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Chapter 9
Non-viral Vector for Muscle-Mediated 
Gene Therapy

Serge Braun

Abstract Non-viral gene delivery to skeletal muscle was one of the first applica-
tions of gene therapy that went into the clinic, mainly because skeletal muscle is an 
easily accessible tissue for local gene transfer and non-viral vectors have a relatively 
safe and low immunogenic track record. However, plasmid DNA, naked or com-
plexed to the various chemistries, turn out to be moderately efficient in humans 
when injected locally and very inefficient (and very toxic in some cases) when 
injected systemically. A number of clinical applications have been initiated how-
ever, based on transgenes that were adapted to good local impact and/or to a wide 
physiological outcome (i.e., strong humoral and cellular immune responses follow-
ing the introduction of DNA vaccines). Neuromuscular diseases seem more chal-
lenging for non-viral vectors. Nevertheless, the local production of therapeutic 
proteins that may act distantly from the injected site and/or the hydrodynamic per-
fusion of safe plasmids remains a viable basis for the non-viral gene therapy of 
muscle disorders, cachexia, as well as peripheral neuropathies.

Keywords Naked · Complexes · Muscle · Vaccines · Hydrodynamic delivery

9.1  Introduction

Skeletal muscle can act as an effective platform for the long-term production (and 
secretion) of therapeutic proteins with systemic distribution and for the introduction 
of DNA vaccines eliciting strong humoral and cellular immune responses (for 
review see [1, 2]). Conversely, the treatment of hereditary neuromuscular diseases 
is particularly challenging for non-viral vectors. Among issues are as follows: (1) 
the size of the muscle tissue, which represents half of the total mass of the organism, 
(2) the poor accessibility of profound muscles or peripheral nerves, and (3) the pro-
gressive tissue remodeling along the natural history of some muscle diseases with 
active processes of necrosis/regeneration and fibrosis/lipidosis.
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On the other hand, non-viral vectors do bear interesting advantages over recom-
binant viruses. Non-viral vectors are made of plasmid DNA, naked or complexed to 
a variety of versatile molecules such as cationic lipids or polymers. They are (1) 
well characterized, and their structure can be fine-tuned [3], and (2) mostly non- 
immunogenic provided, they are not carrying protein motifs. This allows repeated 
administrations for chronic diseases, (3) comparatively easy to produce at a large 
scale [4], (4) less limited by size constraints, leaving the potential to deliver wide- 
type genetic material, as large as 100 kb [5] (this is far beyond the size of coding 
sequences such as the dystrophin cDNA for Duchenne muscular dystrophy), and 
non-viral vectors (5) can remain functional for a long period of time in skeletal 
muscles [6]. Episomal plasmid DNA can persist for life in rodents and for many 
years in larger animals if they are delivered into low turnover tissues, including the 
brain and spinal cord, heart, or muscle (for review see [7]).

Synthetic vectors have been constructed as substitutes to viral vectors for deliv-
ering therapeutic genes and many other drugs in humans [8]. The principle is based 
on the self-assembly of supramolecular complexes, often through electrostatic 
interactions between the positively charged vectors and the DNA negatively charged 
phosphate residues [9]. In these complexes, DNA is condensed and compacted and 
is less exposed to nuclease degradation. Among these, cationic lipid- and polymer- 
based systems have been the most extensively studied [10–12]. In early studies, 
DNA was encapsulated in neutral or anionic liposomes without changing the struc-
tures of the liposomes [9, 13]. The ratio between the cationic charge of the liposome 
and the negative charge of the DNA usually controls the size of complexes [14], 
typically in the range of 200 nm to 2 μm quasi-spherical particles with an ordered 
(often multilamellar) organization. Their positive total charge enables them of effi-
ciently interacting with the negative residues of the cell membranes and internaliz-
ing into the cell, which occurs mainly through the endocytosis pathway [10, 15].

9.2  Systemic Delivery of Non-viral Vectors: An Update 
and Perspective

Systemic bio-distribution of non-viral vectors is dependent upon their capability of 
escaping from blood vessels in the target tissue. Vectors must be small enough (less 
than 500 nm) to cross through vascular endothelial cells and gain access to sur-
rounding tissues [16]. Furthermore, they should also be designed so that they can be 
ignored by mononuclear phagocytes and have little interactions with plasma com-
ponents to avoid aggregation [17, 18] and complement activation [19]. Another 
limitation with systemic gene delivery of complexes is their rapid clearance by the 
reticuloendothelial system or their entrapment within small capillaries leading to 
the accumulation within especially lung tissue [20]. This limitation can be improved 
by incorporating polyethylene glycol (PEG) lipids, leading to increased circulation 
time of the complex, and protein expression in distal tissues [21, 22]. The negatively 
charged components of the cell membrane (glycoproteins, proteoglycans, and 
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glycerophosphates) are able to interact with the positively charged systems triggering 
the non-specific endocytosis of cationic non-viral vectors. Increasing positive net 
charge, prolongation of the incubation time, or complex concentration can improve 
cell uptake by clathrin-mediated endocytosis of cationic lipids such as DOTAP/
DNA or of cationic polymers such as PEI/DNA by clathrin-coated pits or potocyto-
sis (through interaction with caveolae pits) [23, 24], receptor-mediated endocytosis, 
macropinocytosis, or lipid raft-mediated endocytosis [25, 26].

In contrast to viral vectors, non-viral gene transfer is not elicited to a large extent 
by active intake processes. Therefore, a sophisticated vector may be needed to facil-
itate the cellular uptake and appropriate intracellular processing of the transgene. 
Significant developments in artificial complexes combined different functions for 
improved gene transfer. Many cationic liposomes are normally accompanied by a 
neutral lipid such as dioleoylphosphatidylethanolamine (DOPE) or cholesterol. 
DOPE is frequently useful because it can fuse with other lipids when exposed to a 
low pH, as in endosomes, which triggers the release of the associated DNA into the 
cytosol [27]. Other popular modifications use ligand binding to PEG. Various tar-
geting approaches have been investigated, including incorporation of peptides, 
antibodies, and sugar into the lipid vesicles to facilitate tissue targeting (for review 
see [28]). However, the association of all of these components results in complex 
structures that require thorough formulation and galenic studies.

After cell entry, intracellular barriers may impair successful gene delivery. 
Vectors need to escape from the endosomal or lysosomal membrane to avoid degra-
dation of the plasmid DNA [29]. Endosomal release of DNA by cationic polyplex- 
based vectors may be based on the physical disruption of the negatively charged 
endosomal membrane after direct interaction with the cationic complex [30], or a 
“proton-sponge” phenomenon [11] resulting in osmotic swelling and endosomal 
membrane rupture, followed by the release of the polyplexes into the cytoplasm. 
Addition of a fusogenic helper lipid such as DOPE facilitates the formation of a 
destabilizing hexagonal phase with the endosome membrane and enhances gene 
expression by promoting the release of DNA from the endosomal compartment 
(Fig. 9.1 and [31]).

It should be mentioned the majority of cytoplasmic plasmids fail to reach the 
nucleus due to cytoplasmic nucleases. In contrast to short nucleic acids (such as 
oligonucleotides) which diffuse freely, the plasmid DNA imports to nucleus by an 
active transport process via the nuclear pore complex and receptor proteins that 
include importin α, β, and RAN [32]. Nuclear localization signals or designed 
peptides can be linked to the plasmid DNA to facilitate nuclear import (for review 
see [33, 34]).

A number of therapeutic concepts have been explored in humans using more or 
less refined non-viral gene delivery systems in the view of therapies for genetic 
disorders and of immunologic disorders. As of today, despite a number of very 
sophisticated chemistries, non-viral vectors were not completely satisfactory in 
transferring genes to muscle tissues following systemic administration. Many com-
plexes show excellent transfection activity in cell culture, but most do not perform 
well in the presence of serum, and only a few are active in vivo [35]. They remain 
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at least 3 logs of magnitude less effective than viral vectors. Therapeutic doses 
require high concentrations of complexes. Besides the relatively large size of many 
synthetic vectors (often above 150 nm), the main obstacles in the use of synthetic 
complexes via systemic delivery are their aggregation, instability, toxicity, and 

Fig. 9.1 Delivery options of non-viral vectors into skeletal muscles. (a) Examples of non-viral 
vectors, including negatively charged naked plasmid DNA (or polynucleotides) delivered either 
directly or combined with physical methods (ultrasound, electroporation) or complexed with vari-
ous chemical entities such as cationic lipids or polymers. (b) Uptake pathways involve either 
fusion with the muscle cell membrane-, receptor-, clathrin-, caveolae-, or pinocytosis-dependent 
endocytosis. This is followed by endosome formation, escape from endosome, degradation, 
nuclear import of the plasmid DNA/polynucleotide, and transgene expression
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propensity to be captured by the mononuclear phagocyte system, leading to their 
rapid clearance by phagocytic cells in the liver, spleen, lungs, and bone marrow. 
These particles readily aggregate as their concentration increases. Toxicity is often 
linked to the colloidal instability of synthetic vectors resulting from interactions 
with molecules in biological fluids, leading to large aggregates. These aggregates, 
which are generally ineffective gene delivery agents, can be absorbed onto the sur-
face of circulating red blood cells, or embolized in microvasculatures, preventing 
them from reaching the intended target cells. This opsonization process can also 
activate the complement system, one of the innate immune mechanisms against 
“foreign” particles within the bloodstream, which in turn activates the phagocytosis 
and initiates an inflammatory response [7, 19, 36]. Skeletal muscles possess poorly 
permeable, tight endothelial (maybe less in the case of chronically inflamed tissues) 
layers and a highly regulated microcirculation [37]. The implication is that one 
would not expect particulate systems to be distributed easily from the blood circula-
tion to skeletal muscles. Thus, the prospects for non-viral particulate vector wide-
spread distribution from the systemic circulation are limited at present. Only one 
systemic delivery attempt was initiated in a neuromuscular disease indication. This 
was in hereditary inclusion body myopathy in a single patient intravenously perfused 
with a lipoplex in a compassionate trial. The patient showed signs of increase of sialic 
acid-related proteins and stabilization in the decline of muscle strength [38].

The administration of vectors directly to the target tissue avoids most of the 
obstacles encountered by systemic delivery. However this approach remains ham-
pered by the diffusion limitations and immune cell clearance in the interstitial region 
of the target organ. Indeed, transgene expression following direct intramuscular 
needle delivery of complexes is often localized in regions that are close to the injec-
tion site. This implies that the dispersion of colloidal particles within muscle is a 
critical issue, and there is a need for basic studies of the effect of formulation on 
dispersion within solid tissues such as skeletal muscle. Nevertheless this poor effi-
ciency remains compatible with applications that require only low levels of the 
therapeutic proteins, such as genetic vaccines, cancer, or peripheral limb ischemia 
(Table 9.1).

Interestingly, retrograde transport seemed to be obtained as some gene expres-
sion was found in the peripheral and central nervous system following intramuscu-
lar administration [39]. Delivery of therapeutic genes to peripheral neurons upon a 
peripheral and minimally invasive intramuscular administration of polymeric 
nanoparticles was shown to be feasible in animal models [40].

9.3  “Naked” DNA

Naked DNA can be manufactured in a very cost-effective manner and is a very 
stable material that can be stored at room temperature for long periods of time fol-
lowing lyophilization. It is composed of a bacterial plasmid that contains the cDNA 
of the therapeutic gene under the transcriptional control of various eukaryotic 
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regulatory elements and a bacterial origin of replication to allow production in bac-
teria. A strong promoter may be required for optimal expression in mammalian 
cells. For this, some promoters derived from viruses such as cytomegalovirus 
(CMV) or simian virus 40 (SV40) have been used. However, virally derived pro-
moters, such as the CMV promoter, may not be suitable for applications to chronic 
diseases, as illustrated by the negative impact of inflammatory cytokines (interferon-γ 
or tumor necrosis factor-α) [41]. Thus, muscle-specific alternatives to the CMV 
promoter have been proposed, such as the desmin promoter/enhancer, which con-
trols expression of the cytoskeletal protein desmin [42] or the creatine kinase pro-
moter [43]. Even in vaccines, the vaccinating immune responses obtained were 
shown to be of a comparable magnitude to those in mice immunized with DNA 
vaccines containing nonspecific promoters.

For clinical efficacy and safety of chronic disease applications, it may be neces-
sary to maintain appropriate levels of a gene product in order to prevent toxicity and 
to be able to modulate or resume transgene expression in response to disease evolu-
tion or immune problems. Artificial systems for the control of genes are based on 
two elements: a chimeric transcription factor responding to a small inducer or even 
electric field and an artificial promoter composed of multiple binding sites for the 
transcription factor followed by a minimal promoter. Inducible gene expression sys-
tems use endogenous elements that respond to exogenous signals or stress, such as 
cytokines, heat, metal ions, and hypoxia. However, neither muscle-specific nor 
inducible promoters in the absence of induction are devoid of leaky activity [44]. If 
hypomethylated bacterial CpG sequences are maintained on the plasmid DNA 
backbone or promoter elements, a T helper 1 (Th1) immune response (but only for 
a short period and with no induction of anti-DNA antibodies) can be generated 
which may however be advantageous in view of genetic vaccination, alone or in 
priming-boost regimens with viral vectors [45].

Following the serendipitous demonstration of transgene expression in skeletal 
muscle injected with naked DNA by Wolff [46], plasmid DNA has been used exten-
sively in a variety of indications [7]. Uptake and expression of numerous transgenes 
have been demonstrated in various species following intramuscular administration 
of naked DNA. Expression peaks at around 7 days, followed by a slow decrease and 
a prolonged steady state (years), in case of non-immunogenic transgene. The very 
long-term expression is probably linked to the postmitotic state of skeletal muscles 
and the persistence of administered genetic material as an extrachromosomal epi-
somal elements [47].

The efficiency of plasmid gene transfer into skeletal muscle (and other tissues) 
by direct injection is low (~1% of cell nuclei) and remains confined at the injection 
site (along the needle track) across species [48], and it further decreases with the 
plasmid size. Nevertheless, naked plasmid DNA administration was used in animal 
models to provide a systemic source of therapeutic protein, for genetic vaccination 
against pathogens and tumor cells or for therapeutic angiogenesis. In the later case, 
local gene delivery to focal lesions in the peripheral vasculature, for the production 
of highly active hormones, is ideally suited to the use of intramuscular or percutane-
ous vector delivery. In humans, intramuscular injections of naked plasmid encoding 
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angiogenic factors (such as VEGF165 or HGF) were used in small numbers of 
patients with critical limb ischemia and did demonstrate promising clinical efficacy 
for the treatment of peripheral arterial disease. Ischemic pain and ischemic ulcers in 
the affected limb were relieved or markedly improved in further trials ([49] and 
Table  9.1). Importantly, all those plasmid-based preclinical and clinical trials 
resulted in a very good safety record ([50] and Table 9.1). A meta-analysis of 12 
clinical trials (1494 patients total) of local administration of pro-angiogenic growth 
factors (VEGF, FGF, HGF, Del-1, HIF-1alpha) using plasmid or viral gene transfer 
by intra-arterial or intramuscular injections showed that, despite promising results 
in single studies, no clear benefit could be identified in peripheral artery disease 
patients, irrespective of disease severity [51].

Locally injected naked DNA is being evaluated in muscle regeneration approaches 
such as myostatin propeptide gene gun delivery [52] and for genetic motoneuron 
disorders. In the later case, SMN induction in a mouse spinal muscular atrophy 
model was observed following intramuscular injection of a tetanus toxin C fragment 
plasmid [53].

Artificially or spontaneous regenerating muscle fibers display a higher, but still 
limited, efficiency of transfection [54]. Physical methods (electric or ultrasound 
pulses, ballistic gene gun), which either create transient pores in the cell membrane 
or increase passive diffusion, were shown to improve up to 100-fold gene transfer to 
skeletal muscles [55]. The pulse parameters and the type of material used (i.e., nee-
dle versus externally applied plate electrodes) are of critical importance [44]. 
Selective electro-sonoporation in a defined area using microbubble contrast agents 
showed increased plasmid-VEGF165 delivery in skeletal muscle allowing therapeu-
tic angiogenesis in chronically ischemic skeletal muscles with undetectable tissue 
damage [56]. A slightly higher risk of random integration of plasmid DNA into 
genomic DNA may also be seen [57]. Still limited penetration of the genetic mate-
rial in the tissue is obtained (in the range of ~1 cm). Widespread delivery to large or 
deep muscles remains challenging. Muscle damage and inflammation [58] are 
induced by these methods which peak at around 7  days and resolve at 3  weeks 
postinjection with both Th1 and Th2 immune responses potentially occurring [44]. 
Therefore, this strategy may not be suitable in already inflamed tissue such as DMD 
muscles.

9.4  Pressure-Mediated Gene Transfer

High levels of gene expression in the limb and diaphragm muscles have been 
achieved by the rapid injection of naked DNA in large volumes via locoregional 
hydrodynamic intravascular delivery with both blood inflow and outflow blocked 
surgically or using external tourniquets [59, 60]. The endothelium in muscle is con-
tinuous and non-fenestrated, showing low permeability to macromolecules, includ-
ing plasmid DNA. The hydrodynamic pressure induces extravasation of the injected 
DNA, probably by expanding the endothelium and thereby making pores accessible 
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for DNA entry. The mechanism of plasmid DNA uptake by the muscle cells is still 
not clear and may involve both low-affinity receptor-mediated and nonspecific pro-
cesses [1, 61]. The procedure safety is supported by a large body of data collected 
in mice, rats, dogs, and nonhuman primates. The edema caused by the injected fluid 
is resolved within 24 h and even the minimal signs of observed muscle toxicity clear 
within 2 weeks postinjection [62, 63]. The hind limb perfusion procedure is a rather 
quick and simple technique, which may be applied to chronic diseased muscles [64] 
or other chronic diseases such as anemia [65]. Based on successful preclinical stud-
ies using the mdx mouse and golden retriever muscular dystrophy (GRMD) dog 
models of Duchenne muscular dystrophy, and the positive (expression -though very 
low-, and safety) outcome of a phase I trial of intramuscular injection of MyoDys®, 
a full-length dystrophin plasmid, in Duchenne patients (the first completed gene 
transfer clinical trial in neuromuscular diseases) [66], the ground was set for a 
human clinical trial using MyoDys® into the forearm of Duchenne patients. A dose 
escalation study of single-limb perfusion with 0.9% saline was carried out in nine 
adults with muscular dystrophies under intravenous analgesia. The study led by Fan 
et al. demonstrated feasibility and safety up to 35% of limb volume in the upper 
extremities of the young adults with muscular dystrophy. Perfusion at 40% limb 
volume was associated with short-lived physiological changes in peripheral nerves 
without clinical correlates in one subject [67]. This study used lower cuff pressures 
than in our nonhuman primate studies (310–325 mm Hg vs. 450–700 mm Hg in 
nonhuman primates) [68, 69]. From our studies in the mdx mouse and GRMD dog 
models of Duchenne dystrophy, and in nonhuman primates, the minimal volume 
needed for efficient naked DNA limb perfusion is 40% of the limb volume [70]. 
Whereas arterial limb perfusion did not turn out to be safe in GRMD dogs (personal 
data not shown), up to ten consecutive naked DNA limb perfusions every other day 
appeared very safe in both dystrophic mice and dogs. Even though head-to-head 
comparison would be necessary, our studies suggested that gene transfer was higher 
in diseased muscles than in wild-type animals. We also noticed that the highest 
transfection efficiencies were found in nonhuman primates; up to 40% of limb mus-
cles expressed reporter genes following a single-limb perfusion [68]. Therefore, 
limb perfusion of a naked DNA remains a valid approach to treat limb dystrophic 
muscles as an alternative to viral vectors in seropositive patients or in indications 
that require large transgenes with regional gene transfer [71].

Ex vivo approaches using gene-corrected stem cells with non-viral vectors are 
also being explored. Human artificial chromosome (HAC) vectors have the capacity 
to carry large genomic loci and to replicate and segregate autonomously without 
integration into the host genome. HAC vectors containing the entire human dystro-
phin gene (DYS-HAC) with its native regulatory elements allow dystrophin expres-
sion at levels similar to native dystrophin isoform expression levels. Since they can 
be stably maintained as episomal elements in host cells, the DYS-HAC could be 
introduced into several types of patient stem or progenitor cells for ex vivo therapy, 
e.g., induced pluripotent stem cells, mesoangioblasts, AC133, and mesenchymal 
stem cells [72]. One of the main issues, however, is the translatability of stem cell 
therapy in muscle disorders [73, 74].
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9.5  Conclusion

The development of successful non-viral gene delivery systems to skeletal muscle 
is highly dependent on the proportion of muscle (or their innervating motoneuron) 
cells that need to be transfected. More than 25 years of research and testing in animal 
models and in human trials gear us toward two types of muscle-directed non- viral 
gene transfer applications:

 1. Direct injection. This represents a far simpler but poorly efficient approach. 
Provided highly active gene products are used, non-viral gene therapy becomes 
increasingly amenable to infectious, cancerous, and peripheral ischemia diseases. 
Vectors could be both naked DNA and synthetic complexes.

 2. Intravascular delivery. Simple intravenous perfusion of non-viral vectors is as of 
today far less practicable. Regional hydrodynamic delivery of naked DNA offers 
several advantages over viral vectors which hold potential for muscle diseases, 
including limb-girdle muscular dystrophies and peripheral neuropathies. 
Nevertheless, muscle gene therapy using systemic administration of non-viral 
vectors retains major hurdles that need to be overcome before any human 
applications.

Disclosure Author declares having no potential competing financial interests.
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