G ←
GBG(1λ) and a PRF key K

U←− Kλ. Outputs

pp := G, msk := K.
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Enc(pp,msk,x): Takes pp,msk and x := (x1, . . . , xm) ∈ Z
m where m := m(λ)

is any polynomial. Sets Bi := FK(i) and ci := (xi, 0, z, 0)Bi ∈ Z
4
p for all

i ∈ [m], where z
U←− Zp. Outputs

ctm := ([c1]1, . . . , [cm]1).

If there exists i ∈ [m] such that Bi is a singular matrix, outputs ⊥.
KeyGen(pp,msk, S,y): Takes pp, msk, a non-empty index set S ⊆ [s] where s :=

s(λ) is any polynomial, and an indexed vector y := (yi)i∈S ∈ Z
S . Chooses

{ri}i∈S
U←− Zp s.t.

∑
i∈S ri = 0. Sets Bi := FK(i) and ki := (yi, 0, ri, 0)B∗

i ∈
Z
4
p for all i ∈ S. Outputs

skS := (S, {[ki]2}i∈S).

If there exists i ∈ S such that Bi is a singular matrix, outputs ⊥.
Dec(pp, ctm, skS): Takes pp, a ciphertext ctm for m dimensional vector, and a

secret key skS for a index set S. If S ⊆ [m], then computes

h :=
∏

i∈S

e([ci]1, [ki]2),

and searches for d s.t. e(g1, g2)d = h exhaustively in the range of −|S|XλYλ

to |S|XλYλ. If such d is found, outputs d. Otherwise, outputs ⊥.

Correctness. Our Priv-UIPFE scheme is correct if F is a PRF family. We
consider the case where for a natural number m ∈ N, Bi := FK(i) for all i ∈ [m]
is invertible. Then, we observe that if S ⊆ [m],

h =
∏

i∈S

e([ci]1, [ki]2) = e(g1, g2)
∑

i∈S〈ci,ki〉 = e(g1, g2)
∑

i∈S(xiyi+zri).

Here we have
∑

i∈S ri = 0, then h = e(g1, g2)
∑

i∈S xiyi . If ||x||∞ ≤ Xλ and
||y||∞ ≤ Yλ, |∑i∈S xiyi| ≤ |S|XλYλ and Dec outputs

∑
i∈S xiyi. Hence, if Bi

for all i ∈ [m] is invertible without a negligible probability, our scheme is correct.
Let m := m(λ) be any polynomial. For i ∈ [m], we have Pr[∃i,detBi = 0|Bi

U←−
M4(Zp)] = 2−Ω(λ) from Lemma 3.1 and |Pr[∃i,detBi = 0|Bi

U←− M4(Zp)] −
Pr[∃i,detBi = 0|K U←− Kλ,Bi := FK(i)]| ≤ negl(λ) from the definition of PRF.
Consequently, Pr[∃i,detBi = 0|K U←− Kλ,Bi := FK(i)] ≤ negl(λ).

Remark 3.1. Similarly to all previous IPFE schemes based on a cyclic group or
bilinear groups, the decryption algorithm of our schemes need to solve the small
discrete logarithm problem. As pointed out in [21], however, this step does not
affect efficiency so much in many practical applications.
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3.2 Security

Theorem 3.1. Assume that the SXDH assumption holds and F is a PRF fam-
ily, then our Priv-UIPFE is fully function hiding. More formally, let mmax be
the maximum length of vectors with which A makes a query to the encryption
oracle, then for any PPT adversary A and security parameter λ, there exists a
PPT adversary B1 for the SXDH and B2 for the PRF family, we have

AdvPriv-UIPFEA (λ)≤ {4qsk + 2(mmax + 1)qct + 2}AdvSXDH
B1

(λ) + 2AdvPRFB2
(λ) + 2−Ω(λ).

Proof Outline. The top-level strategy of the proof is similar to that of the proof
by Tomida et al. [28], although the order of changing the forms of ciphertexts
and secret keys is the opposite. In the security proof, we employ a usual hybrid
argument and gradually change the forms of ciphertexts and secret keys queried
by an adversary from the case of β = 0 to β = 1 defined in Definition 2.5.
We use the spaces not used in the actual function, i.e., the second and fourth
spaces, for the security proof. Intuitively, the second space is a kind of a working
space to handle intermediate states between β = 0 and β = 1, and the fourth
space is utilized to make a situation where we can focus on only one query
even if an adversary makes multiple queries. In other words, we can see the
fourth space as a semi-functional space of dual system methodology proposed
by Waters [29]. First, the form of secret keys is changed from [(y0

�,i, 0, r�,i, 0)B∗
i ]2

to [(y0
�,i, y

1
�,i, r�,i, 0)B∗

i ]2 in the Game 1 sequence. Next, we change the form of
ciphertexts from [(x0

j,i, 0, zj , 0)Bi]1 to [(0, x1
j,i, zj , 0)Bi]1 in the Game 3 sequence,

and here we leverage the game condition Eq. (1). Then we switch the first space
with the second space as [(x1

j,i, 0, zj , 0)Bi]1 and [(y1
�,i, y

0
�,i, r�,i, 0)B∗

i ]2. Finally, the
form of secret keys is changed from [(y1

�,i, y
0
�,i, r�,i, 0)B∗

i ]2 to [(y1
�,i, 0, r�,i, 0)B∗

i ]2
as the reverse of the Game 1 sequence. The most complicated and important
part is the Game 3 sequence, in which we need to deal with the ciphertexts and
secret keys that do not satisfy the condition Eq. (1). In Game 3 sequence, we
change the ciphertexts from 0-side to 1-side one by one, and in the ν-th iteration
of Game 3 sequence, we change the ν-th ciphertexts from 0-side to 1-side. For
the ν-th ciphertext, we can classify secret keys queried by an adversary into
three types. Let mν be the length of the ciphertext.

1. The index set S of the secret key is included in [mν ], i.e., max S ≤ mν .
2. A part of the index set S is included in [mν ], i.e., (max S > mν) ∧ (min S ≤

mν).
3. The index set S and [mν ] are disjoint, i.e., minS > mν .

The cumbersome secret keys are type 2 keys because they can correctly decrypt
a part of the ciphertext even though they may not satisfy the condition Eq.
(1). We want to change the form of the ν-th ciphertext from 0-side to 1-side by
information-theoretical change in Game 3-ν-1-4, but it does not work without
any treatment due to the above property of type 2 keys. Therefore, we manage
to randomize or “sanitize” type 2 keys from Game 3-ν-1-1 to Game 3-ν-1-3.
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Proof. We prove Theorem 3.1 by a series of games. For each game transition,
we prove that the difference between probabilities that the adversary A outputs
1 in both games is negligible.

Game 0: This game is the same as the real security game when β = 0 in
Definition 2.5. That is, the j-th ciphertext query with a pair of vectors
(x0

j ,x
1
j ) ∈ (Zmj )2 is replied as

cj,i := (x0
j,i, 0, zj , 0)Bi for all i ∈ [mj ]

ctj,mj
:= ([cj,1]1, . . . , [cj,mj

]1).

The �-th secret key query with an index set S� and a pair of vectors (y0
� ,y

1
� ) ∈

(ZS�)2 is replied as

k�,i := (y0
�,i, 0, r�,i, 0)B∗

i for all i ∈ S�

sk�,S�
:= (S�, {[k�,i]2}i∈S�

).

Game 0’: This game is the same as Game 0 except for the way of making
dual orthonormal bases. In Game 0, the dual orthonormal bases for the i-th
element are made as (Bi,B∗

i ) where Bi := FK(i), but in Game 0’, they are
made as Bi

U←− GL4(Zp). More precisely, the cipertext oracle and secret key
oracle have the same list L for bases. When the oracle needs a basis for the
i-th element, it searches for (i,Bi) from L. If the oracle find it, the oracle
uses the bases, and if not, it generates Bi

U←− GL4(Zp) and records them as
(i,Bi) into L.

Game 1-μ-1 (μ ∈ [qsk]) : We define Game 1-0-3 as equivalent to Game 0’. This
game is the same as Game 1-(μ−1)-3 except that in the μ-th secret key query,
kμ,i is set as

w
U←− Zp, kμ,i := (y0

μ,i, 0, rμ,i, wrμ,i )B∗
i for all i ∈ Sμ.

Game 1-μ-2 (μ ∈ [qsk]): This game is the same as Game 1-μ-1 except that in
the μ-th secret key query, kμ,i is set as

w
U←− Zp, kμ,i := (y0

μ,i, y1
μ,i , rμ,i, wrμ,i)B∗

i for all i ∈ Sμ.

Game 1-μ-3 (μ ∈ [qsk]): This game is the same as Game 1-μ-2 except that in
the μ-th secret key query, kμ,i is set as

kμ,i := (y0
μ,i, y

1
μ,i, rμ,i, 0 )B∗

i for all i ∈ Sμ.

Game 2: This game is the same as Game 1-qsk-3 except that in all secret key
queries, k�,i for all � ∈ [qsk] is set as

k�,i := (y0
�,i, y

1
�,i, r�,i, r̃�,i )B∗

i for all i ∈ S�,

where r̃�,i
U←− Zp s.t.

∑
i∈S�

r̃�,i = 0.
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Game 3-ν-1 (ν ∈ [qct]): Game 2 is equivalent to Game 3-0-3. This game is the
same as Game 3-(ν − 1)-3 except that in the ν-th ciphertext query, cν,i is set
as

z̃ν
U←− Zp, cν,i := (x0

ν,i, 0, zν , z̃ν )Bi for all i ∈ [mν ].

Game 3-ν-2 (ν ∈ [qct]) : This game is the same as Game 3-ν-1 except that in
the ν-th ciphertext query, cν,i is set as

z̃ν
U←− Zp, cν,i := ( 0, x1

ν,i , zν , z̃ν)Bi for all i ∈ [mν ].

Game 3-ν-3 (ν ∈ [qct]) : This game is the same as Game 3-ν-2 except that in
the ν-th ciphertext query, cν,i is set as

cν,i := (0, x1
ν,i, zν , 0 )Bi for all i ∈ [mν ].

Game 4: This game is the same as Game 3-qct-5 except that in all ciphertext
and secret key queries, cj,i and k�,i are set as

cj,i := ( x1
j,i, 0 , zj , 0)Bi for all i ∈ [mj ],

k�,i := ( y1
�,i, y

0
�,i , r�,i, r̃�,i)B∗

i , for all i ∈ S�.

Game 5: This game is the same as the real security game when β = 1 in
Definition 2.5. That is, the j-th ciphertext query with a pair of vectors
(x0

j ,x
1
j ) ∈ (Zmj )2 is replied as

cj,i := (x1
j,i, 0, zj , 0) Bi for all i ∈ [mj ]

ctj,mj
:= ([cj,1]1, . . . , [cj,mj

]1).

The �-th secret key query with an index set S� and a pair of vectors (y0
� ,y

1
� ) ∈

(ZS�)2 is replied as

k�,i := (y1
�,i, 0 , r�,i, 0 ) B∗

i for all i ∈ S�

sk�,S�
:= (S�, {[k�,i]2}i∈S�

).

Note that Bi is generated as Bi := FK(i) in Game 5.

Thanks to Lemma 3.2 to Lemma 3.11, we can conclude the proof of Theorem
3.1. ��

In the following, we denote the event that A outputs 1 in Game ι by Eι.

Lemma 3.2. For any PPT adversary A, there exists a PPT adversary B for
PRFs s.t.

|Pr[E0] − Pr[E0′ ]| ≤ AdvPRFB (λ) + 2−Ω(λ).
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Proof. First, we consider Game 0M, which is the same as Game 0 except that
Bi is generated as Bi

U←− M4(Zp) for each i. The following inequality directly
follows from the property of PRF s.t. |Pr[E0] − Pr[E0M ]| ≤ AdvPRFB (λ). Next, we
have |Pr[E0M ] − Pr[E0′ ]| ≤ 2−Ω(λ) from Lemma 3.1. Then Lemma 3.2 holds. ��
Lemma 3.3. For any PPT adversary A, there exists a PPT adversary B for
the SXDH s.t.

|Pr[E1-(μ − 1)-3] − Pr[E1-μ-1]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

Proof. We show that we can make a reduction algorithm B for the SXDH using
A. B obtains an instance of SXDH with ι := 2, i.e., (G, [a]2, [e]2, [tβ ]2), and sets
pp := G. B defines random dual orthonormal bases Bi,B∗

i as follows,

Wi
U←− GL4(Zp), Bi :=

⎛

⎜
⎜
⎝

1
1

0 1
1 −a

⎞

⎟
⎟
⎠Wi, B∗

i :=

⎛

⎜
⎜
⎝

1
1

a 1
1 0

⎞

⎟
⎟
⎠W∗

i ∈ GL4(Zp).

Then B simulates all ciphertext queries and all secret key queries except the μ-th
one as follows.

[cj,i]1 := [(x0
j,i, 0, zj,i, 0)Bi]1 for all i ∈ [mj ],

[k�,i]2 :=

{
[(y0

�,i, y
1
�,i, r�,i, 0)B∗

i ]2 for all i ∈ S� (� < μ)
[(y0

�,i, 0, r�,i, 0)B∗
i ]2 for all i ∈ S� (� > μ).

Note that B cannot compute [bi,4]1 because it does not know [a]1, but the
above instances are computable without [bi,4]1. For the μ-th secret key query,
B replies to A for all i ∈ Sμ as

r′
i

U←− Zp s.t.
∑

i∈Sμ

r′
i = 0,

[kμ,i]2 := [(y0
μ,i, 0, 0, 0)B∗

i + r′
i(0, 0, tβ , e)W∗

i ]2 = [(y0
μ,i, 0, er′

i, βfr′
i)B

∗
i ]2.

Observe that we can implicitly set rμ,i := er′
i and w := f/e unless e = 0, then

A’s view is the same as in Game 1-(μ − 1)-3 (resp. Game 1-μ-1) if β = 0 (resp.
β = 1). ��
Lemma 3.4. For any PPT adversary A, we have

|Pr[E1-μ-1] − Pr[E1-μ-2]| ≤ 2−Ω(λ).

Proof. We define (Di,D∗
i ) as

Di :=

⎛

⎜
⎜
⎜
⎝

1 0

1 y1
μ,i

wrμ,i

1 0
1

⎞

⎟
⎟
⎟
⎠

Bi, D∗
i :=

⎛

⎜
⎜
⎜
⎝

1
1

1

0 − y1
μ,i

wrμ,i
0 1

⎞

⎟
⎟
⎟
⎠

B∗
i ∈ GL4(Zp).
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Observe that (Di,D∗
i ) are random dual orthonormal bases. Then, for all j ∈ [qct]

and � ∈ [qsk], we have

cj,i = (x0
j,i, 0, zj,i, 0)Bi = (x0

j,i, 0, zj,i, 0)

⎛

⎜
⎜
⎜
⎝

1 0

1 − y1
μ,i

wrμ,i

1 0
1

⎞

⎟
⎟
⎟
⎠

Di = (x0
j,i, 0, zj,i, 0)Di,

k�,i = (y0
�,i, β�y

1
�,i, r�,i, β̂�wrμ,i)B∗

i = (y0
�,i, β�y

1
�,i, r�,i, β̂�wrμ,i)

⎛

⎜
⎜
⎜
⎝

1
1

1

0 y1
μ,i

wrμ,i
0 1

⎞

⎟
⎟
⎟
⎠

D∗
i

= (y0
�,i, (β� + β̂�)y1

�,i, r�,i, β̂�wrμ,i)D∗
i ,

where β� = 0 if � ≥ μ and β� = 1 if � < μ, and β̂� = 0 if � �= μ and β̂� = 1 if
� = μ. Then if w �= 0 and rμ,i �= 0, A’s view is identically distributed in Game
1-μ-2 and Game 1-μ-3. ��
Lemma 3.5. For any PPT adversary A, there exists a PPT adversary B for
the SXDH s.t.

|Pr[E1-μ-2] − Pr[E1-μ-3]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

This lemma can be proven almost the same as Lemma 3.3, so we omit the
proof.

Lemma 3.6. For any PPT adversary A, there exists a PPT adversary B for
the SXDH s.t.

|Pr[E1-qsk-3] − Pr[E2]| ≤ AdvSXDH
B (λ) + 2−Ω(λ)

Proof. We show that we can make a reduction algorithm B for the SXDH using
A. B obtains an instance of SXDH with ι := 2, i.e., (G, [a]2, [e]2, [tβ ]2), and sets
pp := G. B defines random dual orthonormal bases Bi,B∗

i as follows,

Wi
U←− GL4(Zp), Bi :=

⎛

⎜
⎜
⎝

1
1

0 1
1 −a

⎞

⎟
⎟
⎠Wi, B∗

i :=

⎛

⎜
⎜
⎝

1
1

a 1
1 0

⎞

⎟
⎟
⎠W∗

i ∈ GL4(Zp).

Then B simulates all ciphertext queries and all secret key queries as follows.

[cj,i]1 := [(x0
j,i, 0, zj,i, 0)Bi]1 for all i ∈ [mj ],

r′
�,i, r

′′
�,i

U←− Zp s.t.
∑

i∈S�

r′
�,i =

∑

i∈S�

r′′
�,i = 0,

[k�,i]2 := [(y0
�,i, y

1
�,i, r

′
�,i, 0)B∗

i + r′′
�,i(0, 0, tβ , e)W∗

i ]2
= [(y0

�,i, y
1
�,i, r

′
�,i + er′′

�,i, βfr′′
�,i)B

∗
i ]2 for all i ∈ S�.
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Note that B cannot compute [bi,4]1 because it does not know [a]1, but the
above instances are computable without [bi,4]1. Observe that we can implicitly
set r�,i := r′

�,i + er′′
�,i and r̃�,i := fr′′

�,i unless f = 0, then A’s view is the same as
in Game 1-qsk-3 (resp. Game 2) if β = 0 (resp. β = 1). ��
Lemma 3.7. For any PPT adversary A, there exists a PPT adversary B for
the SXDH s.t.

|Pr[E3-(ν − 1)-3] − Pr[E3-ν-1]| ≤ AdvSXDH
B (λ).

Proof. We show that we can make a reduction algorithm B for the SXDH using
A. B obtains an instance of SXDH with ι := 1, i.e., (G, [a]1, [e]1, [tβ ]1), and sets
pp := G. B defines random dual orthonormal bases Bi,B∗

i as follows,

Wi
U←− GL4(Zp), Bi :=

⎛

⎜
⎜
⎝

1
1

a 1
1 0

⎞

⎟
⎟
⎠Wi, B∗

i :=

⎛

⎜
⎜
⎝

1
1

0 1
1 −a

⎞

⎟
⎟
⎠W∗

i ∈ GL4(Zp).

Then B simulates all ciphertext queries except the ν-th one and all secret key
queries as follows,

[cj,i]1 :=

{
[(0, x1

j,i, zj,i, 0)Bi]1 for all i ∈ [mj ] (j < ν)
[(x0

j,i, 0, zj,i, 0)Bi]1 for all i ∈ [mj ] (j > ν),

r′
�,i, r

′′
�,i

U←− Zp s.t.
∑

i∈S�

r′
�,i =

∑

i∈S�

r′′
�,i = 0,

[k�,i]2 := [(y0
�,i, y

1
�,i, r

′
�,i, 0)B∗

i + (0, 0, r′′
�,i, 0)W∗

i ]2
= [(y0

�,i, y
1
�,i, r

′
�,i + ar′′

�,i, r
′′
�,i)B

∗
i ]2 for all i ∈ S�.

Note that B cannot compute [b∗
i,4]2 because it does not know [a]2, but the

above instances are computable without [b∗
i,4]2. Observe that we can implicitly

set r�,i := r′
�,i + ar′′

�,i and r̃�,i := r′′
�,i, so B correctly simulates the answer for

queries. For the ν-th ciphertext query, B replies to A for all i ∈ [mν ] as

[cν,i]1 := [(x0
ν,i, 0, 0, 0)Bi + (0, 0, tβ , e)Wi]1 = [(x0

ν,i, 0, e, βf)Bi]1.

Observe that we can implicitly set zν := e and z̃ν := f , then A’s view is the
same as in Game 3-(ν − 1)-3 (resp. Game 3-ν-1) if β = 0 (resp. β = 1). ��
Lemma 3.8. Let mmax be the maximum length of vectors with which A makes
a query to the encryption oracle. For any PPT adversary A, there exists a PPT
adversary B for the SXDH s.t.

|Pr[E3-ν-1] − Pr[E3-ν-2]| ≤ 2mmaxAdv
SXDH
B (λ) + 2−Ω(λ).

Proof. To prove Lemma 3.8, we consider the following intermediate games
between Game 3-ν-1 and 3-ν-2. In each intermediate game, the challenger
chooses a random element m′

ν
U←− [mmax] as a guess of mν at the beginning

of the games.
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Game 3-ν-1-1 (ν ∈ [qct]): This game is the same as Game 3-ν-1 except that
the challenger aborts the game immediately if the vector length of the ν-th
ciphertext query is not m′

ν i.e., m′
ν �= mν . We define that A’s output is ⊥

when the game is aborted.
Game 3-ν-1-2 (ν ∈ [qct]): This game is the same as Game 3-ν-1-1 except the

following. In the �-th secret key query for all � s.t. whose index set S� con-
tains both elements that are greater than m′

ν and not greater than m′
ν , i.e.,

(max S� > m′
ν) ∧ (min S� ≤ m′

ν), k�,i is set as

k�,i :=

{
(y0

�,i, y
1
�,i, r�,i, r̃�,i)B∗

i (i ∈ S�, i ≤ m′
ν)

(y0
�,i, y

1
�,i, r�,i, ar̃�,i )B∗

i (i ∈ S�, i > m′
ν)

where a
U←− Zp, r̃�,i

U←− Zp s.t.
∑

i∈S�
r̃�,i = 0.

Game 3-ν-1-3 (ν ∈ [qct]): This game is the same as Game 3-ν-1-2 except that
in the �-th secret key query for all � s.t. (max S� > m′

ν) ∧ (min S� ≤ m′
ν), k�,i

is set as

r̄�,i
U←− Zp, k�,i := (y0

�,i, y
1
�,i, r�,i, r̄�,i )B∗

i for all i ∈ S�.

Game 3-ν-1-4 (ν ∈ [qct]): This game is the same as Game 3-ν-1-3 except that
in the ν-th ciphertext query, cν,i is set as

z̃ν
U←− Zp, cν,i := ( 0, x1

ν,i , zν , z̃ν)Bi for all i ∈ [m′
ν ].

Game 3-ν-1-5 (ν ∈ [qct]): This game is the same as Game 3-ν-1-4 except that
in all secret key queries, k�,i are set as

k�,i := (y0
�,i, y

1
�,i, r�,i, r̃�,i )B∗

i for all i ∈ S�,

where r̃�,i
U←− Zp s.t.

∑
i∈S�

r̃�,i = 0.

Next we consider the probability that A outputs 1 in each game. Thanks to
Claim 1 to Claim 6, we have

|Pr[E3-ν-1] − Pr[E3-ν-2]| = mmax|Pr[E3-ν-1-1] − Pr[E3-ν-1-5]|
≤ 2mmaxAdv

SXDH
B (λ) + 2−Ω(λ)

This concludes the proof of Lemma 3.8. ��
Claim 1. For any PPT adversary A, we have

Pr[E3-ν-1-1] =
1

mmax
Pr[E3-ν-1]
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Proof. First, we consider the game (denoted by Game X) that is the same as
Game 3-ν-1 except that A’s output is defined as ⊥ when m′

ν �= mν . Note that
the challenger does not abort the game in Game X in contrast to Game 3-ν-1-1.
It is obvious that the probabilities that A outputs 1 are equal in Game X and
Game 3-ν-1-1 respectively. Then, we have

Pr[E3-ν-1-1] = Pr[EX ] =
∑

i∈[mmax]

Pr[m′
ν = i]Pr[mν = i ∧ E3-ν-1|m′

ν = i]

=
1

mmax

∑

i∈[mmax]

Pr[mν = i ∧ E3-ν-1]

=
1

mmax
Pr[E3-ν-1].

The second line follows from the fact that m′
ν is chosen independently from A’s

view in Game X and its value does not affect A’s behavior. ��
Claim 2. For any PPT adversary A, we have

|Pr[E3-ν-1-1] − Pr[E3-ν-1-2]| ≤ 2−Ω(λ).

Proof. For i > m′
ν , we define (Di,D∗

i ) as

Di :=

⎛

⎜
⎜
⎝

1
1

1
a

⎞

⎟
⎟
⎠Bi, D∗

i :=

⎛

⎜
⎜
⎝

1
1

1
1/a

⎞

⎟
⎟
⎠B∗

i ∈ GL4(Zp).

Ciphertexts except the ν-th one and secret keys that have indices greater than
m′

ν are changed as

cj,i = (βjx
0
j,i, (1 − βj)x1

j,i, zj , 0)Bi = (βjx
0
j,i, (1 − βj)x1

j,i, zj , 0)

⎛

⎜
⎜
⎝

1
1

1
1/a

⎞

⎟
⎟
⎠Di

= (βjx
0
j,i, (1 − βj)x1

j,i, zj , 0)Di for all i > m′
ν ,

k�,i = (y0
�,i, y

1
�,i, r�,i, r̃�,i)B∗

i = (y0
�,i, y

1
�,i, r�,i, r̃�,i)

⎛

⎜
⎜
⎝

1
1

1
a

⎞

⎟
⎟
⎠D∗

i

= (y0
�,i, y

1
�,i, r�,i, ar̃�,i)D∗

i for all i > m′
ν ,

where βj = 0 if j < ν and βj = 1 if j ≥ ν. Note that secret keys whose all indices
are greater than m′

ν are not affected by the basis change because {r̃�,i}i∈S�
s.t.∑

i∈S�
r̃�,i = 0 and {ar̃�,i}i∈S�

s.t.
∑

i∈S�
r̃�,i = 0 are identically distributed.

Finally, when m′
ν = mν , this basis change does not affect ctν,mν

because it is
applied only for the bases with indices i > mν . Hence, in Game 3-ν-1-1 and
Game 3-ν-1-2, A’s view is identically distributed unless a = 0. ��
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Claim 3. For any PPT adversary A, there exists a PPT adversary B for the
SXDH s.t.

|Pr[E3-ν-1-2] − Pr[E3-ν-1-3]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

Proof. We show that we can make a reduction algorithm B for the SXDH using
A. In the beginning of the simulation, B chooses a m′

ν
U←− [mmax] as a guess of

mν . If the guess is incorrect, B aborts and outputs 0. Otherwise, B outputs A’s
output as it is. B obtains an SXDH instance with ι := 2, i.e., (G, [a]2, [e]2, [tβ ]2)

and gives pp := G to A. B defines dual orthonormal bases as Bi
U←− GL4(Zp)

for each index i. Then, all ciphertexts and the �-th secret key s.t. (max S� ≤
m′

ν) ∨ (min S� > m′
ν) can be generated by using Bi and B∗

i . For the �-th secret
key s.t. (max S� > m′

ν) ∧ (min S� ≤ m′
ν), B computes secret keys as follows.

u�,i, u
′
�,i

U←− Zp s.t.
∑

i∈S�

u�,i =
∑

i∈S�

u′
�,i = 0,

[k�,i]2 :=

⎧
⎪⎨

⎪⎩

[(y0
�,i, y

1
�,i, r�,i, eu�,i + u′

�,i)B
∗]2 (i ∈ S�, i ≤ m′

ν)
[(y0

�,i, y
1
�,i, r�,i, tβu�,i + au′

�,i)B
∗]2

= [(y0
�,i, y

1
�,i, r�,i, a(eu�,i + u′

�,i) + βfu�,i)B∗]2
(i ∈ S�, i > m′

ν)

Then, we can define r̃�,i := eu�,i + u′
�,i. In the case of β = 0, [k�,i]2 is dis-

tributed identically to Game 3-ν-1-2. Next, we consider the case β = 1. First,
{r̃�,i}i∈S�

and {u�,i}i∈S�
are independently distributed because the information

of {u�,i}i∈S�
in {r̃�,i}i∈S�

is completely hidden by {u′
�,i}i∈S�

. Therefore, we can

set r̄�,i :=

{
r̃�,i (i ∈ S�, i ≤ m′

ν)
ar̃�,i + fu�,i (i ∈ S�, i > m′

ν)
, unless f = 0. Hence, [k�,i]2 is dis-

tributed identically to Game 3-ν-1-3 if β = 1. ��
Claim 4. For any PPT adversary A, we have

|Pr[E3-ν-1-3] − Pr[E3-ν-1-4]| ≤ 2−Ω(λ).

Proof. Here, we denote the event such that m′
ν = mν in Game ι by Xι. By the

game definition, we have

|Pr[E3-ν-1-3] − Pr[E3-ν-1-4]|
=|Pr[X3-ν-1-3]Pr[E3-ν-1-3|X3-ν-1-3] − Pr[X3-ν-1-4]Pr[E3-ν-1-4|X3-ν-1-4]|
=|Pr[X3-ν-1-3](Pr[E3-ν-1-3|X3-ν-1-3] − Pr[E3-ν-1-4|X3-ν-1-4])|.

In the third line, we use the fact that A’s view is identical before the ν-th
ciphertext query and then we have Pr[X3-ν-1-3] = Pr[X3-ν-1-4]. Therefore, it is
sufficient to prove that |Pr[E3-ν-1-3|X3-ν-1-3]−Pr[E3-ν-1-4|X3-ν-1-4])| ≤ 2−Ω(λ). For
the purpose, we analyze A’s view under the condition such that m′

ν = mν .
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We define (Di,D∗
i ) for all i ∈ [mν ] as

Di :=

⎛

⎜
⎜
⎝

1
1

1
x0

ν,i

z̃ν
−x1

ν,i

z̃ν
0 1

⎞

⎟
⎟
⎠Bi, D∗

i :=

⎛

⎜
⎜
⎜
⎝

1 −x0
ν,i

z̃ν

1 x1
ν,i

z̃ν

1 0
1

⎞

⎟
⎟
⎟
⎠

B∗
i ∈ GL4(Zp).

Observe that (Di,D∗
i ) are random dual orthonormal bases. Then, for all j ∈ [qct],

we have

cj,i = (βjx
0
j,i, (1 − βj)x1

j,i, zj , β̂j z̃ν)Bi

= (βjx
0
j,i, (1 − βj)x1

j,i, zj , β̂j z̃ν)

⎛

⎜
⎜
⎝

1
1

1

−x0
ν,i

z̃ν

x1
ν,i

z̃ν
0 1

⎞

⎟
⎟
⎠Di

= ((βj − β̂j)x0
j,i, (1 − βj + β̂j)x1

j,i, zj , β̂j z̃ν)Di,

where βj = 0 if j < ν and βj = 1 if j ≥ ν, and β̂j = 0 if j �= ν and β̂j = 1 if
j = ν. On the other hand, for all � s.t. max S� ≤ mν , we have

k�,i = (y0
�,i, y

1
�,i, r�,i, r̃�,i)B∗

i = (y0
�,i, y

1
�,i, r�,i, r̃�,i)

⎛

⎜
⎜
⎜
⎝

1 x0
ν,i

z̃ν

1 −x1
ν,i

z̃ν

1 0
1

⎞

⎟
⎟
⎟
⎠

D∗
i

= (y0
�,i, y

1
�,i, r�,i, r̃�,i +

1
z̃ν

(x0
ν,iy

0
�,i − x1

ν,iy
1
�,i))D

∗
i .

Here, we have the condition Eq. (1) s.t.
∑

i∈S�
(x0

ν,iy
0
�,i − x1

ν,iy
1
�,i) = 0, because

S� ⊆ [mν ]. Hence, we can set r̃′
�,i := r̃�,i + 1

z̃ν
(x0

ν,iy
0
�,i − x1

ν,iy
1
�,i). Observe that

r̃′
�,i is randomly distributed s.t.

∑
i∈S�

r̃′
�,i = 0. In the same way, for all � s.t.

(max S� > mν) ∧ (min S� ≤ mν), we have

k�,i =

{
(y0

�,i, y
1
�,i, r�,i, r̄�,i + 1

z̃ν
(x0

ν,iy
0
�,i − x1

ν,iy
1
�,i))D

∗
i (i ≤ mν)

(y0
�,i, y

1
�,i, r�,i, r̄�,i)B∗

i (i > mν)

In this case, there is no condition on (x0
ν,iy

0
�,i−x1

ν,iy
1
�,i). However, because r̄�,i are

chosen randomly from Zp, then r̄′
�,i := r̄�,i+ 1

z̃ν
(x0

ν,iy
0
�,i−x1

ν,iy
1
�,i) are also random

elements in Zp. Note that for all � s.t. min S� > mν , this basis change does not
affect sk�,S�

because we only change the bases for i ≤ mν . Then, in Game 3-ν-1-3
and Game 3-ν-1-4, A’s view is identically distributed unless z̃ν = 0 under the
condition such that m′

ν = mν . ��
Claim 5. For any PPT adversary A, there exists a PPT adversary B for the
SXDH s.t.

|Pr[E3-ν-1-4] − Pr[E3-ν-1-5]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).
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Claim 5 can be proven by just the reverse of Game 3-(ν − 1)-1-1 to Game
3-ν-1-3, so we omit the proof.

Claim 6. For any PPT adversary A, we have

Pr[E3-ν-1-5] =
1

mmax
Pr[E3-ν-2]

The difference between Game 3-ν-1-5 and 3-ν-2 is just the existence of the
abort condition introduced in Game 3-ν-1-1. Then, we can prove Claim 6 simi-
larly to Claim 1.

Lemma 3.9. For any PPT adversary A, there exists a PPT adversary B for
the SXDH s.t.

|Pr[E3-ν-2] − Pr[E3-ν-3]| ≤ AdvSXDH
B (λ).

This lemma can be proven by just the reverse of Game 3-(ν − 1)-3 to Game
3-ν-1, so we omit the proof.

Lemma 3.10. For any PPT adversary A, we have

Pr[E3-qct-3] = Pr[E4].

Proof. We define (Di,D∗
i ) as

Di :=

⎛

⎜
⎜
⎝

1
1

1
1

⎞

⎟
⎟
⎠Bi, D∗

i :=

⎛

⎜
⎜
⎝

1
1

1
1

⎞

⎟
⎟
⎠B∗

i ∈ GL4(Zp).

Observe that (Di,D∗
i ) are random dual orthonormal bases. Then, for all j ∈ [qct]

and � ∈ [qsk], we have

cj,i = (0, x1
j,i, zj , 0)Bi = (x1

j,i, 0, zj , 0)Di for all i ∈ [mj ],

k�,i = (y0
�,i, y

1
�,i, r�,i, r̃�,i)B∗

i = (y1
�,i, y

0
�,i, r�,i, r̃�,i)D∗

i for all i ∈ S�.

Then, in Game 3-qct-3 and Game 4, A’s view is identically distributed. ��
Lemma 3.11. For any PPT adversary A, there exists a PPT adversary B1 for
the SXDH and B2 for PRF s.t.

|Pr[E4] − Pr[E5]| ≤ (2qsk + 1)AdvSXDH
B1

(λ) + AdvPRFB2
(λ) + 2−Ω(λ).

This lemma can be proven by just the reverse of Games 0 to 2, so we omit the
proof.

4 Public-Key Unbounded Inner Product Functional
Encryption

In the following scheme, norm limits Xλ, Yλ are some polynomials in λ.
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4.1 Construction

Setup(1λ): Takes a security parameter 1λ and generates G ← GBG(1λ) and B U←−
GL7(Zp). Outputs

pk := (G, [b1]1, . . . , [b4]1), msk := (b∗
1, . . . ,b

∗
4),

where bi (resp. b∗
j ) denotes the i-th row of B (resp. j-th row of B∗).

Enc(pk,x): Takes pk and x := (x1, . . . , xm) ∈ Z
m where m = m(λ) is any

polynomial. Defines ci := (πi(1, i), xi, z, 0, 0, 0)B ∈ Z
7
p for all i ∈ [m], where

πi, z
U←− Zp. Outputs

ctm := ([c1]1, . . . , [cm]1).

KeyGen(pk,msk, S,y): Takes pk, msk, a non-empty index set S ⊆ [s] where
s = s(λ) is any polynomial, and an indexed vector y := (yi)i∈S ∈ Z

S .
Chooses {ri}i∈S

U←− Zp s.t.
∑

i∈S ri = 0 and ρi
U←− Zp, and defines ki :=

(ρi(−i, 1), yi, ri, 0, 0, 0)B∗ ∈ Z
7
p for all i ∈ S. Outputs

skS := (S, {[ki]2}i∈S).

Dec(pk, ctm, skS): Takes pk, a ciphertext ctm for m dimensional vector, and a
secret key skS for a index set S. If S ⊆ [m], then computes

h :=
∏

i∈S

e([ci]1, [ki]2),

and searches for d s.t. e(g1, g2)d = h exhaustively in the range of −|S|XλYλ

to |S|XλYλ. If such d is found, outputs d. Otherwise, outputs ⊥.

Correctness. Observe that if S ⊆ [m],

h =
∏

i∈S

e([ci]1, [ki]2) = e(g1, g2)
∑

i∈S〈ci,ki〉 = e(g1, g2)
∑

i∈S(xiyi+zri).

Here we have
∑

i∈S ri = 0, then h = e(g1, g2)
∑

i∈S xiyi . If ||x||∞ ≤ Xλ and
||y||∞ ≤ Yλ, then |∑i∈S xiyi| ≤ |S|XλYλ and Dec outputs

∑
i∈S xiyi.

4.2 Security

Theorem 4.1. Assume that the SXDH assumption holds, then our Pub-UIPFE
is adaptively secure. More formally, let mmax be the maximum length of the
challenge vector that A outputs and smax be the maximum index with which A
queries the key generation oracle, then for any PPT adversary A and security
parameter λ, there exists a PPT adversary B for the SXDH s.t.

AdvPub-UIPFEA (λ) ≤ {16m2
max + 8mmax(smax − 1) + 4}AdvSXDH

B (λ) + 2−Ω(λ).
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Proof Outline. The top-level strategy of the security proof is simple. Consider
a world where an encryption algorithm could magically generate unbounded
random dual orthonormal bases for each index. Then we observe that only one
loop of the Game 3 sequence in the Priv-UIPFE scheme suffices for the Pub-
UIPFE scheme because there is one challenge ciphertext query and no challenge
secret key query. To generate such a situation, we utilize an entropy-amplification
technique like [26] and show that PPT adversaries cannot distinguish the real
world from the “magical” world under the SXDH assumption. In the following,
we provide a more concrete overview of the proof. Similarly to the Game 3
sequence in the Priv-UIPFE scheme, we first change the challenge ciphertext
and all secret keys into the following form,

z̃, {r̃�,i}i∈S�

U←− Zp s.t.
∑

i∈S�

r̃�,i = 0,

ci := (πi(1, i), x0
i , z, z̃ , 0, 0)B, k�,i := (ρ�,i(−i, 1), y�,i, r�,i, r̃�,i , 0, 0)B∗.

Next, we change k�,i for all � s.t. (max S� > m′) ∧ (min S� ≤ m′), where m′ is
the guess of the vector length for the challenge ciphertext, as

{r̄�,i}i∈S�

U←− Zp, k�,i := (ρ�,i(−i, 1), y�,i, r�,i, r̄�,i , 0, 0)B∗. (3)

Then, we change ci as

ci := (πi(1, i), x1
i , z, z̃, 0, 0)B, (4)

similar to Priv-UIPFE. The remaining sequence is just the reverse. In the case of
the Priv-UIPFE scheme, recall that we perform distinct basis changes for each
index in the steps of Eqs. (3) and (4). However, we cannot perform such basis
changes in Pub-UIPFE, because all indices share the same dual orthonormal
bases. To overcome this difficulty, we conduct this step by computational change
on the basis of the SXDH assumption. Specifically, we introduce the following
two lemmas and use them in the proof as a kind of basis change in Priv-UIPFE.
Especially, it is relatively easy to see that Lemma 4.2 can be used for showing
that PPT adversaries cannot distinguish the real world, i.e., β = 0, from the
“magical” world, i.e., β = 1, where dual orthonormal bases for each index are
“somewhat” random. In other words, in the case of β = 1, dual orthonormal
bases for index i is generated as

Di :=

⎛

⎜
⎜
⎜
⎜
⎝

I2
1

1
wi 1

I2

⎞

⎟
⎟
⎟
⎟
⎠

B, D∗
i :=

⎛

⎜
⎜
⎜
⎜
⎝

I2
1 −wi

1
1

I2

⎞

⎟
⎟
⎟
⎟
⎠

B∗. (5)

Lemma 4.1 is used for the step of Eq. (3), which corresponds to Games 3-ν-2
and 3-ν-3 in the proof of Priv-UIPFE, and Lemma 4.2 is used for the step of
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Eq. (4), which corresponds to Game 3-ν-4 in the proof of Priv-UIPFE. In our
Pub-UIPFE scheme, there are three-dimensional subspaces that are not used
in the actual function: the 5-7th spaces. The fifth space is a kind of a semi-
functional space that is similar to the fourth space of our Priv-UIPFE scheme.
The sixth and seventh spaces are necessary to amplify the entropy of the two
dimensional prefix for the proof of the lemmas. Similar to here, adding extra
spaces other than the semi-functional space and amplifying the entropy in the
space are also done in [11,23,26].

Lemma 4.1. For any polynomial m := m(λ) and n := n(λ), we define the
following distribution,

G ← GBG(1λ), B U←− GL7(Zp), {πi}i∈[m], z̃
U←− Zp,

ui := (πi(1, i), 0, 0, z̃, 0, 0)B for all i ∈ [m],
D := (G, [b1]1, . . . , [b4]1, [b∗

1]2, . . . , [b
∗
5]2, [u1]1, . . . , [um]1),

{ρ′
i}i∈[m+1,n], {r′

i}i∈[m+1,n]
U←− Zp,

u∗
i,β := (ρ′

i(−i, 1), 0, 0, βr′
i, 0, 0)B∗ for all i ∈ [m + 1, n],

Uβ := {[u∗
i,β ]2}i∈[m+1,n].

For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

AdvP1A (λ) :=|Pr[1 ← A(D,U0)] − Pr[1 ← A(D,U1)]|
≤4(n − m)AdvSXDH

B (λ) + 2−Ω(λ).

Lemma 4.2. For any polynomial m := m(λ) and n := n(λ), we define the
following distribution,

G ← GBG(1λ), B U←− GL7(Zp), {ρ′
i}i∈[m+1,n]

U←− Zp,

u∗
i := (ρ′

i(−i, 1), 1, 0, 0, 0, 0)B∗ for all i ∈ [m + 1, n],
D := (G, [b1]1, . . . , [b4]1, [b∗

1]2, [b
∗
2]2, [b

∗
4]2, [b

∗
5]2, {[u∗

i ]2}i∈[m+1,n]),

{π′
i}i∈[m], {ρ′

i}i∈[m], {wi}i∈[m]
U←− Zp,

ui,β := (π′
i(1, i), βwi, 0, 1, 0, 0)B for all i ∈ [m],

u∗
i,β := (ρ′

i(−i, 1), 1, 0,−βwi, 0, 0)B∗ for all i ∈ [m],

Uβ := {[ui,β ]1, [u∗
i,β ]2}i∈[m].

For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

AdvP2A (λ) := |Pr[1 ← A(D,U0)] − Pr[1 ← A(D,U1)]| ≤ 8mAdvSXDH
B (λ) + 2−Ω(λ).

The formal proofs of Theorem 4.1, Lemmas 4.1, and 4.2 are presented in the
full version of this paper.
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