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Élise Barelli and Alain Couvreur(B)
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Abstract. We present an efficient key recovery attack on code based
encryption schemes using some quasi-dyadic alternant codes with exten-
sion degree 2. This attack permits to break the proposal DAGS recently
submitted to NIST.
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1 Introduction

In 1978, in the seminal article [21], McEliece designed a public key encryption
scheme relying on the hardness of the bounded decoding problem [7], i.e. on
the hardness of decoding an arbitrary code. For a long time, this scheme was
considered as unpractical because of the huge size of the public keys compared
to public key encryption schemes relying on algorithmic number theoretic prob-
lems. The trend changed in the last decade because of the progress of quantum
computing and the increasing threat of the existence in a near future of a quan-
tum computer able to break usual cryptography primitives based on number
theoretic problems. An evidence for this change of trend is the recent call of
the National Institute for Standards and Technology (NIST) for post quantum
cryptography. The majority of the submissions to this call are based either on
codes or on lattices.

After forty years of research on code based cryptography, one can identify
two general trends for instantiating McEliece’s scheme. The first one consists in
using codes from probabilistic constructions such as MDPC codes [1,23]. The
other one consists in using algebraic codes such as Goppa codes or more generally
alternant codes. A major difference between these two families of proposals is
that the first one, based on MDPC codes benefits in some cases from clean
security reductions to the decoding problem.

Concerning McEliece instantiations based on algebraic codes, which include
McEliece’s original proposal based on binary Goppa codes, two approaches have
been considered in order to address the drawback of the large of pubic key sizes.
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On the one hand, some proposals suggested to replace Goppa or alternant codes
by more structured codes such as generalised Reed-Solomon (GRS) codes [24],
their low dimensional subcodes [6], or GRS codes to which various transforma-
tions have been applied [2,29,30]. It turns out that most of these proposals have
been subject to polynomial time key-recovery attacks [9,13,28,31]. In addition,
proposals based on Goppa codes which are close to GRS codes, namely Goppa
code with a low extension degree m have been the target of some structural
attacks [12,17]. On the other hand, many proposals suggest the use of codes
with a non trivial automorphism group [5,18,22,26]. A part of these proposals
has been either partially or completely broken [15,16,25]. In particular, in the
design of such proposals, precautions should be taken since the knowledge of a
non trivial automorphism group of the public code facilitates algebraic attacks
by significantly reducing the degrees and number of variables of the algebraic
system to solve in order to recover the secret key.

Among the recent submissions to NIST call for post quantum cryptography,
a proposal called DAGS [3] is based on the use of quasi-dyadic (QD) generalised
Srivastava codes with extension degree m = 2. By quasi-dyadic we mean that the
permutation group of the code is of the form (Z/2Z)γ for some positive integer γ.
Moreover, generalised Srivastava codes form a proper subclass of alternant codes.
DAGS proposal takes advantage of both usual techniques to reduce the size of
the keys. First, by using alternant codes which are close to generalised Reed
Solomon codes i.e. with an extension degree 2. Second, by using codes with
a large permutation group. In terms of security with respect to key recovery
attacks, DAGS parameters are chosen to be out of reach of the algebraic attacks
[15,16]. In addition, it should be emphasised that the choice of alternant codes
which are not Goppa codes permits to be out of reach of the distinguisher by
shortening and squaring used in [12].

Our Contribution. In this article, we present an attack breaking McEliece instan-
tiations based on alternant codes with extension degree 2 and a large permuta-
tion group. This attack permits to recover the secret key in O

(
n3+ 2q

|G|
)

opera-
tions in Fq, where G denotes the permutation group, n the code length and Fq

is the base field of the public code. The key step of the attack consists in finding
some subcode of the public code referred to as D . From this code D and using
an operation we called conductor, the secret key can easily be recovered. For
this main step, we present two ways to proceed, the first approach is based on
a partial brute force search while the second one is based on the resolution of
a polynomial system of degree 2. An analysis of the work factor of this attack
using the first approach shows that DAGS keys with respective estimated secu-
rity levels 128, 192 and 256 bits can be broken with respective approximate work
factors 270, 280 and 258. For the second approach, we were not able to provide
a complexity analysis. However, its practical implementation using Magma [8]
is impressively efficient on some DAGS parameters. In particular, it permits to
break claimed 256 bits security keys in less than one minute!
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This attack is a novel and original manner to recover the structure of alter-
nant codes by jointly taking advantage of the permutation group and the small
size of the extension degree. Even if some variant of the attack reposes on the
resolution of a polynomial system, this system has nothing to do with those of
algebraic attacks of [15–17]. On the other hand, despite this attack shares some
common points with that of [12] where the Schur product of codes (See Sect. 3
for a definition) plays a crucial role, the keys we break in the present article are
out of reach of a distinguisher by shortening and squaring and hence our attack
differs from filtration attacks as in [10,12].

It is worth noting that reparing DAGS scheme in order to resist to the present
attack is possible. Recently, the authors presented new parameter sets which are
out of reach of the first version of the attack. These new parameters are available
on the current version of the proposal1.

2 Notation and Prerequisites

2.1 Subfield Subcodes and Trace Codes

Definition 1. Given a code C of length n over Fqm , its subfield subcode is the
subcode of vectors whose entries all lie in Fq, that is the code:

C ∩ F
n
q .

The trace code is the image of the code by the component wise trace map

TrFqm/Fq
(C )

def
=

{
TrFqm/Fq

(c) | c ∈ C
}

.

Let us recall a classical and well-known result on subfield subcodes and trace
codes.

Theorem 1 (Delsarte Theorem [14]). Let C ⊆ F
n
qm be a code. Then

(C ∩ F
n
q )⊥ = TrFqm/Fq

(C⊥).

2.2 Generalised Reed-Solomon Codes and Alternant Codes

Notation 1. Let q be a power of prime and k a positive integer. We denote by
Fq[z]<k the vector space of polynomials over Fq whose degree is bounded from
above by k. Let m be a positive integer, we will consider codes over Fqm with
their subfield subcodes over Fq. In Sect. 3 and further, we will focus particularly
on the case m = 2.

Definition 2 (Supports and multipliers). A vector x ∈ F
n
qm whose entries

are pairwise distinct is called a support. A vector y ∈ F
n
qm whose entries are all

nonzero is referred to as a multiplier.
1 https://dags-project.org/pdf/DAGS spec.pdf.

https://dags-project.org/pdf/DAGS_spec.pdf
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Definition 3 (Generalised Reed-Solomon codes). Let n be a positive
integer, x ∈ F

n
qm be a support and y ∈ F

n
qm be a multiplier. The generalised

Reed-Solomon (GRS) code with support x and multiplier y of dimension k is
defined as

GRSk(x,y)
def
= {(y1f(x1), . . . , ynf(xn)) | f ∈ Fqm [z]<k} .

When y = 1, the code is a Reed-Solomon code and is denoted as RSk(x).

The dual of a GRS code is a GRS code too. This is made explicit in Lemma 1
below. Let us first introduce an additional notation.

Notation 2. Let x ⊆ F
n
qm be a support, we define the polynomial πx ∈ Fqm [z]

as

πx(z) def=
n∏

i=1

(z − xi).

Lemma 1. Let x,y ∈ F
n
qm be a support and a multiplier of length n and k � n.

Then
GRSk(x,y)⊥ = GRSn−k(x,y⊥),

where

y⊥ def
=

(
1

π′
x(x1)y1

, . . . ,
1

π′
x(xn)yn

)
,

and π′
x denotes the derivative of the polynomial πx .

Definition 4 (Alternant code). Let m, n be positive integers such that n �
qm. Let x ∈ F

n
qm be a support, y ∈ F

n
qm be a multiplier and r be a positive integer.

The alternant code of support x, multiplier y and degree r over Fq is defined as

Ar(x,y)
def
= GRSr(x,y)⊥ ∩ F

n
q .

The integer m is referred to as the extension degree of the alternant code.

As a direct consequence of Lemma 1 and Definition 4, we get the following
explicit description of an alternant code.

Ar(x,y) =

{(
1

π′
x(xi)yi

f(xi)
)

i=1,...,n

∣∣∣∣∣ f ∈ Fqm [z]<n−r

}
∩ F

n
q . (1)

Next, by duality and using Delsarte’s Theorem (Theorem1), we have

Ar(x,y)⊥ = TrFqm/Fq

({
(yig(xi))i=1,...,n

∣∣∣ g ∈ Fqm [z]<r

})
. (2)

We refer the reader to [20, Chap. 12] for further properties of alternant codes.
Recall that the code Ar(x,y) defined in Definition 4 has dimension k � n −
mr and equality holds in general. Moreover, these codes benefit from efficient
decoding algorithms correcting up to � r

2� errors (see [20, Chap. 12 Sect. 9]).
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Fully Non Degenerate Alternant Codes. We conclude this subsection on
alternant codes by a definition which is useful in the sequel.

Definition 5. An alternant code Ar(x,y) is said to be fully non degenerate if
it satisfies the two following conditions.

(i) A generator matrix of Ar(x,y) has no zero column.
(ii) Ar(x,y) �= Ar+1(x,y).

Most of the time, an alternant code is fully non degenerate.

2.3 Punctured and Shortened Codes

The notions of puncturing and shortening are classical ways to build new codes
from existing ones. We recall here their definition.

Definition 6. Let C be a code of length n and I ⊆ {1, . . . , n}. The puncturing
and the shortening of C at I are respectively defined as the codes

PI (C )
def
= {(ci)i∈{1,...,n}\I | c ∈ C },

SI (C )
def
= {(ci)i∈{1,...,n}\I | c ∈ C such that ∀i ∈ I, ci = 0}.

Let us finish by recalling the following classical result.

Notation 3. Let x ∈ F
n
qm be a vector and I ⊆ {1, . . . , n}. Then, the vector xI

denotes the vector obtained from x be removing the entries whose indexes are
in I.

Proposition 1. Let m, r be positive integers. Let x,y ∈ F
n
qm be as in Defini-

tion 4. Let I ⊆ {1, . . . , n}. Then

SI (Ar(x,y)) = Ar(xI ,yI).

Proof. See for instance [12, Proposition 9]. 	


2.4 Quasi-dyadic Codes, Quasi-dyadic Alternant Codes

Quasi-dyadic (QD) codes are codes with a nontrivial permutation group isomor-
phic to (Z/2Z)γ for some positive integer γ. Such a code has length n = 2γn0.
The permutation group of the code is composed of permutations, each one being
a product of transpositions with disjoint supports. The example of interest in
the present article is the case of QD-alternant codes. In what follows, we explain
how to create them.

Notation 4. From now on, q denotes a power of 2 and � denotes the positive
integer such that q = 2�.
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– Let G ⊂ Fqm be an additive subgroup with γ generators, i.e. G is an F2-vector
subspace of Fqm of dimension γ with an F2-basis a1, . . . , aγ . Clearly, as an
additive group, G is isomorphic to (Z/2Z)γ . The group G acts on Fqm by
translation: for any a ∈ G, we denote by τa the translation

τa :
{
Fqm −→ Fqm

x 
−→ x + a
.

– Using the basis (a1, . . . , aγ), we fix an ordering in G as follows. Any element
u1a1 + · · · + uγaγ ∈ G can be regarded as an element (u1, . . . , uγ) ∈ (Z/2Z)γ

and we sort them by lexicographic order. For instance, if γ = 3:

0 < a1 < a2 < a1 + a2 < a3 < a1 + a3 < a2 + a3 < a1 + a2 + a3.

– Let n = 2γn0 for some positive n0 and such that n � qm. Let x ∈ F
n
qm be a

support which splits into n0 blocks of 2γ elements of Fqm , each block being an
orbit under the action of G by translation on Fqm sorted using the previously
described ordering. For instance, suppose γ = 2, then such an x is of the
form,

x = (t1, t1 + a1, t1 + a2, t1 + a1 + a2, . . . ,
. . . , tn0 , tn0 + a1, tn0 + a2, tn0 + a1 + a2),

(3)

where the ti’s are chosen to have disjoint orbits under the action of G by
translation on Fqm .

– Let y ∈ F
n
qm be a multiplier which also splits into n0 blocks of length 2γ

whose entries are equal.
– Let r be a positive integer and consider the code Ar(x,y).
– The set of entries of x is globally invariant under the action of G by transla-

tion. In particular, for any a ∈ G, the translation τa induces a permutation of
the code Ar(x,y). We refer this permutation to as σa. For instance, reconsid-
ering Example (3), the permutations σa1 and σa1+a2 are respectively of the
form

σa1 = (1, 2)(3, 4) · · · (n − 3, n − 2)(n − 1, n)
σa1+a2 = (1, 4)(2, 3) · · · (n − 3, n)(n − 2, n − 1).

The group of permutations {σa | a ∈ G} is isomorphic to G and hence to
(Z/2Z)γ . For convenience, we also denote this group of permutations by G.

Proposition 2. For any r > 0, the code Ar(x,y) is quasi-dyadic.

Proof. See for instance [27, Chap. 5]. 	


2.5 Invariant Subcode of a Quasi-dyadic Code

Definition 7. Given a code C with a non-trivial permutation group G, we define
the code C G as the subcode of C :

C G def
= {c ∈ C | ∀σ ∈ G, σ(c) = c}.
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The invariant subcode has repeated entries since on any orbit of the support
under the action of G, the entries of a codeword are equal. This motivates an
alternative definition of the invariant code where repetitions have been removed.

Definition 8. In the context of Definition 7, let c ∈ F
n
qm be a vector such that

for any σ ∈ G, σ(c) = c. We denote by c the vector obtained by keeping only one
entry per orbit under the action of G on the support. We define the invariant
code with non repeated entries as

C
G def

=
{
c | c ∈ C G}

.

We are interested in the structure of invariant of QD alternant codes. To
study this structure, we first need to recall some basic notions of additive poly-
nomials.

Additive polynomials

Definition 9. An additive polynomial P ∈ Fqm [z] is a polynomial whose mono-
mials are all of the form z2

i

for i � 0. Such a polynomial satisfies P (a + b) =
P (a) + P (b) for any a, b ∈ Fqm .

The zero locus of an additive polynomial in Fqm is an additive subgroup of
Fqm and such polynomials satisfy some interpolation properties.

Proposition 3. Let G ⊂ Fqm be an additive group of cardinality 2γ . There
exists a unique additive polynomial ψG ∈ Fqm [z] which is monic of degree 2γ and
vanishes at any element of G.
Proof. See [19, Proposition 1.3.5 & Lemma 1.3.6]. 	

Notation 5. From now on, given an additive subgroup G ⊆ Fqm , we always
denote by ψG the unique monic additive polynomial of degree |G| in Fqm [z] that
vanishes on G.

Invariant of a Quasi-dyadic Alternant Code. It turns out that the invariant
code with non repeated entries of a QD alternant code is an alternant code too.
This relies on the following classical result of invariant theory for which a simple
proof can be found in [15].

Theorem 2. Let f ∈ Fqm [z] and G ⊂ Fqm be an additive subgroup. Suppose that
for any a ∈ G, f(z) = f(z + a). Then, there exists h ∈ Fqm [z] such that f(z) =
h(ψG(z)), where ψG is the monic additive polynomial of degree |G| vanishing at
any element of G.

This entails the following result on the structure of the invariant code of
an alternant code. We refer to Definition 8 for the notation in the following
statement.

Theorem 3. Let C = Ar(x,y) be a QD-alternant code with permutation group
G of order 2γ . Set r′ =

⌊
r
2γ

⌋
. Then,

C
G

= Ar′(ψG(x),y),

Proof. See [4]. 	
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2.6 DAGS

Among the schemes recently submitted to NIST, the submission DAGS [3] uses
as a primitive a McEliece encryption scheme based on QD generalised Srivastava
codes. It is well known that generalised Srivastava codes form a subclass of
alternant codes [20, Chap. 12]. Therefore, this proposal lies in the scope of the
attack presented in what follows.

Parameters proposed in DAGS submission are listed in Table 1.

Table 1. Parameters proposed in DAGS.

Name q m n n0 k k0 γ r0

DAGS 1 25 2 832 52 416 26 4 13

DAGS 3 26 2 1216 38 512 16 5 11

DAGS 5 26 2 2112 33 704 11 6 11

Let us recall what do the parameters q,m, n, n0, k, k0, γ, r0 stand for:

– q denotes the size of the base field of the alternant code;
– m denotes the extension degree. Hence the GRS code above the alternant

code is defined over Fqm ;
– n denotes the length of the QD alternant code;
– n0 denotes the length of the invariant code with non repeated entries
Ar(x,y)

G
, where G denotes the permutation group;

– k denotes the dimension of the QD alternant code;
– k0 denotes the dimension of the invariant code;
– γ denotes the number of generators of G, i.e. G � (Z/2Z)γ ;
– r0 denotes the degree of the invariant code with non repeated entries, which

is alternant according to Theorem3.

Remark 1. The indexes 1, 3 and 5 in the parameters names correspond to secu-
rity levels according to NIST’s call. Level 1, corresponds to 128 bits security
with a classical computer, Level 3 to 192 bits security and Level 5 to 256 bits
security.

In addition to the set of parameters of Table 1, we introduce self chosen
smaller parameters listed in Table 2. They do not correspond to claimed secure
instantiations of the scheme but permitted to test some of our assumptions by
computer aided calculations.

3 Schur Products

From now on and unless otherwise specified, the extension degree m will be equal
to 2. This is the context of any proposed parameters in DAGS.
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Table 2. Small scale parameters, not proposed in DAGS.

Name q m n n0 k k0 γ r0

DAGS 0 24 2 240 15 80 5 4 5

3.1 Product of Vectors

The component wise product of two vectors in F
n
q is denoted by

a � b
def= (a1b1, . . . , anbn).

Next, for any positive integer t we define a�t as

a�t def= a � · · · � a︸ ︷︷ ︸
t times

.

More generally, given a polynomial P ∈ Fq[z] we define P (a) as the vector
(P (a1), . . . , P (an)). In particular, given a ∈ F

n
q2 , we denote by Tr(a) and N(a)

the vectors obtained by applying respectively the trace and the norm map com-
ponent by component:

Tr(a) def= (a1 + aq
1, . . . , an + aq

n)

N(a) def= (aq+1
1 , . . . , aq+1

n ).

Finally, the all one vector (1, . . . , 1), which is the unit vector of the algebra F
n
q

with operations + and � is denoted by 1.

3.2 Schur Product of Codes

The Schur product of two codes A and B ⊆ F
n
q is defined as

A � B
def= 〈a � b | a ∈ A , b ∈ B〉

Fq
.

In particular, A �2 denotes the square code of a code A : A �2 def= A � A .

3.3 Schur Products of GRS and Alternant Codes

The behaviour of GRS and of some alternant codes with respect to the Schur
product is very different from that of random codes. This provides a manner to
distinguish GRS codes from random ones and leads to a cryptanalysis of GRS
based encryption schemes [9,13,31]. Some alternant codes, namely Wild Goppa
codes with extension degree 2 have been also subject to a cryptanalysis based
on Schur products computations [11,12].

Here we recall an elementary but crucial result.



102 É. Barelli and A. Couvreur

Theorem 4. Let x ∈ F
n
qm be a support and y,y′ ∈ F

n
qm be multipliers. Let k, k′

be two positive integers, then

GRSk(x,y) � GRSk′(x,y′) = GRSk+k′−1(x,y � y′).

Proof. See for instance [9, Proposition 6]. 	


4 Conductors

In this section, we introduce a fundamental object in the attack to follow. This
object was already used in [10,12] without being named. We chose here to call
it conductor. The rationale behind this terminology is explained in Remark 2.

Definition 10. Let C and D be two codes of length n over Fq. The conductor
of D into C is defined as the largest code Z ⊆ F

n
q such that D � Z ⊆ C . That

is:
Cond(D ,C )

def
= {u ∈ F

n
q | u � D ⊆ C }.

Proposition 4. Let D ,C ⊆ F
n
q be two codes, then

Cond(D ,C ) =
(
D � C⊥)⊥

.

Proof. See [10,12]. 	

Remark 2. The terminology conductor has been borrowed from number theory
in which the conductor of two subrings O,O′ of the ring of integers OK of a
number field K is the largest ideal P of OK such that P · O ⊆ O′.

4.1 Conductors of GRS Codes

Proposition 5. Let x,y ∈ F
n
qm be a support and a multiplier. Let k � k′ be two

integers less than n. Then,

Cond(GRSk(x,y),GRSk′(x,y)) = RSk′−k+1(x).

Proof. Let E denote the conductor. From Proposition 4 and Lemma 1,

E ⊥ = GRSk(x,y) � GRSn−k′(x,y⊥) = GRSn−k′+k−1(x,y � y⊥).

Note that

y � y⊥ =
(

1
π′
x(x1)

, . . . ,
1

π′
x(xn)

)
.

Then, using Lemma 1 again, we get

E = GRSk′−k+1(x, (y � y⊥)
⊥

) = RSk′−k+1(x).

	

Let us emphasize a very interesting aspect of Proposition 4. We considered

the conductor of a GRS code into another one having the same support and
multiplier. The point is that the conductor does not depend on y. Hence the
computation of a conductor permits to get rid of the multiplier and to obtain a
much easier code to study: a Reed-Solomon code.
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4.2 An Illustrative Example: Recovering the Structure of GRS
Codes Using Conductors

Before presenting the attack on QD-alternant codes, we propose first to describe
a manner to recover the structure of a GRS code. This may help the reader to
understand the spirit the attack to follow.

Suppose we know a generator matrix of a code Ck = GRSk(x,y) where
(x,y) are unknown. In addition, suppose that we know a generator matrix of the
subcode Ck−1 = GRSk−1(x,y) which has codimension 1 in Ck. First compute
the conductor

X = Cond(Ck−1,Ck).

From Proposition 5, the conductor X equals RS2(x). This code has dimension
2 and is spanned by 1 and x. We claim that, from the knowledge of X , a pair
(x′,y′) such that Ck = GRSk(x′,y′) can be found easily by using techniques
which are very similar from those presented further in Sect. 6.6.

Of course, there is no reason that we could know both GRSk(x,y) and
GRSk−1(x,y). However, we will see further that the quasi-dyadic structure per-
mits to find interesting subcodes whose conductor may reveal the secret structure
of the code.

4.3 Conductors of Alternant Codes

When dealing with alternant codes, having an exact description of the conduc-
tors like in Proposition 5 becomes difficult. We can at least prove the following
theorem.

Proposition 6. Let x,y ∈ F
n
q2 be a support and a multiplier. Let r′ � r be two

positive integers. Then,

RSr′−r+1(x) ∩ F
n
q ⊆ Cond(Ar′(x,y),Ar(x,y)). (4)

Proof. Consider the Schur product
(
RSr′−r+1(x) ∩ F

n
q

)
�Ar′(x,y)

=
(
RSr′−r+1(x) ∩ F

n
q

)
� (GRSn−r′(x,y⊥) ∩ F

n
q )

⊆ (RSr′−r+1(x) � GRSn−r′(x,y⊥)) ∩ F
n
q .

Next, using Theorem 4,
(
RSr′−r+1(x) ∩ F

n
q

)
� Ar′(x,y) ⊆ GRSn−r(x,y⊥) ∩ F

n
q

⊆ Ar(x,y).

The last inclusion is a consequence of Lemma 1 and Definition 4. 	
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4.4 Why the Straightforward Generalisation Of the Illustrative
Example Fails for Alternant Codes

Compared to Proposition 5, Proposition 6 provides only an inclusion. However,
it turns out that we experimentally observed that the equality frequently holds.

On the other hand, even if inclusion (4) was an equality, the attack described
in Sect. 3.2 could not be straightforwardly generalised to alternant codes. Indeed,
suppose we know two alternant codes with consecutive degrees Ar+1(x,y) and
Ar(x,y). Then, Proposition 6 would yield

RS2(x) ∩ F
n
q ⊆ Cond(Ar+1(x,y),Ar(x,y)). (5)

Suppose that the above inclusion is actually an equality; as we just said this is in
general what happens. The point is that as soon as x has one entry in Fq2 \ Fq,
then RS2(x)∩F

n
q is reduced to the code spanned by 1 and hence cannot provide

any relevant information.
The previous discussion shows that, if we want to generalise the toy attack

described in Sect. 4.2 to alternant codes, we cannot use a pair of alternant codes
with consecutive degrees. In light of Proposition 6, the gap between the degrees
r and r′ of the two alternant codes should be large enough to provide a non
trivial conductor. A sufficient condition for this is that RSr′−r+1(x)∩F

n
q is non

trivial. This motivates the introduction of a code we called the norm trace code.

4.5 The Norm-Trace Code

Notation 6. In what follows, we fix α ∈ Fq2 such that Tr(α) = 1. In particular,
(1, α) forms an Fq-basis of Fq2 .

Definition 11 (Norm trace code). Let x ∈ F
n
q2 be a support. The norm-trace

code NT (x) ⊆ F
n
q is defined as

NT (x)
def
= 〈1,Tr(x),Tr(αx),N(x)〉Fq

.

This norm trace code turns out to be the code we will extract from the public
key by conductor computations. To relate it with the previous discussions, we
have the following statement whose proof is straightforward.

Proposition 7. Let x ∈ F
n
q2 be a support. Then, for any k > q + 1, we have

NT (x) ⊆ RSk(x) ∩ F
n
q . (6)

Remark 3. It addition to this statement, we observed experimentally that for
2q + 1 > k > q + 1 inclusion (6) is in general an equality.
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4.6 Summary and a Heuristic

First, let us summarise the previous discussions.

– If we know a pair of alternant codes Ar(x,y) and Ar′(x,y) such that
q < r′ − r, then Cond(Ar′(x,y),Ar(x,y)) is non trivial since, according
to Proposition 6 and to (6), it contains the norm-trace code.

– Experimentally, we observed that if q < r′ − r < 2q, then, almost every time,
we have

Cond(Ar′(x,y),Ar(x,y)) = NT (x).

– One problem remains: given an alternant code Ar(x,y), how to get a subcode
Ar′(x,y) in order to apply the previous results? This will be explained in
Sects. 5 and 6 in which we show that for quasi-dyadic alternant codes it is
possible to get a subcode D ⊆ Ar(x,y) such that D ⊆ Ar′(x,y) for some r′

satisfying r′ − r > q + 1.
Moreover, it turns out that Ar′(x,y) can be replaced by a subcode without
changing the result of the previous discussions. This is what is argued in the
following heuristic.

Heuristic 1. In the context of Proposition 6, suppose that q < r − r′ < 2q. Let
D be a subcode of Ar′(x,y) such that

(i) dimD · dimAr(x,y)⊥ � n;
(ii) D �⊂ Ar′+1(x,y);
(iii) a generator matrix of D has no zero column.

Then, with a high probability,

Cond(D ,Ar(x,y)) = NT (x).

Let us give some evidences for this heuristic. From Proposition 4,

Cond(D ,Ar(x,y)) =
(
D � Ar(x,y)⊥)⊥

.

From (2), we have Ar(x,y)⊥ = TrFq2/Fq
(GRSr(x,y)). Since D is a code over

Fq and by the Fq-linearity of the trace map, we get

D � Ar(x,y)⊥ = TrFq2/Fq
(D � GRSr(x,y)) .

Since D ⊆ Ar′(x,y) then, from (1), it is a subset of a GRS code. Namely,

D ⊆ GRSn−r′(x,y⊥), where y⊥ =
(

1
π′
x(x1)y1

, . . . ,
1

π′
x(xn)yn

)
.

Therefore, thanks to Theorem 4, we get

D � Ar(x,y)⊥ ⊆ TrFq2/Fq

(
GRSn−r′+r−1(x,y � y⊥)

)
. (7)
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Note that D �Ar(x,y)⊥ is spanned by dimD · dimAr(x,y)⊥ generators which
are obtained by computing the Schur products of elements of a basis of D by
elements of a basis of Ar(x,y)⊥. By (i), the number of such generators exceeds
n. For this reason, it is reasonable to hope that this Schur product fills in the
target code and that,

D � Ar(x,y)⊥ = TrFq2/Fq

(
GRSn−r′+r−1(x,y � y⊥)

)
.

Next, we have

y � y⊥ =
(

1
π′
x(x1)

, . . . ,
1

π′
x(xn)

)
.

Therefore, using Lemma 1, we conclude that

(
D � Ar(x,y)⊥)⊥

= RSr′−r+1(x) ∩ F
n
q .

Using Remark 3, we get the result.

Remark 4. Assumption (ii) permits to avoid the situation where the conductor
could be the subfield subcode of a larger Reed-Solomon code. Assumption (iii)
permits to avoid the presence of words of weight 1 in the conductor that would
not be elements of a Reed-Solomon code.

Further Discussion on the Heuristic. In all our computer experiments, we never
observed any phenomenon contradicting this heuristic.

5 Fundamental Degree Properties of the Invariant
Subcode of a QD Alternant Code

A crucial statement for the attack is:

Theorem 5. Let x,y ∈ F
n
q2 be a support and a multiplier. Let s be an integer

of the form s = 2γs0. Suppose that As0(ψG(x),y) is fully non degenerate (see
Definition 5 and Sect. 2.5 for notation ψG and y). Then,

(a) As(x,y)G ⊆ As+|G|−1(x,y);
(b) As(x,y)G �⊆ As+|G|(x,y).

Proof. From (1), we have

As(x,y) =

{(
1

yiπ′
x(xi)

f(xi)
)

i=1,...,n

∣∣∣∣∣ f ∈ Fq2 [z]<n−s

}
∩ F

n
q .

This code is obtained by evaluation of polynomials of degree up to

n − s − 1 = (2γ(n0 − s0) − 1).



An Efficient Structural Attack on NIST Submission DAGS 107

From Theorem 2, the invariant codewords of As(x,y) come from evaluations of
polynomials of the form h◦ψG . Such polynomials have a degree that is a multiple
of deg ψG = 2γ and hence their degree cannot exceed 2γ(n0 −s0 −1). Thus, they
should lie in Fq2 [z]�n−s−|G| = Fq2 [z]<n−s−|G|+1. This leads to

As(x,y)G ⊆
{(

1
yiπ′

x(xi)
f(xi)

)

i=1,...,n

∣∣∣∣∣ f ∈ Fq2 [z]<n−s−|G|+1

}
∩ F

n
q

⊆ As+|G|−1(x,y).

This proves (a).
To prove (b), note that the assumption on As0(ψG(x),y) asserts the existence

of f ∈ Fq2 [z]<n0−s0 such that deg f = n0 − s0 − 1 and f(ψG(x)) ∈ F
n0
q . Thus,

f(ψG(x)) ∈ F
n
q and deg(f ◦ ψG) = n − s − |G|. Therefore f(ψ(x)) ∈ As(x,y)G

and As(x,y)G contains an element of As+|G|−1(x,y) that is not in As+|G|(x,y).
	


6 Presentation of the Attack

6.1 Context

Recall that the extension degree is always m = 2. The public code is the QD
alternant code

Cpub
def= Ar(x,y),

with a permutation group G of cardinality |G| = 2γ . As in Sect. 2.6, the code
has a length n = n02γ , dimension k and is defined over a field Fq and q = 2� for
some positive integer �. The degree r of the alternant code is also a multiple of
|G| = 2γ and hence is of the form r = r02γ . We suppose from now on that the
classical lower bound on the dimension k is reached, i.e. k = n− 2r. This always
holds in the parameters proposed in [3]. We finally set k0 = k/2γ . In summary,
we have the following notation

n = n02γ , k = k02γ , r = r02γ . (8)

6.2 The Subcode D

We introduce a subcode D of Cpub and prove that its knowledge permits to com-
pute the norm trace code. This code D is unknown by the attacker and we will see
in Sect. 7 that the time consuming part of the attack consists in guessing it.

Definition 12. Suppose that |G| � q. We define the code D as

D
def
= Ar+q(x,y)G

.
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Remark 5. For parameters suggested in DAGS, we always have |G| � q, with
strict inequality for DAGS 1 and DAGS 3 and equality for DAGS 5.

Remark 6. The case q < |G| which never holds in DAGS suggested parameters
would be particularly easy to treat. In such a situation, replacing possibly G by
a subgroup, one can suppose that |G| = 2q. Next, according to Theorem 5, and
Heuristic 1, we would have

Cond((Cpub)
G
,Cpub) = NT (x),

which would provide a very simple manner to compute NT (x).

The following results are the key of the attack. Theorem6 explains why this
subcode D is of deep interest and how it can be used to recover the norm-trace
code, from which the secret key can be recovered (see Sect. 6.6). Theorem 7
explains why this subcode D can be computed in a reasonable time thanks to
the QD structure. Indeed, it shows that even if D has a large codimension as
a subcode of Cpub its codimension in (Cpub)

G is much smaller. This is why the
QD structure plays a crucial role in this attack (Table 3).

Theorem 6. Under Heuristic 1 and assuming that Ar+q(x,y)
G

is fully non
degenerate (see Definition 5), we have

Cond(D ,Cpub) = NT (x).

Proof. It is a direct consequence of Theorem 5 and Heuristic 1. 	

Theorem 7. The code D has codimension � 2q

|G| = 2�−γ+1 in (Cpub)
G.

Proof. Using Theorem 3, we know that D has the same dimension as
Ar0+

q
|G|

(ψG(x),y). This code has dimension � n0 − 2(r0 + q
|G| ). Since

dim (Cpub)
G = k0 = n0 − 2r0, we get the result. 	


Remark 7. Actually the codimension equals 2�−γ+1 almost all the time.

Table 3. Numerical values for the code D

Proposal D Codimension in (Cpub)
G

DAGS 1 A240(x,y)G 4

DAGS 3 A416(x,y)G 4

DAGS 5 A768(x,y)G 2
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6.3 Description of the Attack

The attack can be summarised as follows:

(1) Compute (Cpub)
G ;

(2) Guess the subcode D of (Cpub)
G of codimension 2q

|G| such that

Cond(D ,Cpub) = NT (x);

(3) Determine x from NT (x) and then y from x.

The difficult part is clearly the second one: how to guess D? We present two
manners to realise this guess.

– The first one consists in performing exhaustive search on subcodes of codi-
mension 2q

|G| of (Cpub)
G .

– The second one consists in finding both D and NT (x) by solving a system
of equations of degree 2 using Gröbner bases.

The first approach has a significant cost but which remains far below the
expected security level of DAGS proposed parameters. For the second approach,
we did not succeed to get a relevant estimate of the work factor but its prac-
tical implementation permits to break DAGS 1 in about 20 min and DAGS 5 in
less than one minute (see Sect. 8 for further details on the implementation). We
did not succeed to break DAGS 3 parameters using the second approach. On the
other hand the first approach would have a work factor of ≈ 280 for keys with
an expected security of 192 bits.

The remainder of this section is devoted to detail the different steps of the
attack.

6.4 First Approach, Brute Force Search of D

A first way of getting D and then of obtaining NT (x) consists in enumerating
all the subspaces X ⊆ (Cpub)

G of codimension 2q
|G| until we find one such that

Cond(X ,Cpub) has dimension 4. Indeed, for an arbitrary X the conductor will
have dimension 1 and be generated by 1, while for X = D the conductor will
be NT (x) which has dimension 4.

The number of subspaces to enumerate is in O(q(2q/|G|)(k0−2q/|G|)) which is
in general much too large to make the attack practical. It is however possible to
reduce the cost of brute force attack as follows.

Using Random Subcodes of Dimension 2. For any parameter set proposed
in DAGS, the public code has a rate k/n less than 1/2. Hence, its dual has rate
larger than 1/2. Therefore, according to Heuristic 1, given a random subcode D0

of D of dimension 2, then Cond(D0,Cpub) = NT (x) with a high probability.
Thus, one can proceed as follows
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– Pick two independent vectors c, c′ ∈ (Cpub)
G at random and compute

Cond(〈c, c′〉,Cpub);
– If the conductor has dimension 4, you probably found NT (x), then pursue

the attack as explained in Sect. 6.6.
– Else, try again.

The probability that c, c′ ∈ D equals q− 4q
|G| . Therefore, one may have found

NT (x) after O(q
4q
|G| ) computations of conductors.

Example 1. The average number of computations of conductors will be

– O(q8) = O(240) for DAGS 1;
– O(q8) = O(248) for DAGS 3;
– O(q4) = O(224) for DAGS 5.

Using Shortened Codes. Another manner consists in replacing the public
code by one of its shortenings. For that, we shorten Cpub = Ar(x,y) at a set of
a = a02γ positions which is a union of blocks, so that the shortened code remains
QD. We choose the integer a such that the invariant subcode of the shortened
code has dimension 2 + 2q

|G| and hence the shortening of D has dimension 2. Let
I be such a subset of positions. To determine SI (D), we can enumerate any
subspace X of dimension 2 of SI (Cpub) and compute Cond(X ,SI (Cpub)).
In general, we get the trivial code spanned by the all-one codeword 1. If the
conductor has dimension 4 it is highly likely that we found SI (D) and that the
computed conductor equals NT (xI).

The number of such spaces we enumerate is in O(q
4q
|G| ), which is very similar

to the cost of the previous method.

6.5 Second Approach, Solving Polynomial System of Degree 2

An alternative approach to recover D and NT (x) consists in solving a polyno-
mial system. We proceed as follows. Since Tr(x) ∈ Cond(D ,Cpub) and, from

Proposition 4, Cond(D ,Cpub) = (D � Cpub
⊥)

⊥
, then

GD �Cpub
⊥ · Tr(x)� = 0,

where GD �Cpub
⊥ denotes a generator matrix of D � Cpub

⊥. The above identity
holds true when replacing Tr(x) by Tr(βx) for any β ∈ Fq2 . Hence,

GD �Cpub
⊥ · x� = 0. (9)

The above identity provides the system we wish to solve. We have two type of
unknowns: the code D and the vector x. Set c

def= 2q
|G| the codimension of D
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in (Cpub)
G . For D , let us introduce (k0 − c)k0 formal variables U11, . . . , U1,c,

. . . , Uk0−c,1, . . . , Uk0−c,c and set

U
def=

⎛
⎜⎝

U11 · · · U1,c

...
...

Uk0−c,1 · · · Uk0−c,c

⎞
⎟⎠ and G(Uij)

def=
(
Ik0−c | U ) · Ginv,

where Ik0−c denotes the (k0 − c) × (k0 − c) identity matrix and Ginv denotes
a k0 × n0 generator matrix of (Cpub)

G . It is probable that D has a generator
matrix of the form G(uij) for some special values u11, . . . , uk0−c,c ∈ Fq. The case
where D has no generator matrix of this form is rare and can be addressed by
choosing another generator matrix for (Cpub)

G .
Now, let H be a parity-check matrix of Cpub. A generator matrix of

D � Cpub
⊥ can be obtained by constructing a matrix whose rows list all the

possible Schur products of one row of a generator matrix of D by one row of a
parity-check matrix of Cpub. Therefore, let R(Uij) be a matrix with entries in
Fq[U1,1, . . . , Uk0−c,c] whose rows list all the possible Schur products of one row of
G(Ui,j) and one row of H. Hence, there is a specialisation u11, . . . , uk0−c,c ∈ Fq

of the variables Uij such that R(uij) is a generator matrix of D � Cpub
⊥.

The second set of variables X1, . . . , Xn corresponds to the entries of x.
Using (9), the polynomial system we have to solve is nothing but

R(Uij) ·

⎛
⎜⎝

X1

...
Xn

⎞
⎟⎠ = 0. (10)

Reducing the Number of Variables. Actually, it is possible to reduce the
number of variables using three different tricks.

1. Since the code is QD, the vector x is a union of orbits under the action of the
additive group G. Therefore, one can introduce formal variables A1, . . . , Aγ

corresponding to the generators of G. Then, one can replace (X1, . . . , Xn) by

(T1, T1 + A1, . . . , T1 + A1 + · · · + Aγ , T2, T2 + A1, . . . ). (11)

for some variables T1, . . . , Tn0 .
2. Without loss of generality and because of the 2-transitive action of the affine

group on Fq2 , one can suppose that the first entries of x are 0 and 1 respec-
tively (see for instance [12, Appendix A]). Therefore, in (11), one can replace
T1 by 0 and A1 by 1.

3. Similarly to the approach of Sect. 6.4, one can shorten the codes so that D
has only dimension 2, which reduces the number of variables Uij to 2c and
also reduces the length of the support we seek and hence reduces the number
of the variables Ti.
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On the Structure of the Polynomial System. The polynomial equations
have all the following features:

– Any equation is the sum of an affine and a bilinear form;
– Any degree 2 monomial is either of the form UijAk or of the form UijTk.

Table 4 lists for the different proposals the number of variables of type U,A
and T of the system when we use the previously described shortening trick.

Table 4. Number of variables of type U, A and T of the system

Proposal Number of Uij ’s Number of Ai’s Number of Ti’s

DAGS 1 8 3 31

DAGS 3 8 4 27

DAGS 5 4 5 25

6.6 Finishing the Attack

When the previous step of the attack is over, then, if we used the first approach
based on a brute force search of D , we know at least NT (x) or NT (xI) for some
set I of positions. If we used the second approach, then x is already computed,
or at least xI for some set of indexes I. Thus, there remains to be able to

(1) recover x from NT (x) or xI from NT (xI);
(2) recover y from x or yI from xI ;
(3) recover x,y from xI ,yI .

Recovering x from NT (x). The code NT (x) has dimension 4 over Fq and
is spanned by 1,Tr(x),Tr(αx),N(x). It is not difficult to prove that

NT (x) ⊗ Fq2 = 〈1,x,x�q,x�(q+1)〉,
where NT (x) ⊗ Fq2 denotes the Fq2 -linear code contained in F

n
q2 and spanned

over Fq2 by the elements of NT (x).
Because of the 2-transitivity of the affine group on Fq2 , without loss of gen-

erality, one can suppose that the first entry of x is 0 and the second one is 1 (see
for instance [12, Appendix A]). Therefore, after shortening NT (x)⊗Fq2 we get
a code that we call S , which is of the form

S
def= S{1}

(
NT (x) ⊗ Fq2

)
= 〈x,x�q,x�(q+1)〉Fq2

.

Next, a simple calculation shows that

S ∩ S �2 = 〈x�(q+1)〉.
Since, the second entry of x has been set to 1, we can deduce the value of x�(q+1).
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Remark 8. Actually, both S and NT (x) have a basis defined over Fq, therefore,
to get 〈x�(q+1)〉Fq

it is sufficient to perform any computation on codes defined
over Fq.

Now, finding x is easy: enumerate the affine subspace of NT (x) ⊗ Fq2 of
vectors whose first entry is 0 and second entry is 1 (or equivalently, the affine
subspace of vectors of S whose first entry equals 1). For any such vector c,
compute c�(q+1). If c�(q+1) = x�(q+1), then c equals either x or x�q. Since
Ar(x,y) = Ar(x�q,y�q) (see for instance [12, Lemma 39]), taking x or x�q has
no importance. Thus, without loss of generality, one can suppose x has been
found.

Recovering y from x. This is very classical calculation. The public code Cpub

is alternant, and hence is well-known to have a parity-check matrix defined over
Fq2 of the form

Hpub =

⎛
⎜⎜⎜⎝

y1 · · · yn

x1y1 · · · xnyn

...
...

xr−1
1 y1 · · · xr−1

n yn

⎞
⎟⎟⎟⎠ . (12)

Denote by Gpub a generator matrix of Cpub. Then, since the xi’s are known,
then the y′

is can be computed by solving the linear system

Hpub · G�
pub = 0.

Recovering x,y from xI ,yI . After a suitable reordering of the indexes, one
can suppose that I = {s, s + 1, . . . , n}. Hence, the entries x1, . . . , xs−1 of x and
y1, . . . , ys−1 are known. Set I ′ def= I \ {s}. Thus, let G(I ′) be a generator matrix
of Ar(xI′ ,yI′), which is nothing by SI′ (Cpub). Using (12), we have

⎛
⎜⎜⎜⎝

y1 · · · ys

x1y1 · · · xsys

...
...

xr−1
1 y1 · · · xr−1

s ys

⎞
⎟⎟⎟⎠ · G(I ′) = 0.

In the above identity, all the x′
is and y′

is are known but xs, ys. The entry ys can
be found by solving the linear system

(
y1 · · · ys

) · G(I ′) = 0.

Then, xs can be deduced by solving the linear system
(
x1y1 · · · xsys

) · G(I ′) = 0.

By this manner, we can iteratively recover the entries xs+1, . . . , xn and
ys+1, . . . , yn. The only constraint is that I should be small enough so that
SI (Cpub) is nonzero. But this always holds true for the choices of I we made in
the previous sections.
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6.7 Comparison with a Previous Attack

First, let us recall the attack on Wild Goppa codes over quadratic extensions
[12]. This attack concerns some subclass of alternant codes called wild Goppa
codes. For such codes a distinguisher exists which permits to compute a filtration
of the public code. Hence, after some computations, we obtain the subcode
Ar+q+1(x,y) of the public code Ar(x,y). Then, according to Heuristic 1, the
computation of a conductor permits to get the code NT (x). As soon as NT (x)
is known, the recovery of the secret is easy. Note that, the use of the techniques
of Sect. 6.6 can significantly simplify the end of the attack of [12] which was
rather technical.

We emphasise that, out of the calculation of NT (x) by computing a con-
ductor which appears in our attack so that in [12], the two attacks remain very
different. Indeed, the way one gets a subcode whose conductor into the public
code provides NT (x) is based in [12] on a distinguisher which does not work for
general alternant codes which are not Goppa codes. In addition, in the present
attack, the use of the permutation group is crucial, while it was useless in [12].

7 Complexity of the First Version of the Attack

As explained earlier, we have not been able to provide a complexity analysis
of the approach based on polynomial system solving. In particular because the
Macaulay matrix in degree 2 of the system turned out to have a surprisingly low
rank, showing that this polynomial system was far from being generic. Conse-
quently, we limit our analysis to the first approach based on performing a brute
force search on the subcode D .

Since we look for approximate work factors, we will discuss an upper bound
on the complexity and not only a big O.

7.1 Complexity of Calculation of Schur Products

A Schur product A �B of two codes A ,B of length n and respective dimensions
ka, kb is computed as follows.

1. Take bases a1, . . . ,aka
and b1, . . . , bkb

of A and B respectively and construct
a matrix M whose rows are all the possible products ai � bj , for 1 � i � ka

and 1 � j � kb. This matrix has kakb rows and n columns.
2. Perform Gaussian elimination to get a reduced echelon form of M .

The cost of the computation of a reduced echelon form of a s × n matrix is
nsmin(n, s) operations in the base field. The cost of the computation of the
matrix M is the cost of kakb Schur products of vectors, i.e. nkakb operations in
the base field. This leads to an overall calculation of the Schur product equal to

nkakb + nkakb min(n, kakb)
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operations in the base field. When kakb � n, the cost of the Schur product can be
reduced using a probabilistic shortcut described in [10]. It consists in computing
an n × n submatrix of M by choosing some random subset of products ai � bj .
This permits to reduce the cost of computing a generator matrix in row echelon
form of A � B to 2n3 operations in the base field.

7.2 Cost of a Single Iteration of the Brute Force Search

Computing the conductor Cond(X ,Cpub) consists in computing the code

(X � Cpub
⊥)

⊥
. Since our attack consists in computing such conductors for var-

ious X ’s, one can compute a generator matrix of Cpub
⊥ once for good. Hence,

one can suppose a generator matrix for Cpub
⊥ is known. Then, according to

Sect. 7.1, the calculation of a generator matrix of X � Cpub
⊥ costs at most 2n3

operations in Fq.

7.3 Complexity of finding D and NT (x)

According to Sect. 6.4, the average number of iterations of the brute force search
is q2CodimD , that is q

4q
|G| . Thus, we get an overall cost of the first step bounded

above by
2n3q

4q
|G| operations in Fq.

Since, n = Θ(q2), we get a complexity in O(n3+ 2q
|G| ) operations in Fq for the

computation of NT (x).

7.4 Complexity of deducing x, y from NT (x)

A simple analysis shows that the final part of the attack is negligible compared
to the previous step. Indeed,

– the computation of NT (x)�2 costs O(n2) operations in Fq (because of
Remark 8, one can perform these computations over Fq) since the code has
dimension 4;

– the computation of NT (x)�2∩NT (x) boils down to linear algebra and costs
O(n3) operations in Fq;

– The enumeration of the subset of NT (x) ⊗Fq2 of elements whose first entry
is 0 an second one is 1 and computation of their norm costs O(q4n) = O(n3)
operations in Fq2 . Indeed the affine subspace of NT (x)⊗Fq2 which is enumer-
ated has dimension 2 over Fq2 and hence has q4 elements, while the computa-
tion of the component wise norm of a vector costs O(n) operations assuming
that the Frobenius z 
→ zq can be computed in constant time in Fq2 .

– The recovery of y from x boils down to linear algebra and hence can also be
done in O(n3) operations in Fq2 . If we have to recover x,y from xI ,yI , it can
be done iteratively by solving a system of a constant number of equations,
hence the cost of one iteration is in O(n2) operations in Fq2 .

Thus, the overall cost remains in O(n3) operations in Fq2 .
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7.5 Overall Complexity

As a conclusion, the attack has an approximate work factor of

2n3q
4q
|G| operations in Fq. (13)

7.6 Approximate Work Factors of the First Variant Of the Attack
on DAGS Parameters

We assume that operations in Fq can be done in constant time. Indeed, the base
fields of the public keys of DAGS proposal are F32 and F64. For such a field, it
is reasonable to store a multiplication and inversion table.

Therefore, we list in Table 5 some approximate work factors for DAGS accord-
ing to (13). The second column recalls the security levels claimed in [3] for the
best possible attack. The last column gives the approximate work factors for the
first variant of our attack.

Table 5. Work factors of the first variant of the attack

Name Claimed security level Work factor of our attack

DAGS 1 128 bits ≈ 270

DAGS 3 192 bits ≈ 280

DAGS 5 256 bits ≈ 258

8 Implementation

Tests have been done using Magma [8] on an Intel R© Xeon 2.27 GHz.
Since the first variant of the attack had too significant costs to be tested on

our machines, we tested it on the toy parameters DAGS 0. We performed 20 tests,
which succeeded in an average time of 2 h.

On the other hand, we tested the second variant based on solving a poly-
nomial system on DAGS 1, 3 and 5. We have not been able to break DAGS 3
keys using this variant of the attack, on the other hand about 100 tests have
been performed for DAGS 1 and DAGS 5. The average running times are listed in
Table 6.

Table 6. Average times for the second variant of the attack.

Name Claimed security level Average time

DAGS 1 128 bits 19 mn

DAGS 5 256 bits < 1 mn
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