
Pattern Matching on Encrypted Streams

Nicolas Desmoulins1, Pierre-Alain Fouque2, Cristina Onete3,
and Olivier Sanders4(B)

1 Orange Labs, Applied Crypto Group, Caen, France
nicolas.desmoulins@orange.com

2 Université de Rennes 1 & Institut Universitaire de France, Rennes, France
3 Université de Limoges, CNRS UMR 7252, Limoges, France

4 Orange Labs, Applied Crypto Group, Cesson-Sévigné, France
olivier.sanders@orange.com

Abstract. Pattern matching is essential in applications such as deep-
packet inspection (DPI), searching on genomic data, or analyzing medical
data. A simple task to do on plaintext data, pattern matching is much
harder to do when the privacy of the data must be preserved. Exis-
tent solutions involve searchable encryption mechanisms with at least
one of these three drawbacks: requiring an exhaustive (and static) list
of keywords to be prepared before the data is encrypted (like in sym-
metric searchable encryption); requiring tokenization, i.e., breaking up
the data to search into substrings and encrypting them separately (e.g.,
like BlindBox); relying on symmetric-key cryptography, thus implying
a token-regeneration step for each encrypted-data source (e.g., user).
Such approaches are ill-suited for pattern-matching with evolving pat-
terns (e.g., updating virus signatures), variable searchword lengths, or
when a single entity must filter ciphertexts from multiple parties.

In this work, we introduce Searchable Encryption with Shiftable Trap-
doors (SEST): a new primitive that allows for pattern matching with
universal tokens (usable by all entities), in which keywords of arbi-
trary lengths can be matched to arbitrary ciphertexts. Our solution uses
public-key encryption and bilinear pairings.

In addition, very minor modifications to our solution enable it to
take into account regular expressions, such as fully- or partly-unknown
characters in a keyword (wildcards and interval/subset searches). Our
trapdoor size is at most linear in the keyword length (and independent
of the plaintext size), and we prove that the leakage to the searcher is
only the trivial one: since the searcher learns whether the pattern occurs
and where, it can distinguish based on different search results of a single
trapdoor on two different plaintexts.

To better show the usability of our scheme, we implemented it to run
DPI on all the SNORT rules. We show that even for very large plaintexts,
our encryption algorithm scales well. The pattern-matching algorithm is
slower, but extremely parallelizable, and it can thus be run even on very
large data. Although our proofs use a (marginally) interactive assump-
tion, we argue that this is a relatively small price to pay for the flexibility
and privacy that we are able to attain.

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11272, pp. 121–148, 2018.
https://doi.org/10.1007/978-3-030-03326-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03326-2_5&domain=pdf

122 N. Desmoulins et al.

1 Introduction

Learning whether a given pattern occurs in a larger input string (and where
exactly that happens) has many applications, such as when searching on genomic
data, in deep-packet inspection (DPI), or when delegating searches in databases.
In such cases, the entity performing the search, usually called the gateway, is only
semi-trusted by the owner of the input data. Indeed, in all the three scenarios
above, it is of paramount importance to preserve the privacy of the input data1.

Consider the case of a middlebox, such as a virus scan or a firewall. A user
who may trust the middlebox to scan its data for viruses might not, in fact,
be comfortable revealing the full contents of its data to that middlebox. Simi-
larly, a person might trust a laboratory to check whether their genome contains
a particular substring (indicating, e.g., a genetic predisposition to a disease);
however, the laboratory should not, in this way, come into possession of that
person’s full genome. Such concerns have been exacerbated lately by threats
of mass-surveillance, following the revelations of Edward Snowden. As a conse-
quence, data encryption is slowly becoming an a priori pre-requisite for pattern
matching.

In cryptography, pattern matching on encrypted data is closely related to
Searchable Encryption, either Symmetric [16–18,32] or Public-Key [9]. Many
Searchable Encryption solutions, however, only allow to search for pre-chosen
keywords, which are hard-coded in the encrypted input. Searching for a new
keyword – not indicated a priori – in that same (already encrypted) data would
yield a false negative, even if that keyword is, in fact contained in the input
data. Correctly matching the new pattern to the data requires that the latter
be re-encrypted. Therefore this solution is ill-suited to more dynamic environ-
ments, like DPI. We provide a full comparison with related literature, including
searchable encryption, in Sect. 1.2.

Pattern matching with non-static patterns can be achieved through
symmetric-key techniques and so-called tokenization [31]. In this approach, a
sliding-window technique is used to encode keywords of a given, fixed length,
which can then be matched by the searcher. This allows searches to be performed
for arbitrarily-chosen keywords; however, a disadvantage is that each instantia-
tion requires a new generation of tokens. Moreover, this only works for a fixed
keyword length and different ciphertexts are required to handle different pattern
sizes. This is less than ideal for many use-cases such as DPI, since for instance
SNORT rules [1] include patterns of many different lengths. In this paper, our
goal is to improve on this solution, specifically by allowing to search on encrypted
data, with patterns that are non-static (flexible), of variable length, and univer-
sal (no need to re-tokenize). In particular, we achieve secure pattern-matching
on encrypted data with universal tokens.

1 By contrast, in many cases, the patterns themselves may be publicly known.

Pattern Matching on Encrypted Streams 123

1.1 Our Contributions

We opt for a solution in a public-key setting (which immediately achieves uni-
versality for our patterns). The gateway will be able to search for keywords on
encrypted data using trapdoors that are unforgeable. More specifically, our con-
struction can support pattern matching for keywords that can be adaptively
chosen and which can have variable lengths. Moreover, the size of the trapdoors
corresponding to those keywords does not depend on the length of the input data
(our trapdoors are short, even when we are searching in very large input data).
We support regular expressions, such as the presence of wildcards or matching
encrypted input to general data-subsets. Thus, our solution is well suited to deep
packet inspection or delegated searches on medical data.

Intuitively, in our construction we project each coordinate of the plaintext S
(and then of the keyword W) on a geometric basis consisting of some values zi,
for i = 0, . . . , |S| − 1. We prevent malleability of trapdoors by embedding the
exact order of the bits of W into a polynomial, which cannot be forged without
the secret key. A fundamental part of the searching algorithm that we propose
is the way in which the middlebox will be able to shift from one part of the
ciphertext to another, when searching for a match with W . Thus, our scheme
can be viewed as an anonymous predicate encryption scheme where one could
derive the secret keys for (∗, w1, . . . , w�, ∗, . . . , ∗), . . ., (∗, . . . , ∗, w1, . . . , w�) from
the secret key for (w1, . . . , w�, ∗, . . . , ∗).

Such changes require the definition of a new primitive that we call Search-
able Encryption with Shiftable Trapdoors (SEST). We provide a formal security
model for the latter, which ensures that even a malicious gateway knowing trap-
doors tdW1 , . . . , tdWq

does not learn any information from an encrypted string
S beyond the presence of the keyword Wk in S, for k ∈ [1, q].

Our construction is – to our knowledge – the first SEST scheme, and thus can
be taken as a proof-of-concept construction. We guarantee the desired properties
by only using asymmetric prime order bilinear groups (i.e. a set of 3 groups G1,
G2 and GT along with an efficient bilinear map e : G1×G2 → GT) for which very
efficient implementations have been proposed (e.g. [7]). Encryption of plaintexts
S only requires operations in the group G1, while detection of the keyword W
is done by performing pairings. The former operation requires only the public
key while the latter additionally needs the corresponding trapdoor; only the
trapdoor-issuing algorithm requires the corresponding secret key.

We are able to allow for pattern-matching when some of the contents of the
keywords are either fully-unknown, i.e., wildcards, or partially-unknown, i.e., in
an interval. Searches for such regular expressions remain fully-compatible with
our original solution. In the first case, the only difference is that when issuing the
trapdoor, instead of fully randomizing it we choose special randomness – equal
to 0 – for the “coefficients” of the polynomial that we project the wildcards or
unknown subsets to. For the scenario of partially-known trapdoors, we require
a more complex key-generation process since we use different values on which
to (uniformly) project the unclear values to. These will be used in the trapdoor

124 N. Desmoulins et al.

generation step, ensuring that if a partially-known input is used, that coefficient
of the trapdoor will still “vanish”.

In particular, our pattern-matching algorithm is very similar to that of Rabin-
Karp and consequently, we can use it to solve similar problems. In addition to
the previous use-cases, our technique can also be used to perform 2D pattern
matching in images, or searching subtrees in rooted, labelled trees. However,
note that due to the privacy-preserving goal of our work, we cannot benefit from
many of the tricks used by Rabin-Karp, thus yielding a scheme with limited
efficiency.

We also analyze how well our scheme performs when applied to DPI. We
implemented our scheme to search for all the SNORT rules in input data of vary-
ing sizes. Even for large data, the encryption algorithm is very efficient. More-
over, while the testing (pattern matching) step scales less well with increasing
input-data size, that particular step is highly parallelizable, and thus the running
time can be much reduced.

Impact and Limitations. Our scheme allows for a flexible searchable encryp-
tion mechanism, in which encrypters do not have to embed a list of possible
keywords into their ciphertexts. Moreover, we also provide a great deal of flexi-
bility with respect to searching for keywords of arbitrary lengths. In this sense,
our technique allows for searchable encryption with universal tokens, which can
be used in deep-packet inspection, applications on genomic and medical data, or
matching subtrees in labelled trees.

One limitation of our scheme is the size of our public keys. We require a
public key of size linear in the size of the plaintext to be encrypted (which is
potentially very large). This is mostly due to the need to shift the ciphertext
each time in order to detect the presence of the keyword. We also require a large
ciphertext, consisting of a number of elements that is again linear in the size of
the plaintext; however, the same inefficiency is inherent also to solutions such as
BlindBox [31], in which we must encrypt many “windows” of the data, of same
size. Finally, the search of a keyword of size � in a plaintext of size n requires at
least 2(n − � + 1) pairing computations.

Furthermore, we are only able to prove the security of our construction under
an interactive assumption, unless we severely restrict the size n of the message
space. Indeed, we need an assumption which offers enough flexibility to provide
shiftable trapdoors for all possible keywords except the one that allow trivial
distinction of the encrypted string. We modify the GDH assumption [8] in a
minimal way, to allow the adversary to request the values on which the reduc-
tion will break this assumption. We could remove the need for this flexibility,
by, for instance reducing the value of n so that the simulator could guess the
strings targeted by the adversary but this strongly limits the applications of our
construction.

We argue that despite this interactive assumption, the intrinsic value of our
construction lies in its flexibility, namely in the fact that we are able to search
for arbitrary keywords. This significantly improves existing solutions of, e.g.,
detecting viruses on encrypted traffic over HTTPS [24,25,31].

Pattern Matching on Encrypted Streams 125

Moreover, we emphasize that we achieve this high level of flexibility without
using complex (and costly) cryptographic tools such as fully homomorphic encryp-
tion. We simply need pairings which have become quite standard in cryptography
and which can be implemented very efficiently [7]. We therefore argue that our
scheme, when compared to solutions providing the same features (see Sect. 1.3 for
more details), offers a practical improvement over the state of the art.

1.2 Related Work

How Searchable Encryption Works. In searchable encryption (SE)
[9,16–18,32], any party that is given a trapdoor tdW associated with a keyword
W is able to search for that keyword within a given ciphertext. The ideal pri-
vacy guarantee required is that searching reveals nothing else on the underlying
plaintext (other than the presence or absence of the keyword). Routing encrypted
emails, querying encrypted database or running an antivirus on encrypted traffic
are typical applications which require such a functionality.

In general, SE searches are usually performed by the middlebox on keywords
that have been pre-chosen by the party encrypting the ciphertexts (i.e., the
encrypter). In particular, an encrypted string containing W can be detected by
the middlebox knowing tdW only if the sender has selected W as a keyword
and has encrypted it using the SE scheme. Such approaches are still suitable for
some types of database searches (in which documents are already indexed by key-
words), or in the case of emailing applications – for which natural keywords can
be the sender’s identity, the subject line, or flags such as “urgent”. Unfortunately,
in cases such as messaging applications, or just for common Internet browsing,
the keywords are much harder to find, and can include expressions that are not
sequences of words per se, but rather something of the kind “http://www.exam-
ple.com/index.php?username=1”.

Our solution allows for better flexibility in terms of searching for arbitrarily-
chosen keywords, even after the plaintext has been encrypted and sent. In fact,
it is not even necessary that the encrypter be the same person as the party
which issues the trapdoors. This makes our solution much better suited to DPI
scenarios, whereas SE is typically better suited to database searches.

Tokenization. The solution proposed in [31] to search keywords of length � is to
split the string S = s0 . . . sn−1 into [s0 . . . s�−1], [s1 . . . s�], . . ., [sn−� . . . sn−1] and
then to encrypt each of these substrings using a searchable encryption scheme
(the substrings are thus the keywords associated with S). However, this solution
has a drawback: it works well if all the searchable keywords W1, . . . ,Wq have the
same length but this is usually not the case. In the worst case, if all searchable
keyword Wk are of different length �k, the sender will have, for each k ∈ [1, q],
to split S in substrings of size �k and encrypt them, which quickly becomes
cumbersome. One solution could be to split the searchable keywords Wk into
smaller keywords of the same length �min = mink(�k). For example, if �min = 3
the searchable keyword “execute” could be split into “exe”, “cut” and “ute”

126 N. Desmoulins et al.

for which specific trapdoors would be issued. Unfortunately, this severely harms
privacy since these smaller keywords will match many more strings S. Moreover,
repeating this procedure for every keyword Wk will allow the gateway to receive
trapdoors for a large fraction of the set of strings of length �min and so to recover
large parts of S with significant probability.

We note that Canard et al. [14] recently proposed a public key variant of
the Blindbox [31] approach which therefore suffers from the same limitations.
Moreover, their performance corresponds to the “delimiter-based” version of
their protocol that consists in splitting a string s = s0 . . . sn−1 into t substrings
[s0 . . . sn1−1], [sn1 . . . sn2−1], ..., [snt−1 . . . sn−1] which are then independently
encrypted using searchable encryption. While this dramatically reduces com-
plexity, we stress that this only allows to detect patterns that perfectly match
one of the substrings. In particular, a pattern cannot be detected if it straddles
two substrings.

By contrast, our scheme addresses the main drawback of this tokenization
technique: we allow for universal trapdoors of arbitrary length to be matched
against the encrypted data, without false negatives or positives. This comes at a
cost in performance; however, we show in our implementation that our scheme
remains practical.

Generic Evaluation of Functions on Ciphertexts. Evaluation of functions
over encrypted data is a major topic in cryptography, which has known very
important results over the past decade. Generic solutions (e.g., fully homomor-
phic encryption [22], functional encryption [3,4], etc.), supporting a wide class of
functions, have been proposed; however, their very high complexity makes such
solutions impractical. In practice, it is then better to use a scheme specifically
designed for the function(s) that one wants to evaluate.

Several recent publications study secure substring search and text process-
ing [5,21,23,26,28,29,33], specifically in two-party settings. Some of these papers
provide applications to genomic data, specifically matching substrings of DNA
to encrypted genomes. This was done by using secure multi-party computation
or fully-homomorphic encryption. However, the former solution requires interac-
tion between the searcher and the encrypter, whereas the use of FHE induces a
relatively high complexity. Of particular interest here is the approach by Lauter
et al. [28], which presents an application to genomic data. The authors here go
much further than just matching patterns with some regular expressions, how-
ever, they require fully-homomorphic encryption (FHE) for their applications.
We leave it as future work to investigate in how far we can modify our tech-
nique with universal tokens in order to provide some support to the algorithms
presented by Lauter et al. for genomic matching.

At first sight, anonymous predicate encryption (e.g. [27]) or hidden vec-
tor encryption [11] provide an elegant solution to the problem of searching on
encrypted streams. Indeed, the sender could use one of these schemes to produce
a ciphertext for some attributes s0, . . . , sn−1 which together make up a word S,
while the middlebox, knowing the suitable secret keys, could detect whether S
contains a substring W . The encryption process would then not depend on the

Pattern Matching on Encrypted Streams 127

searchable keywords and the anonymity property of these schemes would ensure
that the ciphertext does not leak more information on S.

However, another issue arises with this solution. Indeed, W = w1 . . . w� can be
contained at any position in S. Therefore, the gateway should receive the secret
keys for (w1, . . . , w�, ∗, . . . , ∗), (∗, w1, . . . , w�, ∗, . . . , ∗), . . ., (∗, . . . , ∗, w1, . . . , w�),
where “∗” plays the role of a wildcard, to take into account all the possible
offsets. So, for each searchable keyword of size �, the gateway would have to
store n − � + 1 keys, which is obviously a problem for large strings S.

DPI with Multi-context Key-Distribution. Naylor et al. [30] recently pre-
sented a multi-context key-exchange over the TLS protocol, which aims to allow
middleboxes (read, write, or no) access to specific ciphertext fragments that they
are entitled to see. This type of solution has some important merits, such as the
fact that it is relatively easy to put into practice and allows the middlebox to
perform its task with a very low overhead (the cost of a simple decryption). In
addition, the parties sending and receiving messages need not deviate from the
protocols they employ (such as TLS/SSL).

However, such solutions also have important disadvantages. The first of these
is that the privacy they offer is not ideal. Instead of simply learning whether a
specific content is contained within a given message or not, the middlebox learns
entire chunks of messages. Moreover, the access-control scheme associated to
the key-exchange scheme is relatively inflexible. The middlebox is given read or
write access to a number of message fragments, and this is not easily modifiable
(except by running the key-distribution algorithm once more). Finally, despite
the efficiency of the search step (once the key-repartition is done), the finer-
grained the access control is – thus offering more privacy – the more keys will
have to be generated and stored by the various participating entities.

1.3 Benefits of SEST

Pattern matching on encrypted data is a very frequently-encountered problem,
which can be addressed by many different primitives. In this context, the bene-
fits of our new primitive (SEST) might not seem obvious. To better understand
the intrinsic differences between all these approaches, we provide in Fig. 1 a
comparison of their asymptotic complexities. We choose to only consider the
most relevant alternatives, namely Searchable Encryption (both Symmetric and
Public-Key) and Predicate Encryption/Hidden Vector Encryption. Other solu-
tions do exist, as explained above; however, they induce high complexity, inter-
activity or weaker privacy.

As we explained, searching substrings at any position using SSE or ASE
requires a tokenization process which must be repeated for each possible length
of keyword, hence the O(n · L) size of the ciphertext. ASE performance is an
adaptation of the tokenization idea of BlindBox to the Public Key Encryption
with Keyword Search of Boneh et al. [9].

Conversely, PE and HVE offer a O(n) complexity for the ciphertext but at
the cost of generating and storing n · q trapdoors (to handle any possible offset).

128 N. Desmoulins et al.

We therefore argue that SEST is an interesting middle way which almost
provides the best of the previous two types. Its only drawback compared to SSE
and to ASE is the size of the public parameters but we believe this is a reasonable
price to pay to achieve all the other features.

1.4 Pattern Matching and Privacy

At first sight, the ability to search patterns within a ciphertext may seem harmful
to users’ privacy, compared to standard end-to-end encryption. However, we
stress that it is a lesser evil in many use-cases.

For example, in current solutions for DPI [25], the middlebox acts as a man
in the middle to decrypt all traffic, which means that end-to-end encryption is
gone anyway. Using SEST, the users can at least control which information can
be leaked from their traffic since they are the only ones who can issue trapdoors.
In particular, they can check that the keywords submitted by the middlebox are
legitimate. For example, as we describe in Sect. 6.2, they could agree to issue
trapdoors only for patterns associated to malwares, using public rules such as
the ones provided by SNORT [1].

More generally, the incompatibility of standard encryption with any data
processing often jeopardizes users’ privacy since it gives no other choice than
complete decryption of the traffic. We therefore argue that SEST is far from
being a threat to privacy and can actually be used to improve it.

Outline. Our paper has the following structure. We begin in Sect. 2 by for-
mally defining our new primitive, Searchable Encryption with Shiftable Trap-
doors (SEST). Then, in Sect. 3, we describe an instantiation of this primitive,
which relies on public-key encryption and bilinear pairings. In Sect. 4, we describe
under which assumptions our scheme achieves provable security, and provide a
security proof. We then describe how our construction can be used to handle
regular expressions (wildcards and value intervals) in Sect. 5. Handling regular
expressions is important in real-world applications, including DPI. In Sect. 6 we
discuss the efficiency of our protocol and provide implementation results for pat-
tern matching of all the SNORT rules on encrypted data of various sizes. Finally,
we discuss our results and make some concluding remarks in Sect. 7.

Fig. 1. Complexity comparison between related work and our primitive. The Issue
process refers to the generation of trapdoors. The complexity indicated in the last three
columns is the size complexity. The integers n, q, L, s denote respectively the length of
the message to encrypt, the number of issued trapdoors, the number of different lengths
among the q trapdoors and the number of users communicating with the receiver.

Pattern Matching on Encrypted Streams 129

2 Searchable Encryption with Shiftable Trapdoors

We begin by presenting the syntax of our SEST primitive. Note that in addition
to indicating whether the keyword was found in the (encrypted) plaintext, this
scheme also outputs the position(s) at which the keyword is found. This is one
advantage of shiftable trapdoors2, namely yielding the exact position, within the
target plaintext, of the search word. Such a knowledge is indeed necessary for
some use-cases (see Sect. 6.2).

To keep our model as general as possible we consider strings S = s0 . . . sm−1

whose characters si belong to a finite set S. Since S is finite, we may assume that
each of its elements s can be simply indexed by a unique integer f(s) between 0
and |S| − 1. For sake of simplicity, we will omit in the following the function f
and will then directly use s as an index (for example T [f(s)] will be denoted by
T [s]).

2.1 Syntax

A searchable encryption scheme with shiftable trapdoors is defined by 5 algo-
rithms that we call Setup, Keygen, Issue, Encrypt and Test. The first three of
these are run by an entity called the receiver, while Encrypt is run by a sender
and Test by a gateway.

– Setup(1k, n): This probabilistic algorithm takes as input a security parameter
k and an integer n defining the maximum size of the strings that one can
encrypt. It returns the public parameters pp that will be taken in input by
all the other algorithms. In the following, pp will be considered as an implicit
input to all algorithms and so will be omitted.

– Keygen(S): This probabilistic algorithm run by the receiver takes as input a
finite set S and returns a key pair (sk, pk). The former value is secret and
only known to the receiver, while the latter is public.

– Issue(W, sk): This probabilistic algorithm takes as input a string W of any
size 0 < � ≤ n, along with the receiver’s secret key, and returns a trapdoor
tdW .

– Encrypt(S, pk): This probabilistic algorithm takes as input the receiver’s pub-
lic key along with a string S = s0 . . . sm−1 of size 0 < m ≤ n such that si ∈ S
for all i ∈ [0,m − 1] and returns a ciphertext C.

– Test(C, tdW): This deterministic algorithm takes as input a ciphertext C
encrypting a string S = s0 . . . sm−1 of size m along with a trapdoor tdW for
a string W = w0 . . . w�−1 of size �. If m > n or � > m, then the algorithm
returns ⊥. Else, the algorithm returns a set (potentially empty) J ⊂ {0,m−�}
of indexes j s.t. sj . . . sj+�−1 = w0 . . . w�−1.

2 Solutions using tokenization, such as Blindbox, also output the position. Here we
compare with standard searchable encryption that usually does not reveal this infor-
mation.

130 N. Desmoulins et al.

Remark 1. Notice that searchable encryption, e.g., [2,11], usually does not con-
sider a decryption algorithm which takes as input sk and a ciphertext C encrypt-
ing S and which returns S. Indeed, this functionality can easily be added by also
encrypting S under a conventional encryption scheme. Nevertheless, one can note
that decryption can be performed by issuing a trapdoor for all characters s ∈ S
and running the Test algorithm on C for each of them.

2.2 Security Model

Correctness. As in [2], we divide correctness into two parts. The first one
stipulates that the Test algorithm run on (C, tdW) will always return j if S
contains the substring W at index j (no false negatives). More formally, this
means that, for any string S of size m ≤ n and any W of length � ≤ m: whenever
sj . . . sj+�−1 = w0 . . . w�−1,

Pr[j ∈ Test(Encrypt(S, pk), Issue(W, sk))] = 1,

where the probability is taken over the choice of the pair (sk, pk).
The second part of the correctness property requires that false positives (i.e.,

when the Test algorithm returns j despite the fact sj . . . sj+�−1 �= w0 . . . w�−1)
only occur with negligible probability. More formally, this means that, for any
string S of size m ≤ n and any string W of length � ≤ m:

Pr

[
j ∈ Test(Encrypt(S, pk), Issue(W, sk))

& sj . . . sj+�−1 �= w0 . . . w�−1

]
≤ μ(k)

where μ is a negligible function.

Indistinguishability (SEST-IND-CPA). For the security requirement of
Searchable Encryption with Shiftable Trapdoors (SEST), we adapt the standard
notion of IND-CPA to this case (hence the name SEST-IND-CPA). Informally,
this notion requires that no adversary A, even with access to an oracle OIssue
which returns a trapdoor tdW for any queried string W , can decide whether a
ciphertext C encrypts S0 or S1 as long as the trapdoors issued by the oracle do
not allow trivial distinction of these two strings. This is formally defined by the
experiment Expind−cpa−β

A (1k, n), where β ∈ {0, 1} as described in Fig. 2. The set
W is the set of all the strings W submitted to OIssue.

We define the advantage of such an adversary as Advind−cpa
A (1k, n) =

|Pr[Expind−cpa−1
A (1k, n)] − Pr[Expind−cpa−0

A (1k, n)]|. A searchable encryption
scheme with shiftable trapdoors is SEST-IND-CPA secure if this advantage is
negligible for any polynomial-time adversary.

We note that this security notion is very similar to the attribute hiding prop-
erty of predicate encryption [27]. However, we cannot directly use this latter
property because of the differences between predicate encryption and our prim-
itive (e.g., the lack of decryption algorithm), hence the need for a new security
game.

Pattern Matching on Encrypted Streams 131

Fig. 2. SEST-IND-CPA security game

The restriction in step 6 simply ensures that if Si contains W ∈ W at offset
j, then this is also the case for S1−i. Otherwise, running the Test algorithm on
(C, tdW) would enable A to trivially win this experiment.

Although this kind of restriction is very common in predicate/functionnal
encryption schemes (e.g. [27]), we stress that, in practice, one must take care
that it does not lead to situations where security becomes meaningless. For
example, if the adversary gets a trapdoor for every character s ∈ S, then it
will always fail the experiment (it will not be able to output two strings S0 and
S1 complying with the requirement of step 6) while being able to decrypt any
ciphertext (see Remark 1).

This example highlights the implicit restrictions placed on the set of trap-
doors. This is obviously a limitation of the security model (that also applies
to all predicate or searchable encryption schemes) but we believe that these
restrictions are very hard to formalize and should rather be considered on a
case-by-case basis. For example, in the context of DPI, the receiver could assess
once and for all the set of rules to check that the leakage remains reasonable.

Selective-Indistinguishability (SEST-sIND-CPA). We also need a weaker
security notion in which the adversary commits to S0 and S1 at the beginning
of the experiment, before seeing pp and pk. Such a restriction is quite standard
and is usually referred to as selective security [15].

Remark 2. We recall that in a public-key setting, it is always possible to recover
W from tdW : one simply has to encrypt the 2|W | strings of size |W | and then
run Test(., tdW) on each resulting ciphertext. The correctness property ensures
(with overwhelming probability) that one will always get an empty set, except
for the encryption of W .

Therefore, unless we place restrictions on the set of keywords that one can
query (in particular on its min-entropy, as in [10]), we cannot achieve relevant
privacy notions for the trapdoor tdW itself. However, this is not a problem
for, say, deep-packet inspection, in which many of the keywords can even be
public [1].

132 N. Desmoulins et al.

Finally, we note that one can achieve interesting privacy notions for the
trapdoors in the private-key setting (e.g. [13]).

3 Our Construction

We are able to construct our SEST scheme by “projecting” both the keyword
and the plaintext onto a multiplicative basis of the type zi for some secret integer
z. We encrypt the plaintext character-by-character, using secret encodings αs for
each s ∈ S. The latter are also used to generate the trapdoors associated with
the keyword. By using a bilinear mapping we are able to shift into the ciphertext
and compare a given fragment of suitable length to the trapdoor.

Note that in order to achieve the security notion of SEST-(s)IND-CPA, we
need to at least guarantee that, given some trapdoors tdWi

for words Wi, the
adversary is not able to forge a trapdoor for some fresh word W ∗. By projecting
keywords on a polynomial in a secret value z, we ensure that trapdoors on
keywords W are essentially un-malleable.

We describe our construction in detail in what follows, prefacing our scheme
by a brief introduction to bilinear groups and pairings.

3.1 Bilinear Groups

Bilinear groups are a set of three cyclic groups, G1, G2, and GT , of prime order
p, along with a bilinear map e : G1 × G2 → GT with the following properties:

1. for all g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)a·b;
2. for any g �= 1G1 and g̃ �= 1G2 , e(g, g̃) �= 1GT

;
3. the map e is efficiently computable.

Galbraith, Paterson, and Smart [20] defined three types of pairings: in type
1, G1 = G2; in type 2, G1 �= G2 but there exists an efficient homomorphism
φ : G2 → G1, while no efficient one exists in the other direction; in type 3,
G1 �= G2 and no efficiently computable homomorphism exists between G1 and
G2, in either direction.

The security of our construction holds as long as no efficient homomorphism
exists from G1 to G2. Our system must therefore be instantiated with pairings
of type 2 or 3. However, in the following, we will only consider the latter type
since it allows simpler security proofs thanks to the separation between the two
groups G1 and G2. We stress that this is not a significant restriction since type
3 pairings offer the best performances among the three types.

3.2 Intuition

Intuitively, our scheme associates each element s of S with a secret encoding
αs. A trapdoor for a string w0 . . . w�−1 is associated with a polynomial V =∑�−1

i=0 vi ·αwi
· zi where vi are random secret scalars whose purpose is to prevent

forgeries of new trapdoors. The trapdoor then consists in the elements g̃V and g̃vi

Pattern Matching on Encrypted Streams 133

for i = 0, . . . , �− 1. In the meantime, a ciphertext encrypting a string s0 . . . sn−1

is the sequence of “monomials” C ′
j = ga·αsj

·zj

where a is a random factor (the
Keygen algorithm will ensure that this can be done by only using elements from
the public key). By using the bilinear map e, one can derive from the ciphertext
and the trapdoor elements of the form e(g, g̃)U where U is a polynomial whose
coefficients depends on the encodings αsi

and on the scalars vi.
In this encoding, if s0 . . . sn−1 contains the pattern w0 . . . w�−1 at offset j (i.e.

if sj+i = wi for i = 0, . . . , � − 1) one can generate e(g, g̃)U =
∏�−1

i=0 e(C ′
j+i, g̃

vi)
where U = a · zj · V . Therefore, by extending the ciphertext with the elements
Cj = ga·zj

, one can simply test the presence of W . By contrast, a difference
sj+i �= wi or the combination of non-successive ciphertext elements will lead to
a random-looking polynomial which would be useless to the adversary.

However, using this solution to search for a pattern of length � within a
string of length m requires (� + 1)(m − � + 1) pairings, which quickly becomes
prohibitive. While it seems natural that the complexity depends on the size m
(since we have to search at every position), one could hope to reduce the factor
(� + 1).

A first attempt could be to set vi = v for all i ∈ [0, � − 1] for some secret
scalar v. Indeed, thanks to the bilinearity of e, the � pairings

∏�−1
i=0 e(C ′

j+i, g̃
vi)

could be replaced by only one: e(
∏�−1

i=0 C ′
j+i, g̃

v). Unfortunately, such a solution
is insecure as proven by the following example.

Let C be a ciphertext encrypting a string S = s0 . . . sm−1 and let us assume
that W is a keyword such that wi = s for all i ∈ [0, � − 1] (i.e. W is a sequence
of identical values, equal to s). Then, for any 0 < j ≤ � − 1

e(C0 · C−1
j , g̃VW) = e(g, g̃)a(1−zj)VW = e(g, g̃)aV ′

,

with

V ′ =
j−1∑
k=0

v · αs · zk −
�+j−1∑

k=�

v · αs · zk.

Therefore, e(g, g̃)aV ′
can be used to check whether

s0 . . . sj−1 =
j times︷ ︸︸ ︷
s . . . s ∧ s� . . . s�+j−1 =

j times︷ ︸︸ ︷
1 . . . 1 .

Using tdW , a gateway is then able to get more information on S than the
presence of W as a substring, which breaks the security of the construction.

However, this attack does not mean that we necessarily have to select different
scalars vi but simply that the generation process needs to be more subtle. We
indeed prove that one can “recycle” the random elements vi within the same
trapdoor without jeopardizing security. More specifically, the issuing process
that we describe in the next section is based on the observation that the secret
encodings αs already add some variability to the coefficients of the polynomial V .
This therefore means that this variability need not exclusively rely on the random
scalars vi. In particular when wi �= wj , the coefficients vi ·αwi

and vj ·αwj
will be

134 N. Desmoulins et al.

different even if vi = vj . In such a case, there is no need to chose distinct scalars,
which allows us to batch the corresponding pairings for the test. Compared to
the solution with random scalars vi, this divides the whole number of pairings
by up to |S| (e.g., 256 if we consider bytestrings).

3.3 The Protocol

– Setup(1k, n): Let (G1, G2, GT , e) be the description of type 3 bilinear groups
of prime order p, this algorithm selects g

$← G1 and g̃
$← G2 and returns

pp ← (G1, G2, GT , e, g, g̃, n).
– Keygen(S): On input a finite set S, this algorithm selects |S| + 1 ran-

dom scalars z, {αs}s∈S and computes gi ← gzi

along with {gαs
i }s∈S for

i = 0, . . . , n − 1. The public key pk is set as {(gi, {gαs
i }s∈S)}n−1

i=0 whereas
sk is set as (z, {αs}s∈S).

– Encrypt(S, pk): To encrypt a string S = s0 . . . sm−1, where m ≤ n the user
selects a random scalar a and returns C = {(Ci, C

′
i)}m−1

i=0 , where Ci ← ga
i

and C ′
i ← g

a·αsi
i for i = 0 . . . m − 1.

– Issue(W, sk): To issue a trapdoor tdW for a string W = w0 . . . w�−1 of length
� ≤ n, one uses the following algorithm.

Ind[s] = 0 for all s ∈ S ;
L[i] = 0 for all i ∈ [0, � − 1];
V = 0, c = 0;
for i = 0, . . . , � − 1 do

if L[Ind[wi]] = 0 then

L[c]
$← Zp, Ic ← {i};

c = c + 1;

else
IInd[wi] = IInd[wi] ∪ {i};

end

V = V + zi · αwi · L[Ind[wi]];
Ind[wi] = Ind[wi] + 1 ;

end

tdW ← (c, {Ij}c−1
j=0, {g̃L[j]}c−1

j=0, g̃
V);

Algorithm 1: Issue

Our Issue algorithm formalizes the following principle: the random scalars
(stored in L) can be re-used as long as the coefficients of the polynomial V

are all distinct. In particular, if we write V as
∑�−1

i=0 vi · αwi
· zi, then vi �= vj

if wi = wj .
– Test(C, tdW): To test whether the string S encrypted by C contains the

substring W , the algorithm parses tdW as (c, {Ij}c−1
j=0, {g̃L[j]}c−1

j=0, g̃
V) and C

Pattern Matching on Encrypted Streams 135

as {(Ci, C
′
i)}m−1

i=0 and checks, for j = 0, . . . , m − �, if the following equation
holds:

∏c−1

t=0
e(

∏
i∈It

C ′
j+i, g̃

L[t]) = e(Cj , g̃
V).

It then returns the (potentially empty) set J of indexes j for which there is
a match.

Correctness. First note that, if S contains the substring W at index j (i.e.,
sj+i = wi ∀i = 0, . . . , � − 1), then:

c−1∏
t=0

e(
∏
i∈It

C ′
j+i, g̃

L[t]) =
c−1∏
t=0

e(
∏
i∈It

ga·αsj+i
·zj+i

, g̃L[t])

=
c−1∏
t=0

e(ga, g̃L[t]·∑i∈It
αwi

·zj+i

)

=
c−1∏
t=0

e(ga, g̃
∑

i∈It
L[t]·αwi

·zj+i

)

= e(g, g̃)a·zj ·V = e(Cj , g̃
V)

The set J returned by Test contains j.
Now, let us assume that J contains j but that sj . . . sj+�−1 �= w0 . . . w�−1,

i.e., the algorithm returns a false positive. Let I�= be the (non-empty) set of
indexes i such that sj+i �= wi. For all i ∈ [0, � − 1], we define vi = L[ti] where ti
is such that i ∈ Iti . Since j has been returned by Test, we have,

c−1∏
t=0

e(
∏
i∈It

C ′
j+i, g̃

L[t]) = e(Cj , g̃
V)

⇔
�−1∏
i=0

e(C ′
j+i, g̃

vi) = e(Cj , g̃
V)

⇔
∏

i∈I�=

e(C ′
j+i, g̃

vi) = e(Cj , g̃
∑

i∈I�= vi·αwi
·zi

)

⇔
∏

i∈I�=

e(g, g̃)a·vi·αsj+i
zi+j

= e(g, g̃)a·zj ∑
i∈I�= vi·αwi

·zi

⇔
∑
i∈I�=

vi · αsj+i
zi =

∑
i∈I�=

vi · αwi
· zi

⇔
∑
i∈I�=

vi(αsj+i
− αwi

) · zi = 0.

136 N. Desmoulins et al.

Since αsj+i
�= αwi

for all i ∈ I�=, this amounts to evaluating the probability
that a random scalar z is a root of a non-zero polynomial of degree at most �−1.
The probability that Test returns a false positive j is thus at most �−1

p , which
is negligible.

Remark 3. Our construction achieves the goals that we define at the beginning
of Sect. 1.1. Indeed, the Encrypt procedure does not depend on the keywords
W , and the latter may have distinct lengths. In particular, the size of C only
depends on the length of the message it encrypts. Moreover, the trapdoors tdW

allow to search the word W in S = s0 . . . sm−1 at any possible offset, while being
of size independent of m.

All these features are provided using only asymmetric prime order bilinear
groups, which can be very efficiently implemented on a computer (e.g., [7]). We
refer to Sect. 6 for a more thorough analysis of the efficiency of our protocol.

Remark 4. As explained in Sect. 2.1, public-key searchable encryption schemes
often assume that the sender will also encrypt the string S by using a conven-
tional encryption scheme Π. Such a solution enables fast decryption but should
be used cautiously in some contexts, such as DPI, where the sender is likely to
be malicious. Indeed, nothing prevents the latter from encrypting an harmless
string S using the searchable encryption scheme while encrypting a different
S′ using Π. The message (S) checked by the gateway would then be different
from the one forwarded to the receiver (S′), which would make the inspection
pointless.

It is therefore necessary to check that both ciphertexts decrypt to the same
string S, which can easily be done by the receiver. Indeed, after decrypt-
ing the conventional ciphertext, the latter (who knows sk) can verify whether
{(Ci, C

′
i)}m−1

i=0 encrypts S = s0 . . . sm−1 by testing if C ′
i = C

αsi
i for i ∈ [0,m−1].

One can also perform such tests only for a limited number N ≤ m of indexes i,
but the probability of detecting cheating sender will become N

m .

4 Security Analysis

4.1 Complexity Assumptions

Let us consider an adversary A which, knowing q trapdoors tdWk
, would like to

decide if a ciphertext C encrypts S0 or S1. The natural restrictions imposed by
the security model imply that there is at least one index i∗ such that s

(0)
i∗ �= s

(1)
i∗

and that, for all k ∈ [1, q] and all j ∈ [0, �k − 1] (where �k is the length of Wk),
s
(0)
i∗−�k+1+j . . . s

(0)
i∗+j and s

(1)
i∗−�k+1+j . . . s

(1)
i∗+j both differ from wk,0, . . . , wk,�k−1.

In other words, any substring of S0 (or respectively S1) of length �k containing
s
(0)
i∗ (resp. s

(1)
i∗) must be different from Wk, for all k ∈ [1, q].

If we focus on the index i∗, A must then distinguish whether the discrete
logarithm of C ′

i∗ in base gi∗ is a · α
s
(0)
i∗

or a · α
s
(1)
i∗

. To this end, the attacker has
access to many elements of G1 (the public parameters and the other elements

Pattern Matching on Encrypted Streams 137

of the ciphertext) and of G2 (the trapdoors tdWk
). All of them are of the form

gPu(a,αs,z) or g̃Qv(αs,z,vi,k) for a polynomial number of multivariate polynomials
Pu and Qv. The assumption underlying the security of our scheme is thus related
to the General Diffie-Hellman GDH problem [8], whose asymmetric version [12]
is recalled below.

Definition 1 (GDH assumption). Let r, s, t and c be four positive integers
and R ∈ Fp[X1, . . . , Xc]r, S ∈ Fp[X1, . . . , Xc]s, and T ∈ Fp[X1, . . . , Xc]t be three
tuples of multivariate polynomials over Fp. Let R(i), S(i) and T (i) denote the i-th
polynomial contained in R, S, and T. For any polynomial f ∈ Fp[X1, . . . , Xc],
we say that f is dependent on <R, S, T> if there are {aj}s

i=1 ∈ F
s
p \ {(0, . . . , 0)},

{bi,j}i=r,j=s
i,j=1 ∈ F

r·s
p and {ck}t

k=1 ∈ F
t
p such that

f(
∑

j

ajS
(j)) =

∑
i,j

bi,jR
(i)S(j) +

∑
k

ckT (k).

Let (x1, . . . , xc) be a secret vector. The GDH assumption states that, given
the values {gR(i)(x1,...,xc)}r

i=1, {g̃S(i)(x1,...,xc)}s
i=1 and {e(g, g̃)T (i)(x1,...,xc)}t

i=1, it
is hard to decide whether U = gf(x1,...,xc) or U is random if f is independent of
<R, S, T>.

Unfortunately, we cannot directly make use of this assumption unless we
severely restrict the size n of the strings that one can encrypt. In our proof,
presented in Sect. 4.2, one of the main important steps is showing that, even given
a number of keyword trapdoors (and in particular, the polynomials V associated
with those keywords), the adversary is unable to detect the presence of a fresh
keyword; consequently, we can bound the leakage on the input plaintexts by only
considering the adversary’s queries to the issuing oracle. This can be mapped
to an instance of GDH, but we will need the adversary to choose which of those
polynomials are input to the GDH instance.

If we did bound the size n of the plaintext, by making a guess on the
string Sβ = s

(β)
1 . . . s

(β)
m , one could define a GDH instance providing all the ele-

ments of the public parameters, the trapdoors for every word W that does not
match any of the substrings of Sβ containing s

(β)
i∗ , the elements {ga

i }n−1
i=0 and

{g
a·αsi
i }i∈[0,n−1]\{i∗} along with the challenge element U ∈ G1 associated with

the polynomial f = a · zi∗ · αsi∗ .
With such a GDH instance, the security proof becomes straightforward and

only requires a proof that f does not depend on the polynomials underlying
the provided elements. However, the reduction does not abort only if the initial
guess is valid, which occurs with probability 1

2n .
So either we require n to be small (say n ≤ 30, for example) or we choose

to rely on an interactive variant of the GDH assumption, in which the elements
gR(i)(x1,...,xc), g̃S(i)(x1,...,xc) and e(g, g̃)T (i)(x1,...,xc) can be queried to specific ora-
cles, to offer enough flexibility to the simulator.

The latter solution is less than ideal because it essentially makes the GDH
instance interactive and consequently our construction will end up offering less

138 N. Desmoulins et al.

security than a static assumption. Nevertheless, we argue that this solution
remains of interest for two reasons. The first is that it allows to construct a
quite efficient scheme with remarkable features: the size of the ciphertext is
independent of the ones of the searchable strings, and the size of the trapdoors
is independent of the size of the messages. Achieving this while being able to han-
dle any trapdoor query is not obvious and may justify the use of an interactive
assumption.

A second reason is that, intrinsically, the hardness of the GDH problem
(proven in the generic group model [8]) relies on the same argument as its inter-
active variant : as long as the “challenge” polynomial f does not depend on
<R, S, T>, gf(x1,...,xc) is indistinguishable from a random element of G1. The
fact that the sets R, S, and T are defined in the assumption or by the queries
to oracles does not fundamentally impact the proof. We therefore define the
interactive-GDH (i-GDH) assumption and show that our scheme can be proven
secure under it.

Definition 2 (i-GDH assumption). Let r, s, t, c, and k be five positive integers
and R ∈ Fp[X1, . . . , Xc]r, S ∈ Fp[X1, . . . , Xc]s and T ∈ Fp[X1, . . . , Xc]t be three
tuples of multivariate polynomials over Fp. Let OR (resp. OS and OT) be oracles
that, on input {{a(k)

i1,...,ic
}dk

ij=0}k, add the polynomials { ∑
i1,...,ic

a
(k)
i1,...,ic

∏
j

X
ij
j }k to

R (resp. S and T).
Let (x1, . . . , xc) be a secret vector and qR (resp qS) (resp. qT) be the

number of queries to OR (resp. OS) (resp. OT). The i-GDH assumption
states that, given the values {gR(i)(x1,...,xc)}r+k·qR

i=1 , {g̃S(i)(x1,...,xc)}s+k·qS
i=1 and

{e(g, g̃)T (i)(x1,...,xc)}t+k·qT
i=1 , it is hard to decide whether U = gf(x1,...,xc) or U

is random if f is independent of <R, S, T>.

4.2 Security Results

Theorem 3. The scheme described in Sect. 3 is SEST-sIND-CPA secure under
the i-GDH assumption for R, S, and T initially set as R = {(zi, xj · zi, a ·
zi)}i=2n−1,j=|S|−1

i=0,j=0 , S = T = ∅ and f = a · x0 · zn.

Proof. Let G
(β)
0 denote the Expsind−cpa−β

A game, as described in Sect. 2.2 – recall
that this is the selective version of the IND-CPA security notion. Moreover, let
S0 = s

(0)
0 . . . s

(0)
m−1 and S1 = s

(1)
0 . . . s

(1)
m−1 be the two substrings returned by A

at the beginning of the game. Our proof uses a sequence of games G
(β)
j , for

j = 1, . . . , n, to argue that the advantage of A is negligible. This is a standard
hybrid argument, in which at each game hop we randomize another element of
the challenge ciphertext.

Let I�= be the set of indexes i such that s
(0)
i �= s

(1)
i and I(j)

�= be the subset

containing the first j indexes of I�= (if j > |I�=|, then I(j)
�= = I�=). For j = 1, . . . , n,

game G
(β)
j modifies G

(β)
0 by switching the elements C ′

i of the challenge ciphertext

Pattern Matching on Encrypted Streams 139

to random elements of G1, for i ∈ I(j)
�= . Ultimately, in the last game, G

(β)
n , the

challenge ciphertext contains no meaningful information about s
(β)
i ∀i ∈ I�=, so

the adversary cannot distinguish whether it plays G
(0)
n or G

(1)
n .

In particular, we can write:

Advsind−cpa
A (1k, n)

= |Pr[Expsind−cpa−1
A (1k, n)] − Pr[Expsind−cpa−0

A (1k, n)]|
= |G(1)

0 (1k, n) − G
(0)
0 (1k, n)|

≤ ∑n−1
j=0 |G(1)

j (1k, n) − G
(1)
j+1(1

k, n)|
+|G(1)

n (1k, n) − G
(0)
n (1k, n)|

+
∑n−1

j=0 |G(0)
j+1(1

k, n) − G
(0)
j (1k, n)|

≤ ∑n−1
j=0 |G(1)

j (1k, n) − G
(1)
j+1(1

k, n)|
+

∑n−1
j=0 |G(0)

j+1(1
k, n) − G

(0)
j (1k, n)|.

In order to bound this result, we must prove that A cannot distinguish G
(β)
j

from G
(β)
j+1, which is formally stated by the lemma below.

Assuming that this lemma were proved, each term above is negligible under
the i-GDH assumption, which concludes the proof.

Lemma 4. For all j = 0, . . . , n−1 and β ∈ {0, 1}, the difference |Pr[Gβ
j (1k, n) =

1] − Pr[Gβ
j+1(1

k, n) = 1]| is negligible under the i-GDH assumption for R, S, and

T initially set as follows: R = {(zi, xj · zi, a · zi)}i=2n−1,j=|S|−1
i=0,j=0 , S = T = ∅ and

f = a · x0 · zn.

The proof is provided in the full version [19].

5 Handling Regular Expressions

Our solution, introduced in Sect. 3, allows for pattern matching of keywords of
arbitrary lengths, for ciphertexts emitted from arbitrary sources (we call this
having universal tokens). In this section, we extend our notion of keyword-
search to a more generic case, in which some of the keyword characters are
fully-unknown (wildcards) and some are only partially-unknown (in an interval
of size greater than 1).

Consider the general case in which one wants to search for substrings of the
form W = w0 . . . wt−1w

(St)
t wt+1 . . . w�−1 where w

(St)
t denotes any element from

the set St ⊂ S. For example, St can be the set [0-9] of all integers between 0 and 9.
A trivial solution could be to issue a trapdoor for every possible value of wt

but this would imply, for the gateway, to store the |St| resulting trapdoors and
to test each of them separately. This not only raises a question of efficiency, but
it also gives the gateway much more information on the input string. Intuitively,
at the end of the search, the gateway will not only be able to tell that a given
character is within a certain subset, but also which particular element of the
subset it corresponds to.

140 N. Desmoulins et al.

In the following, we show how to modify our construction to allow for two
notable regular expressions: wildcards and interval searches, without leaking any
additional information, and with a minimal efficiency loss.

5.1 Handling Wildcards

The first case we consider assumes W = w0 . . . w
(Si1)
i1

. . . w
(Sir)
ir

. . . w�−1 with

Si1 = ... = Sir = S, which means that w
(Si1)
i1

, . . . , w
(Sir)
ir

can take any value from
the set S and can consequently be seen as “wildcards”.

Informally, this implies that the (j + i1)-th,...,(j + ir)-th ciphertext elements
must not be taken into account when testing if Cj . . . Cj+�−1 encrypts W . This
leads to the following variant of our main protocol where only the Issue and
the Test algorithms differ (slightly) from the original ones.

– Issue(W, sk): Let D = {i1, . . . , ir}. The issuance process of a trapdoor tdW

for W = w0 . . . w
(Si1)
i1

. . . w
(Sir)
ir

. . . w�−1 is described by Algorithm 2.
The only difference with the original Issue algorithm is the additional con-
dition i /∈ D which ensures that V will have no monomial of degree i for
i ∈ D.

Ind[s] = 0 for all s ∈ S ;
L[i] = 0 for all i ∈ [0, � − 1];
V = 0, c = 0;
for i = 0, . . . , � − 1 do

if i /∈ D then
if L[Ind[wi]] = 0 then

L[c]
$← Zp, Ic ← {i};

c = c + 1;

else
IInd[wi] = IInd[wi] ∪ {i};

end

V = V + zi · αwi · L[Ind[wi]];
Ind[wi] = Ind[wi] + 1 ;

end

end

tdW ← (c, D, {Ij}c−1
j=0, {g̃L[j]}c−1

j=0, g̃
V);

Algorithm 2: Issue supporting wildcards

– Test(C, tdW): this algorithm remains unchanged except that the trapdoor
now contains the set D. The process still consists of checking if the equality

(1)
c−1∏
t=0

e(
∏
i∈It

C ′
j+i, g̃

L[t]) = e(Cj , g̃
V).

holds for j = 0, . . . ,m − �.

Pattern Matching on Encrypted Streams 141

One can note that this variant does not increase the complexity of our scheme.
Actually, this is the opposite: all the indexes in D are discarded in the product of
(1). Regarding security, one can note that the proof of Sect. 4 still applies here,
since the latter does not require the coefficients vi to be different from 0.

5.2 Handling General Subsets

Now let us consider the general case where the substring W one wants to search
contains w

(Si)
i for a subset Si � S. For example, Si can be the set [0,9] of all the

integers x ∈ [0, 9] or the set {a, . . . , z} of the letters of the Latin alphabet. Our
construction can actually be modified to handle this kind of searches provided
that: (1) the searchable sets Si are known in advance, and can be used during
the Keygen process; and (2) all these subsets are disjoint. We argue that both
conditions are reasonable since this is often the case for regular expressions.

5.3 The Protocol

– Setup(1k, n): Let (G1, G2, GT , e) be the description of type 3 bilinear groups
of prime order p, this algorithm selects g

$← G1 and g̃
$← G2 and returns

pp ← (G1, G2, GT , e, g, g̃, n).
– Keygen(S,S(1), . . . ,S(k)): This algorithm now takes as input k disjoint subsets

of S. We can assume, without loss of generality, that S = S(1)∪. . .∪S(k) since
we can simply add the complement of all previous sets if this is not the case.
The function f : S → {1, . . . , k} which maps any element s ∈ S to the index
of the set S(j) which contains it is thus perfectly defined. The algorithm then
selects |S| + k + 1 random scalars {αs}s∈S , β1, . . . , βk, z

$← Zp and computes
gi ← gzi

for i = 0, . . . , n − 1 along with (gαs
i , gβd

i) for d = 1, . . . , k and all
s ∈ S(d). The public key is then set to {gi}n−1

i=0 ∪k
d=1{(gαs

i , gβd

i)}i∈[0,n−1],s∈S(d)

and sk as {αs}s∈S , β1, . . . , βk, z.
– Encrypt(S, pk): To encrypt a string S = s0 . . . sm−1, where m ≤ n the user

selects a random scalar a and returns C = {(Ci, C
(1)
i , C

(2)
i)}m−1

i=0 , where Ci ←
ga

i , C
(1)
i ← (gαsi

i)a and C
(2)
i ← (g

βf(si)

i)a, for i = 1 . . . m.
– To issue a trapdoor tdW for a string W = w1 . . . w

(Si1)
i1

. . . w
(Sir)
ir

. . . w� of
length � ≤ n, the algorithm first checks that all the involved subsets have
been taken as input by the Keygen algorithm, i.e. Sij ∈ {S(1), . . . ,S(k)} for
j = 1, . . . , r, and returns ⊥ otherwise. The function h which maps every index
ij to the integer d ∈ {1, . . . , k} such that Sij = S(d) is thus correctly defined.
Let D = {i1, . . . , ir}, we modify the original Issue procedure as described in
Algorithm 3.

– Test(C, tdW): To test whether the string S encrypted by C contains the
substring W , the algorithm parses tdW as (c,D, {Ij}c−1

j=0, {g̃L[j]}c−1
j=0, g̃

V) and

C as {(Ci, C
(1)
i , C

(2)
i)}m−1

i=0 and checks, for j = 0, . . . , m − �, if the following
equation holds:

142 N. Desmoulins et al.

Ind[s] = 0 for all s ∈ S ;
Ind′[k] = 0 for all k ∈ [0, d − 1] ;
L[i] = 0 for all i ∈ [0, � − 1];
V = 0, c = 0;
for i = 0, . . . , � − 1 do

if i /∈ D then
if L[Ind[wi]] = 0 then

L[c]
$← Zp, Ic ← {i};

c = c + 1;

else
IInd[wi] = IInd[wi] ∪ {i};

end

V = V + zi · αwi · L[Ind[wi]];
Ind[wi] = Ind[wi] + 1 ;

else
if L[Ind′[h(i) − 1]] = 0 then

L[c]
$← Zp, Ic ← {i};

c = c + 1;

else
IInd′[h(i)−1] = IInd′[h(i)−1] ∪ {i};

end

V = V + zi · βh(i) · L[Ind′[h(i) − 1]];
Ind′[h(i) − 1] = Ind′[h(i) − 1] + 1 ;

end

end

tdW ← (c, D, {Ij}c−1
j=0, {g̃L[j]}c−1

j=0, g̃
V);

Algorithm 3: Issue supporting general subsets

c−1∏
t=0

e((
∏

i∈It∧i/∈D
C

(1)
j+i)(

∏
i∈It∧i∈D

C
(2)
j+i), g̃

L[t]) = e(Cj , g̃
V).

It then returns the set (potentially empty) J of indexes j for which there is
a match.

The values βj defined in this protocol can be seen as an encoding of the
subset S(j), in the same way as the scalars αs encode the characters s ∈ S.
Actually, it is as if we worked with a larger set S ′ containing S but also the
“characters” S(j). The fact that one encrypts using both encodings makes the
ciphertext compatible with any kind of trapdoors: if the i-th element of W is of
the form wj , we use C

(1)
j , whereas we use C

(2)
j for an element of the form w

(Sj)
j .

Correctness and security follow directly from the original construction.
Regarding efficiency, encrypting for both encodings adds an element of G1

by character to the ciphertext. Nevertheless, as we explain in the next section,

Pattern Matching on Encrypted Streams 143

working with a larger set S ′ allows to reduce the number of random scalars that
we need to generate the trapdoors, which leads to a faster Test procedure.

6 The Complexity of Our Scheme

We describe in this section the timings one can get for different parameters. But
first we discuss the different strategies for choosing the set S.

6.1 Generic Complexity

When considering data streams, the most relevant sets are the one of bits (i.e.
S = {0, 1}) or the one of bytes (i.e. S = {0, . . . , 255}). Larger sets (for example
the one containing all sequences of r bytes for some r > 1) would improve
the efficiency of the Test procedure but would harm our ability to detect all
patterns. We focus on four specific points: the sizes of (1) the public key, of (2)
the ciphertext and of (3) the trapdoor along with (4) the number of pairings
required to detect the presence of a pattern of size �.

1. The size of pk. Let n be the maximum number of bytes one can encrypt
with the protocol of Sect. 3.3. If S = {0, 1}, then the public key contains
(1+2)8n elements of G1 which amounts to 768n bytes using Barreto-Naehrig
(BN) [6] curves. If we now consider bytestrings (i.e. S = {0, . . . , 255}), then
pk contains (1 + 256)n elements of G1 which amounts to 8224n bytes using
the same curves.

2. The length of the ciphertext. Each character is encrypted by 2 elements
of G1 that represent 64 bytes. Therefore, encrypting m bytes requires 512m
bytes if S = {0, 1} and 64m bytes if S = {0, . . . , 255}.

3. The size of tdW . Our algorithm makes this evaluation much more difficult
to perform. Indeed, the fact that we can reuse the same random scalar for two
different characters wi �= wj implies that the size of tdW strongly depends on
the keyword W itself. For example, a “constant” keyword W = s . . . s of size �
would entail a trapdoor containing �+1 elements of G2. Conversely, a keyword
W = w0 . . . w�−1 with wi �= wj for i �= j would only require to store 2 elements
of G2. Nevertheless, we notice that larger sets decrease the probability of
having equal characters. More specifically, assuming uniform distribution of
the characters within a keyword, a trapdoor contains, on average, (1+ ��/2�)
elements of G2 if S = {0, 1} and only (1 + ��/256�) if S = {0, . . . , 255}. We
can then hope to gain a factor 128 in the latter case.

4. The number of pairings. The number of pairings one must compute to
test the presence of a keyword W of length � within an encrypted string
is related to the size of the corresponding trapdoor tdW . More specifically, if
tdW contains N elements of G2, then one must perform N(m−�+1) pairings,
where m is the length of the encrypted string. Therefore, a shorter trapdoor
implies a more efficient Test procedure, which means that it is better to work
with S = {0, . . . , 255} than with S = {0, 1}.

144 N. Desmoulins et al.

Public key aside, we note that working on bytes instead of bits allows to
significantly decrease complexity. Our timings then correspond to the case where
S = {0, . . . , 255}.

6.2 Implementation of SEST for DPI

As we explain, evaluating the size of the trapdoors, and therefore the number
of pairings requires to make assumptions about the distribution of the key-
words. Previous estimations assumed a uniform distribution of the latter, which
is unlikely in practice. We therefore evaluate our protocol on the SNORT public
rules set [1] to provide a more concrete estimation3.

The SNORT rules set contains thousands of rules which mostly consist in
searching some specific patterns in a stream. We parsed all these rules and
got 6048 different patterns. Figure 3 describes the sizes of the corresponding
trapdoors.

Fig. 3. Number of trapdoors of size N , where N is the number of elements of G2.
In other words, among the 6048 trapdoors generated for the SNORT rules set, 2076
contain 2 elements of G2, 1879 contain 3 elements of G2, and so on.

This table highlights the advantage of our issuing protocol: even for large
patterns we manage to keep most of the time short trapdoors thanks to the
re-use (when possible) of the random scalars. The whole trapdoors set thus only
amounts to 1.35 MB.

Since the number of pairings is related to the size of the trapdoors, one could
try to deduce from this table the total number of pairings required to test all
SNORT patterns. However, we stress that this would only be a quite inaccurate
upper bound. First, because many of these patterns are part of the same rule
which enables to avoid unnecessary tests: if there is no match for a pattern
defined by a rule, then it is pointless to test the other ones within the same
rule. Second, because many rules include parameters called “depth”, “offset”,
“distance” or “within” which allow to reduce the search to a smaller part of the
stream.

The number of pairings for the whole SNORT rules set is thus significantly
smaller than the one we could expect from the complexity evaluation we provide
in Sect. 6.1. Moreover, we recall that the optimal Ate pairing [34] that we use
to instantiate the map e can be split into two parts that are usually called the
3 We stress that the only goal of this section is to provide timings on a concrete and

non-artificial set of patterns. We chose the DPI use-case for which searching on
encrypted streams is particularly relevant. But we obviously do not claim that our
solution is practical enough to handle all Internet traffic worldwide.

Pattern Matching on Encrypted Streams 145

Fig. 4. Timings for encrypting a string of m bytes and searching a pattern of 100 bytes
within it.

Miller loop and the final exponentiation. The latter, which roughly represents
half of the computational cost of a pairing, can be performed once for all the
pairings involved in the same equality test, which allows to further reduce the
complexity of the Test procedure.

We ran an experiment on a stream of 1500 bytes using a computer running
Linux 4.13 and equipped with an Intel E5-1620 3.70 GHz processor. Testing all
Snort rules took 28 min. This is obviously too much for online analysis but we
stress that alternatives (e.g. FHE) offering the same features would be even more
complex. Moreover, this corresponds to testing thousands of patterns on a single
computer: by using parallelization and more powerful hardware, one could hope
to dramatically reduce these timings.

Finally, we provide in Fig. 4 the timings of the Encrypt and the Test algo-
rithms for larger strings (up to 30 KB). It shows that encryption remains quite
efficient even for large strings. The Test algorithm is obviously slower since it
implies pairings computations but it takes (approximatively) only one second
for strings of few kilobytes.

7 Conclusion

In this work, we introduced the concept of searchable encryption with shiftable
trapdoors (SEST). This type of construction provides a practical solution to the
generic problem of pattern matching with universal tokens. Notably, we are the
first to provide a searchable encryption alternative that allows for arbitrarily-
chosen keywords of arbitrary length, which can be applied to any ciphertext
encrypted with the generated public key in this system. In particular, since we
do not rely on symmetric keys, multiple entities can use the same public key to
encrypt. Moreover, our construction is also highly usable for encrypted streams
of data (we need no backtracking), and it returns the exact position at which the
pattern occurs. Our instantiation of the SEST primitive uses bilinear pairings,
and we allow for some regular expressions such as wildcards, or partial keywords
in which we know some entries to be within a given interval.

Beyond applications in deep-packet inspection, the fact that our algorithm
essentially follows the approach of Rabin-Karp allows us to also use that same
algorithm for application scenarios such as searching on structured data, match-
ing subtrees to labelled trees, delegated searches on medical data (compiled from
multiple institutions), or 2D searches.

We propose a main construction, which we adapt to accounting for wildcards
and for interval searches. The former adaptation is relatively simple, since the

146 N. Desmoulins et al.

issued trapdoor just contains zero coefficients for the wildcards. For the interval
searches we need to modify our key generation algorithm, providing special ele-
ments that we map interval characters to; however, this only works for intervals
which are known in advance.

Our scheme provides trapdoors for the keywords which are at most linear in
the size of the keywords only, and the size of the ciphertexts is linear in the size
of the plaintext size. Although our public keys are large (linear in the size of
the maximal plaintext size), we do achieve a complete decorrelation between the
plaintext encryption and the trapdoor generation for the keywords. Our scheme
provides in practice an almost linear – in the size of the plaintext – complexity (in
terms of the number of pairings). Our implementation results for the publicly-
given SNORT rules show that while the encryption algorithm scales well with
the plaintext size, the testing algorithm – which is slower – will benefit from the
fact that it is fully parallelizable.

We prove the security of our scheme under an interactive version of the GDH
assumption. Our modification of this assumption is relatively minor, allowing
the adversary to choose on which input to play the GDH instance. We also
argue that our construction offers an interesting tradeoff between the secure,
but quite cumbersome, systems based on existing cryptographic primitives and
the fast, but unsecure, current solutions where the gateway decrypts the traffic.
Moreover, we hope that the practical applications of this primitive will incite
new work on this subject, in particular to construct new schemes which would
rely on standard assumptions.

Acknowledgments. Nicolas Desmoulins and Olivier Sanders were supported in part
by the French ANR Project ANR-16-CE39-0014 PERSOCLOUD. Pierre-Alain Fouque
and Cristina Onete are grateful for the support of the ANR through project 16 CE39
0012 (SafeTLS).

References

1. https://www.snort.org/
2. Abdalla, M., et al.: Searchable encryption revisited: consistency properties, rela-

tion to anonymous IBE, and extensions. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005). https://doi.org/10.
1007/11535218 13

3. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

4. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40084-1 28

5. Baron, J., El Defrawy, K., Minkovich, K., Ostrovsky, R., Tressler, E.: 5PM: secure
pattern matching. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol.
7485, pp. 222–240. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32928-9 13

https://www.snort.org/
https://doi.org/10.1007/11535218_13
https://doi.org/10.1007/11535218_13
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-642-32928-9_13
https://doi.org/10.1007/978-3-642-32928-9_13

Pattern Matching on Encrypted Streams 147

6. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

7. Beuchat, J.-L., González-Dı́az, J.E., Mitsunari, S., Okamoto, E., Rodŕıguez-
Henŕıquez, F., Teruya, T.: High-speed software implementation of the optimal ate
pairing over Barreto–Naehrig curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.)
Pairing 2010. LNCS, vol. 6487, pp. 21–39. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17455-1 2

8. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

9. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

10. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 26

11. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

12. Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85538-5 3

13. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 306–324.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 12

14. Canard, S., Diop, A., Kheir, N., Paindavoine, M., Sabt, M.: BlindIDS: market-
compliant and privacy-friendly intrusion detection system over encrypted traffic.
In: Karri, R., Sinanoglu, O., Sadeghi, A.-R., Yi, X. (eds.) Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security, AsiaCCS
2017, Abu Dhabi, United Arab Emirates, 2–6 April 2017, pp. 561–574. ACM (2017)

15. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

16. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 33

17. Chase, M., Shen, E.: Substring-searchable symmetric encryption. PoPETs 2015(2),
263–281 (2015)

18. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: Juels, A., Wright,
R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 06, pp. 79–88. ACM Press,
October/November 2006

19. Desmoulins, N., Fouque, P.-A., Onete, C., Sanders, O.: Pattern matching on
encrypted streams (full version). IACR Cryptology ePrint Archive 2017:148 (2017)

20. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

21. Gennaro, R., Hazay, C., Sorensen, J.S.: Automata evaluation and text search pro-
tocols with simulation-based security. J. Cryptol. 29(2), 243–282 (2016)

https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-642-17455-1_2
https://doi.org/10.1007/978-3-642-17455-1_2
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-642-40084-1_26
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-662-46497-7_12
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-642-17373-8_33

148 N. Desmoulins et al.

22. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009

23. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. J. Cryptol. 23(3), 422–456
(2010)

24. Huang, L.-S., Rice, A., Ellingsen, E., Jackson, C.: Analyzing forged SSL certificates
in the wild. In: 2014 IEEE Symposium on Security and Privacy, pp. 83–97. IEEE
Computer Society Press, May 2014

25. Jarmoc, J.: SSL/TLS interception proxies and transitive trust. Presentation at
Black Hat Europe (2012)

26. Katz, J., Malka, L.: Secure text processing with applications to private DNA match-
ing. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 10, pp.
485–492. ACM Press, October 2010

27. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. J. Cryptol. 26(2), 191–224 (2013)

28. Lauter, K., López-Alt, A., Naehrig, M.: Private computation on encrypted genomic
data. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895,
pp. 3–27. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16295-9 1

29. Mohassel, P., Niksefat, S., Sadeghian, S., Sadeghiyan, B.: An efficient protocol
for oblivious DFA evaluation and applications. In: Dunkelman, O. (ed.) CT-RSA
2012. LNCS, vol. 7178, pp. 398–415. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-27954-6 25

30. Naylor, D., et al.: Multi-context TLS (mcTLS): enabling secure in-network func-
tionality in TLS. In: Proceedings of SIGCOMM 2015, pp. 199–212. ACM (2015)

31. Sherry, J., Lan, C., Popa, R.A., Ratnasamy, S.: BlindBox: deep packet inspec-
tion over encrypted traffic. In: Uhlig, S., Maennel, O., Karp, B., Padhye, J. (eds.)
SIGCOMM 2015, pp. 213–226. ACM, August 2015

32. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: 2000 IEEE Symposium on Security and Privacy, pp. 44–55. IEEE Com-
puter Society Press, May 2000

33. Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving error
resilient DNA searching through oblivious automata. In: Ning, P., De Capitani
di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 07, pp. 519–528. ACM Press,
October 2007

34. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010)

https://doi.org/10.1007/978-3-319-16295-9_1
https://doi.org/10.1007/978-3-642-27954-6_25
https://doi.org/10.1007/978-3-642-27954-6_25

	Pattern Matching on Encrypted Streams
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Benefits of SEST
	1.4 Pattern Matching and Privacy

	2 Searchable Encryption with Shiftable Trapdoors
	2.1 Syntax
	2.2 Security Model

	3 Our Construction
	3.1 Bilinear Groups
	3.2 Intuition
	3.3 The Protocol

	4 Security Analysis
	4.1 Complexity Assumptions
	4.2 Security Results

	5 Handling Regular Expressions
	5.1 Handling Wildcards
	5.2 Handling General Subsets
	5.3 The Protocol

	6 The Complexity of Our Scheme
	6.1 Generic Complexity
	6.2 Implementation of SEST for DPI

	7 Conclusion
	References

