
Chapter 7

Hardy–Rellich Inequalities and

Fundamental Solutions

In this chapter, we describe the Hardy and other inequalities on stratified groups
with the L-gauge weights. The appearance of such weights has been discussed
in the beginning of Chapter 6. The literature on inequalities with such weights
is rather substantial. Apart from describing new results and methods we will be
making relevant references to the results existing in the earlier literature.

While horizontal estimates in Chapter 6 can be established on general strat-
ified groups, the picture is not so complete if one is working with the L-gauge
weights. We recall that the L-gauge d(x) is a homogeneous quasi-norm arising
from the fundamental solution of the sub-Laplacian L by the condition (1.75),
namely, that d(x)2−Q is a constant multiple of Folland’s [Fol75] fundamental so-
lution of the sub-Laplacian L, with Q being the homogeneous dimension of the
stratified group G.

Using the L-gauge as a weight, the classical Hardy inequality on the Eu-
clidean space Rn, (

n− p

p

)p ∫
Rn

|φ(x)|p
|x|pE

dx ≤
∫
Rn

|∇φ(x)|pdx, (7.1)

for all φ ∈ C∞
0 (Rn) if 1 ≤ p < n, and for all φ ∈ C∞

0 (Rn\{0}) if n < p < ∞,
is replaced by inequalities involving powers of d(x). For instance, D’Ambrosio in
[D’A05] and Goldstein and Kombe in [GK08] established the following Lp-Hardy
type inequality on polarizable Carnot groups G,(

Q− p

p

)p ∫
G

|∇Hd|p
dp

|φ|pdx ≤
∫
G

|∇Hφ|pdx, (7.2)

for all φ ∈ C∞
0 (G\{0}), provided that Q ≥ 3 and 1 < p < Q. Here, as usual, Q is

the homogeneous dimension of G.

In such inequalities the explicit formula (1.103) relating the L-gauge to the
fundamental solution of the p-sub-Laplacian often plays an important role. In
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the case p = 2, since the p-sub-Laplacian is the usual sub-Laplacian, formula
(1.103) just reduces to the definition of the fundamental solution holding on general
stratified groups. Consequently, in the case p = 2 the version of (7.2) holds on any
stratified group G of homogeneous dimension Q ≥ 3 and all φ ∈ C∞

0 (G\{0}):
(
Q− 2

2

)2 ∫
G

|∇Hd|2
d2

|φ|2dx ≤
∫
G

|∇Hφ|2dx. (7.3)

It was shown in [Kom10] (see also [GK08]) that the Hardy inequality (7.3) on gen-
eral stratified groups of homogeneous dimension Q ≥ 3 also holds in its weighted
form ∫

G

dα|∇Hφ|2dx ≥
(
Q+ α− 2

2

)∫
G

dα
|∇Hd|2

d2
|φ|2dx, α > 2−Q, (7.4)

for all φ ∈ C∞
0 (G\{0}). It can be noted that the constants appearing in (7.2) and

(7.4) are sharp but are never achieved.

The aim of this chapter is to discuss these and other related inequalities, and
their further extensions. In Remark 7.1.2 we provide a more extensive historical
perspective on these inequalities.

7.1 Weighted Lp-Hardy inequalities

We start with a general version of a weighted Hardy inequality on general stratified
groups. Subsequently, in the following sections, we consider further extensions from
the point of view of the weights in the setting of polarizable Carnot groups. Here
we will be mostly working with the L-gauge defined in (1.75), namely, with

d(x) :=

{
ε(x)

1
2−Q , for x �= 0,

0, for x = 0,
(7.5)

where ε is the fundamental solution of the sub-Laplacian L on G.

Theorem 7.1.1 (Weighted Lp-Hardy inequalities with L-gauge). Let G be a strat-
ified group of homogeneous dimension Q ≥ 3. Let α ∈ R and let 1 < p < Q − α.
Then for all complex-valued functions u ∈ C∞

0 (G\{0}) we have∫
G

1

dα|∇Hd|p−2
|∇Hu|pdx ≥

(
Q− p− α

p

)p ∫
G

|∇Hd|2
dα+p

|u|pdx, (7.6)

and the constant
(

Q−p−α
p

)p

in inequality (7.6) is sharp.
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Remark 7.1.2.

1. The inequality (7.6) in the setting of stratified groups of different types has
a long history. For p = 2 and α = 0, on the Heisenberg group it was proved
by Garofalo and Lanconelli in [GL90] with an explicit expression for d being
the Koranyi norm. Still on the Heisenberg group, it was shown in [NZW01]
for α = 0 and 1 < p < Q. The weighted inequality for p = 2 was obtained
by Kombe in [Kom10]. Different further unweighted versions for p �= 2 in
the settings related to those of polarizable Carnot groups were obtained by
D’Ambrosio [D’A05], Goldstein and Kombe [GK08], and Danielli, Garofalo
and Phuc [DGP11]. The weighted Lp inequality on general stratified groups
by using a special class of weighted p-sub-Laplacians and the corresponding
fundamental solutions was obtained by Jin and Shen [JS11]. More recently,
in [Lia13] Lian has also obtained a similar result but with a sharp constant.
In the proof below we follow Lian’s arguments, as well as Lian’s proof [Lia13]
of Theorem 7.2.1.

2. Different formulations are also possible in the setting of polarizable Carnot
groups. We present them in Theorem 7.1.3 and in Theorem 7.2.2 following
[Kom10, Theorem 3.1] and [Kom10, Theorem 4.1] or [GKY17, Corollary 3.1],
respectively. Further improved remainder terms have been also analysed in
[Kom10].

3. There are other versions of Hardy inequalities that one can find in the liter-
ature, such as multi-particle inequalities (see, e.g., [Lun15] and references
therein) or Besov space versions of Hardy inequalities, see [BCG06] and
[BFKG12] for the settings of the Heisenberg group and on graded groups,
respectively.

Proof of Theorem 7.1.1. Since for some constant CQ we have that CQd
2−Q is the

fundamental solution of L, for all u ∈ C∞
0 (G\{0}), it follows that∫

G

〈∇Hd2−Q,∇Hu〉dx = −C−1
Q u(0) = 0. (7.7)

For ε > 0, let us define
uε := (|u|2 + ε2)p/2 − εp.

Then uε ≥ 0, uε ∈ C∞
0 (G\{0}), and it has the same support as u. Replacing u by

uεd
Q−p−α in inequality (7.7), we obtain∫

G

〈∇Hd,∇Huε〉
dp+α−1

dx+ (Q− p− α)

∫
G

uε

dp+α
|∇Hd|2dx = 0.

Then we can estimate

(Q− p− α)

∫
G

uε

dp+α
|∇Hd|2dx = −p

∫
G

(|u|2 + ε2)(p−2)/2u〈∇Hu,∇Hd〉 1

dp+α−1
dx
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≤ p

∫
G

(|u|2 + ε2)(p−2)/2|u||∇Hu||∇Hd|
dp+α−1

dx

≤ p

∫
G

(|u|2 + ε2)(p−1)/2|∇Hu||∇Hd|
dp+α−1

dx.

Letting ε → 0, by the dominated convergence theorem we obtain the estimate

(Q− p− α)

∫
G

|u|p
dp+α

|∇Hd|2dx ≤ p

∫
G

|u|p−1|∇Hu||∇Hd|
dp+α−1

dx.

By Hölder’s inequality, this implies

(Q−p−α)

∫
G

|u|p
dp+α

|∇Hd|2dx ≤ p

(∫
G

|u|p
dp+α

|∇Hd|2dx
)p−1

p
(∫

G

|∇Hu|p
|∇Hd|p−2dα

dx

)1
p

,

which gives (7.6).

Let us now show that the constant
(

Q−p−α
p

)p

in inequality (7.6) is sharp.

Let f ∈ C∞
0 (0,+∞). Since f(d) ∈ C∞

0 (G\{0}), using the polar decomposition in
Proposition 1.2.10 with respect to d, we have

inf
u∈C∞

0 (G\{0})\{0}

∫
G

|∇Hu|p
|∇Hd|p−2dα dx∫

G

|u|p
dp+α |∇Hd|2dx

≤ inf
f∈C∞

0 (0,+∞)\{0}

∫
G

|∇Hf |p
|∇Hd|p−2dα dx∫

G

|f |p
dp+α |∇Hd|2dx

= inf
f∈C∞

0 (0,+∞)\{0}

∫∞
0 |f ′(d)|pdQ−α−1dd · ∫℘ |∇d|2dσ∫∞

0
|f(d)|pdQ−p−α−1dd · ∫

℘
|∇d|2dσ

= inf
f∈C∞

0 (0,+∞)\{0}

∫∞
0 |f ′(d)|pdQ−α−1dd∫∞

0 |f(d)|pdQ−p−α−1dd

= inf
f∈C∞

0 (0,+∞)\{0}

∫
RQ

|∇f(|x|)|p
|x|α dx∫

RQ

|f(|x|)|p
|x|p+α dx

=

(
Q− p− α

p

)p

,

where we abuse the notation by writing dd for the integration with respect to the
radial variable determined by d. The last equality follows from the fact that the
Euclidean weighted Hardy inequalities∫

RQ

|∇f(|x|)|p
|x|α dx ≥

(
Q− p− α

p

)p ∫
RQ

|f(|x|)|p
|x|p+α

dx

hold for all f ∈ C∞
0 (RQ\{0}) and the constant here sharp and is attained as a limit

of radial functions, as it was shown by Davies and Hinz [DH98]. This completes
the proof. �
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Another type of Hardy inequality is also known on polarizable Carnot groups.
We give it next following [Kom10, Theorem 3.1] and its proof.

Theorem 7.1.3 (Another type of weighted Hardy inequalities with L-gauge). Let
G be a polarizable Carnot group of homogeneous dimension Q ≥ 3. Let 1 < p < Q
and let α ∈ R be such that α > −Q. Then for all f ∈ C∞

0 (G\{0}) we have the
inequality ∫

G

dα+p |∇Hd · ∇Hf |p
|∇Hd|2p dx ≥

(
Q+ α

p

)p ∫
G

dα|f |pdx, (7.8)

where the constant
(

Q+α
p

)p

is sharp.

Proof of Theorem 7.1.3. Let us first recall the formula (1.105), that is,

∇H

(
d

|∇Hd|2∇Hd

)
= Q

in G\Z, where Z := {0}⋃{x ∈ G\{0} : ∇Hd = 0} has Haar measure zero, and
∇Hd �= 0 for a.e. x ∈ G. By using this formula as well as Green’s formula (see
Theorem 1.4.6) we obtain

(Q + α)

∫
G

dα|f |pdx = −p

∫
G

|f |p−2fdα+1

|∇Hd|2 ∇Hd · ∇Hfdx.

Moreover, by using Hölder’s and Young’s inequalities we can estimate

(Q + α)

∫
G

dα|f |pdx ≤ p

(∫
G

dα|f |pdx
) p−1

p
(∫

G

dα+p|∇Hd · ∇Hf |p
|∇Hd|2p dx

) 1/p

≤ (p− 1)ε−p/(p−1)

∫
G

dα|f |pdx+ εp
∫
G

dα+p|∇Hd · ∇Hf |p
|∇Hd|2p dx

for any ε > 0, that is,

ε−p(Q+ α− (p− 1)ε−p/(p−1))

∫
G

dα|f |pdx ≤
∫
G

dα+p|∇Hd · ∇Hf |p
|∇Hd|2p dx.

Since the function ε → ε−p(Q+α−(p−1)ε−p/(p−1)) attains its maximum
(

Q+α
p

)p

at εp/(p−1) = p
Q+α , we obtain the inequality(

Q+ α

p

)p ∫
G

dα|f |pdx ≤
∫
G

dα+p|∇Hd · ∇Hf |p
|∇Hd|2p dx.

Now let us show that
(

Q+α
p

)p

is the best constant, that is, we show that we have

CH : = inf
0	=f∈C∞

0 (G)

∫
G

dα+p|∇Hd·∇Hf |p
|∇Hd|2p dx∫

G
dα|f |pdx =

(
Q+ α

p

)p

.
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Obviously, one has

(
Q+ α

p

)p

≤
∫
G

dα+p|∇Hd·∇Hf |p
|∇Hd|2p dx∫

G
dα|f |pdx

for all f ∈ C∞
0 (G\{0}), that is,

(
Q+α
p

)p

≤ CH . So, we need to show the converse,

namely, that CH ≥
(

Q+α
p

)p

. For this, consider the following family of d-radial

functions

fε(d) :=

{
d

Q+α
p +ε if d ∈ [0, 1],

d−(
Q+α

p +ε) if d > 1,

with ε > 0. Note that fε(d) can be also approximated by smooth functions with
compact support in G. We can also readily calculate that

dα+p|∇Hd · ∇Hfε|p
|∇Hd|2p =

⎧⎨⎩
(

Q+α
p + ε

)p

dQ+2α−pε if d ∈ [0, 1],(
Q+α
p + ε

)p

d−Q−ε if d > 1.

Denoting by B1 = {x ∈ G : d(x) ≤ 1} the unit d-ball, we have∫
G

dα|fε|pdx =

∫
B1

dQ+2α−pεdx +

∫
G\B1

d−Q−εdx.

For every ε > 0, the weights dQ+2α+pε and d−Q−pε are integrable at 0 and ∞,
respectively. Thus, the integral

∫
G
dα|fε|pdx is finite. Therefore, we get

(
Q+ α

p
+ ε

)p ∫
G

dα|fε|pdx =

(
Q+ α

p
+ ε

)p
[∫

B1

dQ+2α−pεdx+

∫
G\B1

d−Q−εdx

]

=

∫
G

dα+p |∇Hd · ∇Hf |p
|∇Hd|2p dx.

Moreover, we have(
Q + α

p
+ ε

)p ∫
G

dα+p |∇Hd · ∇Hf |p
|∇Hd|2p dx ≥

(
Q + α

p
+ ε

)p ∫
G

dα|fε|pdx

=

∫
G

dα+p |∇Hd · ∇Hf |p
|∇Hd|2p dx.

That is, CH ≤
(

Q+α
p + ε

)p

and letting ε → 0 we obtain
(

Q+α
p

)p

≤ CH . This

yields CH =
(

Q+α
p

)p

, showing the sharpness of the constant. �
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7.2 Weighted Lp-Rellich inequalities

In this section we discuss the Rellich inequality with weights given in terms of the
L-gauge.
Theorem 7.2.1 (Weighted Lp-Rellich inequalities with L-gauge). Let G be a strati-
fied group of homogeneous dimension Q ≥ 3. Let α ∈ R and let 1 < p < (Q−α)/2.
Then for all u ∈ C∞

0 (G\{0}) we have∫
G

|Lu|p
|∇Hd|2(p−1)dα

dx ≥
(
[(p− 1)Q+ α](Q − 2p− α)

p2

)p ∫
G

|∇Hd|2
d2p+α

|u|pdx, (7.9)

where the constant
(

[(p−1)Q+α](Q−2p−α)
p2

)p

in inequality (7.9) is sharp.

Proof of Theorem 7.2.1. For ε > 0, let us set

uε := (|u|2 + ε2)p/2 − εp and ωε := (|u|2 + ε2)p/4 − ε p/2.

Then we can calculate

Luε = p(|u|2 + ε2)p/2−1|∇Hu|2 + p(p− 2)(|u|2 + ε2)p/2−2|u|2|∇Hu|2
+ p(|u|2 + ε2)p/2−1uLu

≥ p(p− 1)(|u|2 + ε2)p/2−2|u|2|∇Hu|2 + p(|u|2 + ε2)p/2−1uLu

=
4(p− 1)

p
|∇Hωε|2 + p(|u|2 + ε2)p/2−1uLu.

Therefore, we have the estimate

−p

∫
G

(|u|2 + ε2)p/2−1uLu
dα+2(p−1)

dx ≥ 4(p− 1)

p

∫
G

|∇Hωε|2
dα+2(p−1)

dx−
∫
G

Luε

dα+2(p−1)
dx.

The integration by parts in the last term, using (1.78), yields

−
∫
G

Luε

dα+2(p−1)
dx = (α+ 2p− 2)(Q − α− 2p)

∫
G

uε

dα+2p
|∇Hd|2dx.

Using this and Theorem 7.1.1 we obtain

−p

∫
G

(|u|2 + ε2)p/2−1uLu
dα+2(p−1)

dx ≥ 4(p− 1)

p

∫
G

|∇Hωε|2
dα+2(p−1)

dx−
∫
G

Luε

dα+2(p−1)
dx

≥ (p− 1)(Q− 2p− α)2

p

∫
G

ω2
ε

dα+2p
|∇Hd|2dx

+ (α+ 2p− 2)(Q− α− 2p)

∫
G

uε

dα+2p
|∇Hd|2dx.
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Hence we have

(p− 1)(Q− 2p− α)2

p

∫
G

ω2
ε

dα+2p
|∇Hd|2dx

+ (α+ 2p− 2)(Q− α− 2p)

∫
G

uε

dα+2p
|∇Hd|2dx

≤ p

∫
G

(|u|2 + ε2)p/2−1|u||Lu|
dα+2(p−1)

dx ≤ p

∫
G

(|u|2 + ε2)(p−1)/2|Lu|
dα+2(p−1)

dx.

Letting ε → 0+, the dominated convergence theorem implies that

(Q− 2p− α) ((p− 1)Q+ α)

p

∫
G

|u|p
dα+2p

|∇Hd|2dx ≤ p

∫
G

|u|p−1|Lu|
dα+2(p−1)

dx.

By Hölder’s inequality we can estimate

(Q− 2p− α) ((p− 1)Q+ α)

p

∫
G

|u|p
dα+2p

|∇Hd|2dx

≤ p

(∫
G

|u|p
dα+2p

|∇Hd|2dx
) p−1

p
(∫

G

|Lu|p
|∇Hd|2(p−1)dα

dx

) 1
p

,

which implies inequality (7.9).

The argument for the sharpness of the constant
(

(Q−2p−α)((p−1)Q+α)
p2

)p

in

(7.9) is similar to the sharpness argument in the proof of Theorem 7.1.1 (with the
similar explanation for the notation dd). Namely, for functions f ∈ C∞

0 (0,+∞),
by using Proposition 1.2.10 we can estimate

inf
u∈C∞

0 (G\{0})\{0}

∫
G

|Lu|p
|∇Hd|2(p−1)dα dx∫

G

|u|p
dα+2p |∇Hd|2dx

≤ inf
f∈C∞

0 (0,+∞)\{0}

∫
G

|Lf(d)|p
|∇Hd|2(p−1)dα dx∫

G

|f(d)|p
dα+2p |∇Hd|2dx

= inf
f∈C∞

0 (0,+∞)\{0}

∫∞
0 |f ′′(d) + (Q− 1)f ′(d)/d|pdQ−α−1dd · ∫℘ |∇d|2dσ∫∞

0
|f(d)|pdQ−2p−α−1dd · ∫

℘
|∇d|2dσ

= inf
f∈C∞

0 (0,+∞)\{0}

∫∞
0

|f ′′(d) + (Q− 1)f ′(d)/d|pdQ−α−1dd∫∞
0 |f(d)|pdQ−2p−α−1dd

= inf
f∈C∞

0 (0,+∞)\{0}

∫
RQ

|Lf(|x|)|p
|x|α dx∫

RQ

|f(|x|)|p
|x|2p+α dx

=

(
((p− 1)Q+ α)(Q − 2p− α)

p2

)p

,
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where the last equality follows from the weighted Rellich inequalities∫
RQ

|Lf(|x|)|p
|x|α dx ≥

(
((p− 1)Q+ α)(Q − 2p− α)

p2

)p ∫
RQ

|f(|x|)|p
|x|2p+α

dx

for all f ∈ C∞
0 (RQ\{0}), and the fact that the constant here is sharp and is

attained in the limit of radial functions, [DH98]. This completes the proof. �

Another Rellich inequality is also possible, see Remark 7.1.2, Part 2. We
present it in the next statement following [Kom10, Theorem 4.1] and its proof.

Theorem 7.2.2 (Another type of weighted L2-Rellich inequalities with L-gauge).
Let G be a stratified group of homogeneous dimension Q ≥ 3, with the homogeneous
L-gauge norm d on G. Let α ∈ R be such that Q + α − 4 > 0. Then for all
f ∈ C∞

0 (G\{0}) we have∫
G

dα

|∇Hd|2 |Lf |
2dx ≥ (Q + α− 4)2(Q− α)2

16

∫
G

dα
|∇Hd|2

d4
|f |2dx, (7.10)

where the constant (Q+α−4)2(Q−α)2

16 is sharp.

Proof of Theorem 7.2.2. Recalling formula (7.5) for the L-gauge, a direct calcula-
tion gives that

Ldα−2 = (Q + α− 4)(α− 2)dα−4|∇Hd|2 + α− 2

2−Q
dQ+α−4Lε. (7.11)

As before, we can assume without loss of generality that f is real-valued. Then
(7.11) implies ∫

G

f2Ldα−2dx =

∫
G

dα−2(2fLf + 2|∇Hf |2)dx.

On the other hand, since ε is the fundamental solution of L we have∫
G

f2Ldα−2dx = (Q+ α− 4)(α− 2)

∫
G

dα−4|∇Hd|2f2dx,

with Q+ α− 4 > 0. Thus, we have

(Q+ α− 4)(α− 2)

∫
G

dα−4|∇Hd|2f2dx− 2

∫
G

dα−2fLfdx

= 2

∫
G

dα−2|∇Hf |2dx.
(7.12)

Further, using the following weighted Hardy inequality (see Corollary 7.3.2, Part
1, related to Theorem 7.1.1 for p = 2)(

Q+ α− p

p

)p ∫
G

dα
|∇Hd|p

dp
|f |pdx ≤

∫
G

dα|∇Hf |pdx,
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we arrive at

2

(
Q+ α− 4

2

)2 ∫
G

dα−4|∇Hd|2f2dx

≤ (Q + α− 4)(α− 2)

∫
G

dα−4|∇Hd|2f2dx − 2

∫
G

dα−2fLfdx.

It follows that(
Q + α− 4

2

)(
Q− α

2

)∫
G

dα−4|∇Hd|2f2dx ≤ −
∫
G

dα−2fLfdx. (7.13)

By the Cauchy–Schwarz inequality we have

−
∫
G

dα−2fLfdx ≤
(∫

G

dα−4|∇Hd|2f2dx

)1/2 (∫
G

|Lf |2
|∇Hd|2 d

αdx

) 1/2

. (7.14)

Now combination of the inequalities (7.14) and (7.13) yields (7.10).

Let us now show that the constant CR = (Q+α−4)2(Q−α)2

16 is sharp, that is,
we have the equality

CR : = inf
0	=f∈C∞

0 (G)

∫
G

dα

|∇Hd|2 |Lf |2dx∫
G
dα |∇Hd|2

d4 f2dx
=

(Q+ α− 4)2(Q − α)2

16
.

Obviously, we have∫
G

dα

|∇Hd|2 |Lf |2dx∫
G
dα |∇Hd|2

d4 f2dx
≤ (Q + α− 4)2(Q− α)2

16
,

that is, (Q+α−4)2(Q−α)2

16 ≤ CR. So, we need to show the converse, namely, that

CR ≤ (Q+α−4)2(Q−α)2

16 . To do this we define a family of d-radial functions by

fε(d) :=

⎧⎪⎨⎪⎩
(

Q+α−4
2 + ε

)2

|∇Hd|4 (Q−1)2

d2 if d ≤ 1,(
Q+α−4

2 + ε
)2 (

Q+α−4
2 − ε

)2

d−Q−α−2ε|∇Hd|4 if d > 1,

for some ε > 0. Denoting by B1 = {x ∈ G : d(x) ≤ 1} the unit d-ball, we have∫
G

dα
|Lfε|2
|∇Hd|2 dx = A

∫
B1

dα−2|∇Hd|2dx+B

∫
G\B1

d−Q−2ε|∇Hd|2dx,

where

A = (Q − 1)2
(
Q+ α− 4

2
+ ε

)2

and

B =

(
Q+ α− 4

2
+ ε

)2 (
Q+ α− 4

2
− ε

)2

.
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Since |∇Hd| is uniformly bounded andQ+α−4 > 0, the integral
∫
B1

dα−2|∇Hd|2dx
is finite. It implies that we have∫

G

dα
|Lfε|2
|∇Hd|2 dx = B

∫
G\B1

d−Q−2ε|∇Hd|2dx+O(1).

Moreover, we have∫
G

dα
|∇Hd|2

d4
f2
ε dx =

∫
B1

dα
|∇Hd|2

d4
f2
ε dx+

∫
G\B1

dα
|∇Hd|2

d4
f2
ε dx.

Since the first integral is finite we obtain∫
G

dα
|∇Hd|2

d4
f2
ε dx =

∫
G\B1

d−Q−2ε|∇Hd|2dx+O(1).

Taking ε → 0 and noting that∫
G\B1

d−Q−2ε|∇Hd|2dx → ∞,

we arrive at ∫
G

dα

|∇Hd|2 |Lfε|2dx∫
G
dα |∇Hd|2

d4 f2
ε dx

≤ (Q+ α− 4)2(Q− α)2

16
.

This means that CR = (Q+α−4)2(Q−α)2

16 , so that the constant is sharp. �

7.3 Two-weight Hardy inequalities and

uncertainty principles

In this section we consider Hardy inequalities with more general weights, pre-
senting the approach of Goldstein, Kombe and Yener [GKY17]. This can be also
extended further to Rellich inequalities, see [GKY18]. Other types of two-weight
inequalities are known in the classical Euclidean setting, see, e.g., [GM11], and a
more extensive exposition in [GM13].

Another general two-weight inequality on general homogeneous groups was
given in Theorem 2.1.14, without making any assumptions on the weights φ, ψ
there. However, in the following result, the weights V and W will be assumed to
satisfy relation (7.15).

Theorem 7.3.1 (Two-weight Lp-Hardy inequality). Let G be a stratified group. Let
V ∈ C1(G) and W ∈ L1

loc(G) be non-negative functions, and let Φ ∈ C∞(G) be a
positive function such that

−∇H · (V (x)|∇HΦ|p−2∇HΦ) ≥ W (x)Φp−1 (7.15)

holds almost everywhere.
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Then there exists a positive constant cp > 0 depending only on p such that
for all φ ∈ C∞

0 (G) we have:

if p ≥ 2, then∫
G

V (x)|∇Hφ|pdx ≥
∫
G

W (x)|φ|pdx + cp

∫
G

V (x)

∣∣∣∣∇H
φ

Φ

∣∣∣∣p Φpdx, (7.16)

and if 1 < p < 2, then

∫
G

V (x)|∇Hφ|pdx ≥
∫
G

W (x)|φ|pdx+ cp

∫
G

V (x)

∣∣∣∇H
φ
Φ

∣∣∣2 Φ2(∣∣∣ φΦ∇HΦ
∣∣∣+ ∣∣∣∇H

φ
Φ

∣∣∣Φ)2−p dx.

(7.17)
For p = 2 we have the equality in (7.16) with c2 = 1.

Proof of Theorem 7.3.1. For the proof we follow [GKY17], relying on the following
inequalities (see, for example, [Lin90, Appendix]): For any 1 < p < ∞ there exists
a positive constant cp > 0 depending only on p such that for all a, b ∈ Rn we have

|a+ b|p ≥ |a|p + p|a|p−2a · b+ cp|b|p, for p ≥ 2, (7.18)

and

|a+ b|p ≥ |a|p + p|a|p−2a · b+ cp
|b|2

(|a|+ |b|)2−p
, for 1 < p < 2. (7.19)

Let ϕ := φ
Φ , where 0 < Φ ∈ C∞(G) and φ ∈ C∞

0 (G). Applying the inequality
(7.18) with a = ϕ∇HΦ and b = Φ∇Hϕ, for p ≥ 2 we get

|∇Hφ|p = |ϕ∇HΦ+ Φ∇Hϕ|p
≥ |∇HΦ|p|ϕ|p +Φ|∇HΦ|p−2∇HΦ · ∇H(|ϕ|p) + cp|∇Hϕ|pΦp.

(7.20)

Multiplying this by V (x) on both sides and integrating by parts yields∫
G

V (x)|∇Hφ|pdx ≥
∫
G

V (x)|∇HΦ|p|ϕ|pdx+ cp

∫
G

V (x)|∇Hϕ|pΦpdx

−
∫
G

∇H · (V (x)Φ|∇HΦ|p−2∇HΦ
) |ϕ|pdx

= −
∫
G

∇H · (V (x)Φ|∇HΦ|p−2∇HΦ
)
Φ|ϕ|pdx

+ cp

∫
G

V (x)|∇Hϕ|pΦpdx.

Consequently, assumption (7.15) implies that∫
G

V (x)|∇Hφ|pdx ≥
∫
G

W (x)|ϕ|pΦpdx + cp

∫
G

V (x)|∇Hϕ|pΦpdx.

Recalling that ϕ = φ
Φ one gets (7.16).
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For the case 1 < p < 2 one can use inequality (7.19) with the same choice of
a and b as above, and we leave the details to the reader. Also, the above arguments
show that if p = 2, then (7.16) is an equality with c2 = 1. �

Let us now collect some consequences of Theorem 7.3.1 on polarizable Carnot
groups, following [GKY17]. As before, we fix d to be the L-gauge on a stratified
group G. Consequently, we denote by

BR := {x ∈ G : d(x) < R} (7.21)

the ball of radius R with respect to the quasi-norm d.

Corollary 7.3.2 (Special cases of two-weight inequalities). Let G be a polarizable
Carnot group. Then we have the following inequalities:

1. Let α ∈ R, 1 < p < Q + α, γ > −1. Then we have∫
G

dα|∇Hd|γ |∇Hφ|pdx ≥
(
Q+ α− p

p

)p ∫
G

dα
|∇Hd|p+γ

dp
|φ|pdx

for all φ ∈ C∞
0 (G\{0}).

2. Let Q = p > 1 and α < −1. Then we have∫
BR

(
log

R

d

)α+p

|∇Hφ|pdx ≥
( |α+ 1|

p

)p ∫
BR

(
log

R

d

)α |∇Hd|
dp

|φ|pdx

for all φ ∈ C∞
0 (BR).

3. Let α ∈ R and Q+ α > p > 1. Then we have∫
G

dα|∇Hφ|pdx ≥
(
Q+ α− p

p− 1

)p−1

(Q+ α)

∫
G

dα
|∇Hd|p

(1 + d
p

p−1 )p
|φ|pdx

for all φ ∈ C∞
0 (G).

4. Let 1 < p < Q and α > 1. Then we have∫
G

(1 + d
p

p−1 )α(p−1)|∇Hφ|pdx

≥ Q

(
p(α− 1)

p− 1

)p−1 ∫
G

|∇Hd|p

(1 + d
p

p−1 )(1−α)(p−1)

|φ|pdx

for all φ ∈ C∞
0 (G).

5. Let a, b > 0 and α, β,m ∈ R. If αβ > 0 and m ≤ Q−2
2 , then we have∫

G

(a+ bdα)β

d2m
|∇Hφ|2dx ≥ C(Q,m)2

∫
G

(a+ bdα)β

d2m+2
|∇Hd|2φ2dx

+ C(Q,m)αβb

∫
G

(a+ bdα)β−1

d2m−α+2
|∇Hd|2φ2dx,

for all φ ∈ C∞
0 (G), where C(Q,m) = Q−2m−2

2 .
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6. Let Q = p > 1. Then we have∫
BR

|∇Hφ|pdx ≥
(
p− 1

p

)p ∫
BR

|∇Hd|p
(R − d)p

|φ|pdx

for all φ ∈ C∞
0 (BR).

Proof of Corollary 7.3.2. To make the application of Theorem 7.3.1 rigorous one

can replace the function d with its regularization dε := (Γ+ ε)
1

2−Q for ε > 0, where
Γ is the fundamental solution for L, and after the application of Theorem 7.3.1
take the limit as ε → 0.

1. The inequality follows from Theorem 7.3.1 with the choice

V = dα|∇Hd|γ with Φ = d−(
Q+α−p

p ).

2. This part follows by taking

V =

(
log

R

d

)α+p

and Φ =

(
log

R

d

) |α+1|
p

.

3. This part follows by taking

V = dα and Φ =

(
1 + d

p
p−1

)−(Q+α−p
p ,)

.

4. This part follows by taking

V =

(
1 + d

p
p−1

)α(p−1)

and Φ =

(
1 + d

p
p−1

)1−α

.

5. This part follows by taking

V =
(a+ bdα)β

d2m
and Φ = d−(

Q−2m−2
2 ).

6. This part follows by taking

V ≡ 1 and Φ = (R− d)
p−1
p .

The proof is complete. �
Remark 7.3.3. The statement of Corollary 7.3.2, Part 1, was first shown by Wang
and Niu [WN08]. Part 2 was shown in [D’A05, (3.40)]. Part 4 is a version of the
Euclidean estimate [Skr13, (5.1)]. Part 5 is a version of the Euclidean estimate
[GM11, (42)]. Part 6 was shown on the Heisenberg group in [HN03] and then for
polarizable Carnot groups in [D’A05].
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Theorem 7.3.1 also yields several versions of the uncertainty principles.

Corollary 7.3.4 (Special cases of two-weight uncertainty principles). Let G be a
polarizable Carnot group. Then we have the following inequalities:

1. We have (∫
G

|∇Hφ|2
|∇Hd|2 dx

)(∫
G

d2|φ|2dx
)

≥ Q2

4

(∫
G

|φ|2dx
)2

for all φ ∈ C∞
0 (G).

2. We have(∫
G

|∇Hφ|2dx
)(∫

G

d2|∇Hd|2|φ|2dx
)

≥ Q2

4

(∫
G

|∇Hd|2|φ|2dx
)2

for all φ ∈ C∞
0 (G).

3. We have(∫
G

|∇Hφ|2dx
)(∫

G

|∇Hd|2|φ|2dx
)

≥ (Q− 1)2

4

(∫
G

|∇Hd|2
d

|φ|2dx
)2

for all φ ∈ C∞
0 (G).

Proof of Corollary 7.3.4. 1. This inequality was first shown by Kombe in [Kom10],
extending the Euclidean uncertainty principle (2). Considering

V =
1

|∇Hd|2 and Φ = e−αd2

,

for α > 0, Theorem 7.3.1 implies∫
G

1

|∇Hd|2 |∇Hφ|2dx ≥ 2αQ

∫
G

|φ|2dx− 4α2

∫
G

d2|φ|2dx.

Let now A := −4
∫
G
d2φ2dx, B := 2Q

∫
G
φ2dx and C := − ∫

G

|∇Hφ|2
|∇Hd|2 dx. Then the

above inequality can be expressed as Aα2 + Bα + C ≤ 0 for all α ∈ R. But this
implies that B2 − 4AC ≤ 0, which proves the statement.

2. Let us take
V ≡ 1 and Φ = e−αd,

where α > 0. Then by Theorem 7.3.1 we have∫
G

|∇Hφ|2dx ≥ 2αQ

∫
G

|∇Hd|2|φ|2dx− 4α2

∫
G

d2|∇Hd|2|φ|2dx.

The same argument as in Part 1 implies the statement.

3. The statement follows from Theorem 7.3.1 with

V ≡ 1 and Φ = e−αd,

for α > 0, and the same argument as in Part 1. �
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In [GKY17] the authors showed that on polarizable Carnot groups the state-
ment of Theorem 7.3.1 can be refined to give also the remainder estimates. Fol-
lowing [GKY17] we recapture this statement, its proof, and its consequences. In
the following theorem we consider the case p ≥ 2 noting that a similar result can
be shown also for 1 < p < 2, with a different reminder term, if one uses in the
proof (7.19) instead of (7.18).

Theorem 7.3.5 (Two-weight Lp-Hardy inequalities with remainder estimates). Let
G be a polarizable Carnot group and let Ω be a bounded domain in G with smooth
boundary ∂Ω. Assume that V is a non-negative C1-function and that δ is a positive
C∞-function such that

−∇H ·
(
V (x)dp−Q |∇Hδ|p−2

δp−2
∇Hδ

)
≥ 0 (7.22)

holds almost everywhere in Ω. Then for any φ ∈ C∞
0 (Ω) we have∫

Ω

V (x)dα|∇Hφ|pdx ≥
(
Q+ α− p

p

)p ∫
Ω

V (x)dα
|∇Hd|p

dp
|φ|pdx

+

(
Q+ α− p

p

)p−1∫
Ω

V (x)dα
|∇Hd|p−2

dp−1
∇Hd · ∇HV |φ|pdx

+
cp
pp

∫
Ω

V (x)dα
|∇Hδ|p

δp
|φ|pdx, (7.23)

where Q+ α > p ≥ 2, α ∈ R and cp = c(p) > 0.

Proof. For any φ ∈ C∞
0 (Ω) we set ϕ := d−γφ with γ < 0, a constant that will be

chosen later. By a direct computation we have

∇H(dγφ) = γdγ−1ϕ∇Hd+ dγ∇Hϕ.

Applying inequality (7.18) with a = γdγ−1ϕ∇Hd and b = dγ∇Hϕ we get

|∇Hφ|p ≥ |γ|pdp(γ−1)|∇Hd|p|φ|p
+ γ|γ|p−2dp(γ−1)+1|∇Hd|p−2∇Hd · ∇H(|ϕ|p) + cpd

pγ |∇Hϕ|p.
(7.24)

Multiplying both sides of (7.24) by V (x)dα and integrating by parts we get∫
Ω

V (x)dα|∇Hφ|pdx ≥ |γ|p
∫
Ω

V (x)dα+p(γ−1)|∇Hd|p|ϕ|pdx

− γ|γ|p−2

∫
Ω

∇H · (V (x)dα+p(γ−1)+1|∇Hd|p−2∇Hd)|ϕ|pdx

+ cp

∫
Ω

V (x)dα+pγ |∇Hϕ|pdx. (7.25)
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Using (1.77) and (1.102) we have

∇H · (V (x)dα+p(γ−1)+1|∇Hd|p−2∇Hd)

= dα+p(γ−1)+1|∇Hd|p−2∇Hd · ∇HV

+ [Q+ α+ p(γ − 1)]V (x)dα+p(γ−1)|∇Hd|p.
(7.26)

Using (7.26) we can rewrite (7.25) as∫
Ω

V (x)dα|∇Hφ|pdx ≥ ζ(Q,α, p; γ)

∫
Ω

V (x)dα+p(γ−1)|∇Hd|p|ϕ|pdx

− γ|γ|p−2

∫
Ω

dα+p(γ−1)+1|∇Hd|p−2∇Hd · ∇HV |ϕ|pdx

+ cp

∫
Ω

V (x)dα+pγ |∇Hϕ|pdx,

where ζ(Q,α, p; γ) = |γ|p − γ|γ|p−2(Q + α + γp − p). Since γ < 0 we can choose
γ = (p− α−Q)/p. Therefore, we have∫

Ω

V (x)dα|∇Hφ|pdx ≥
(
Q+ α− p

p

)p ∫
Ω

V (x)
|∇Hd|p
dQ

|ϕ|pdx

+

(
Q+ α− p

p

)p−1 ∫
Ω

|∇Hd|p−2

dQ−1
∇Hd · ∇HV |ϕ|pdx

+ cp

∫
Ω

V (x)dp−Q|∇Hϕ|pdx. (7.27)

Let us analyse the last term in (7.27). Let us define ϑ := δ−1/pϕ, where 0 < δ ∈
C∞(Ω) and ϕ ∈ C∞

0 (Ω). It follows from (7.18) that

|∇Hφ|p = |1
p
δ
1−p
p ϑ∇Hδ + δ

1
p∇Hϑ|p (7.28)

≥ 1

pp
|∇Hδ|p
δp−1

|ϑ|p + 1

pp−1

|∇Hδ|p−2

δp−2
∇Hδ · ∇H(|ϑ|p) + cpδ

p|∇Hϑ|p.

Since cpδ
p|∇Hϑ|p ≥ 0, integrating by parts in (7.28) we get

cp

∫
Ω

V (x)dp−Q|∇Hϕ|pdx ≥ cp
pp

∫
Ω

V (x)dp−Q |∇Hδ|p
δp−1

|ϑ|pdx

− cp
pp−1

∫
Ω

∇H · (V (x)dp−Q |∇Hδ|p−2

δp−2
∇Hδ)|ϑ|pdx.

Using (7.22) and the substitution ϑ := δ−1/pd
Q+α−p

p φ we obtain

cp

∫
Ω

V (x)dp−Q|∇Hϕ|pdx ≥ cp
pp

cp
pp

∫
Ω

V (x)dp−Q |∇Hδ|p
δp

|φ|pdx. (7.29)

Combining (7.27) and (7.29), and using ϕ = d
Q+α−p

p φ we obtain (7.23). �
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Let us now list several consequences of Theorem 7.3.5 for some specific choices
of V and δ. We recall the notation

BR := {x ∈ G : d(x) < R}
for the ball of radius R with respect to the quasi-norm d, already used in (7.21).

Corollary 7.3.6 (A collection of Lp-Hardy inequalities with remainders). Let G

be a polarizable Carnot group and let Ω be a bounded domain in G with smooth
boundary ∂Ω. Then we have the following statements.

1. For all φ ∈ C∞
0 (Ω) we have∫
Ω

dα|∇Hφ|pdx ≥
(
Q+ α− p

p

)p ∫
Ω

dα
|∇Hd|p

dp
|φ|pdx

+
cp
pp

∫
Ω

dα
|∇Hd|p

(d log(Rd ))
|φ|pdx,

where Q+ α > p ≥ 2, α ∈ R, cp > 0 and R > sup
x∈Ω

d(x).

2. For all φ ∈ C∞
0 (Ω) we have∫

Ω

dα|∇Hφ|pdx ≥
(
Q+ α− p

p

)p ∫
Ω

dα
|∇Hd|p

dp
|φ|pdx

+
cp
pp

∫
Ω

dα
|∇Hd|p

dp(log R
d )

p(log(log R
d ))

p
|φ|pdx,

where Q+ α > p ≥ 2, α ∈ R, cp > 0 and R > e sup
x∈Ω

d(x).

3. For all φ ∈ C∞
0 (Ω) we have∫

Ω

eddα|∇Hφ|pdx ≥
(
Q+ α− p

p

)p ∫
Ω

eddα
|∇Hd|p

dp
|φ|pdx

+

(
Q+ α− p

p

)p−1 ∫
Ω

eddα
|∇Hd|p
dp−1

|φ|pdx

+
cp
pp

∫
Ω

eddα|∇Hd|p|φ|pdx,

where Q+ α > p ≥ 2, α ∈ R, cp > 0.

4. For all φ ∈ C∞
0 (BR) we have∫

BR

dα|∇Hφ|pdx ≥
(
Q+ α− p

p

)p ∫
BR

dα
|∇Hd|p

dp
|φ|pdx

+
cp
pp

∫
BR

dα
|∇Hd|p
(R− d)p

|φ|pdx,

where Q+ α > p ≥ 2, α ∈ R, cp > 0.
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Proof of Corollary 7.3.6. 1. The statement follows from Theorem 7.3.5 with

V ≡ 1 and δ = log

(
R

d

)
.

This inequality is the stratified group version of the Euclidean inequality in
[ACR02, (1.4)].

2. The statement follows from Theorem 7.3.5 with

V ≡ 1 and δ = log

(
log

R

d

)
, R > e sup

x∈Ω
d(x).

3. The statement follows from Theorem 7.3.5 with

V = ed and δ = e−d.

4. The statement follows from Theorem 7.3.5 with

V ≡ 1 and δ = R− d.

As in the proof of Corollary 7.3.2, the above applications of Theorem 7.3.5 can be

justified by considering the regularization dε := (Γ + ε)
1

2−Q for ε > 0, where Γ is
the fundamental solution for L, and after the application of Theorem 7.3.5 taking
the limit as ε → 0. �

7.4 Rellich inequalities for sub-Laplacians with drift

In this section, we show the weighted Rellich inequality for sub-Laplacians with
drift on polarizable Carnot groups expressing the weights in terms of the funda-
mental solution of the sub-Laplacian.

We recall that in Section 6.9 we already showed Rellich inequalities for sub-
Laplacians with drift with weights expressed in terms of the variable x′ from the
first stratum.

In this section, we assume all the notation of Section 1.4.6 where sub-Laplac-
ians with drift have been discussed.

Theorem 7.4.1 (Rellich inequality for sub-Laplacian with drift with L-gauge wei-
ghts on polarizable Carnot groups). Let G be a polarizable Carnot group of ho-
mogeneous dimension Q ≥ 3 and let θ ∈ R with Q + 2θ − 4 > 0. Then for all
functions f ∈ C∞

0 (G\{0}) we have∥∥∥∥ dθ

|∇Hd|LXf

∥∥∥∥2
L2(G,μX )

≥ (Q+ 2θ − 4)2(Q − 2θ)2

16

∥∥dθ−2|∇Hd|f∥∥2
L2(G,μX )

+ γ4b4X

∥∥∥∥ dθ

|∇Hd|f
∥∥∥∥2
L2(G,μX)

+ γ2b2X

(
(Q + 2θ − 2)(Q− 2θ − 2)

2

)∥∥dθ−1f
∥∥2
L2(G,μX )
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+ 2γ2b2X(Q − 1)(3Q− 4)
∥∥dθ−1f

∥∥2
L2(G,μX )

+ 2γ2b2X

∫
G

d2θ+2Q−2

|∇Hd|4
(
d1−Q|∇Hd|L(d1−Q|∇Hd|)− 3|∇H(d1−Q|∇Hd|)|2)

× |f(x)|2dμX(x), (7.30)

where LX and bX are defined in (1.93) and (1.95), respectively.

Remark 7.4.2. In the Abelian case G = (Rn,+), we have N = n, ∇H = ∇ =
(∂x1 , . . . , ∂xn) is the usual full gradient, d = |x|E is the Euclidean distance, hence
|∇Hd| = 1, and setting X =

∑n
i=1 ai∂xi , the last two terms in (7.30) cancel each

other, so that we obtain the same estimate as in (6.83).

Proof of Theorem 7.4.1. The proof follows [RY18b]. Let g = g(x) ∈ C∞
0 (G\{0})

be such that f = χ−1/2g. By (1.101) we know that L2(G, μ) ∈ g 
→ χ−1/2g ∈
L2(G, μX). Then, we have∥∥∥∥ dθ

|∇Hd|LXf

∥∥∥∥
L2(G,μX)

=

∥∥∥∥ dθ

|∇Hd|χ
1/2LXf

∥∥∥∥
L2(G,μ)

=

∥∥∥∥ dθ

|∇Hd|χ
1/2LX(χ−1/2g)

∥∥∥∥
L2(G,μ)

,

where μ is the Haar (i.e., Lebesgue) measure on G. By (1.100) and integration by
parts, we calculate∥∥∥∥ dθ

|∇Hd|LXf

∥∥∥∥2
L2(G,μX )

=

∥∥∥∥ dθ

|∇Hd| (L0 + γ2b2X)g

∥∥∥∥2
L2(G,μ)

=

∥∥∥∥ dθ

|∇Hd|L0g

∥∥∥∥2
L2(G,μ)

+ 2γ2b2XRe

∫
G

d2θ

|∇Hd|2L0g(x)g(x)dx+ γ4b4X

∥∥∥∥ dθ

|∇Hd|g
∥∥∥∥2
L2(G,μ)

=

∥∥∥∥ dθ

|∇Hd|L0g

∥∥∥∥2
L2(G,μ)

− 2γ2b2XRe

N∑
j=1

∫
G

d2θ

|∇Hd|2X
2
j g(x)g(x)dx

+ γ4b4X

∥∥∥∥ dθ

|∇Hd|g
∥∥∥∥2
L2(G,μ)

=

∥∥∥∥ dθ

|∇Hd|L0g

∥∥∥∥2
L2(G,μ)

+ 2γ2b2X

∥∥∥∥ dθ

|∇Hd|∇Hg

∥∥∥∥2
L2(G,μ)

+ γ4b4X

∥∥∥∥ dθ

|∇Hd|g
∥∥∥∥2
L2(G,μ)

+ 2γ2b2XRe

N∑
j=1

∫
G

Xjg(x)g(x)Xj

(
d2θ

|∇Hd|2
)
dx

=

∥∥∥∥ dθ

|∇Hd|L0g

∥∥∥∥2
L2(G,μ)

+ 2γ2b2X

∥∥∥∥ dθ

|∇Hd|∇Hg

∥∥∥∥2
L2(G,μ)

+ γ4b4X

∥∥∥∥ dθ

|∇Hd|g
∥∥∥∥2
L2(G,μ)
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+ 4γ2b2XθRe
N∑
j=1

∫
G

Xjg(x)g(x)
d2θ−1Xjd

|∇Hd|2 dx

− 4γ2b2XRe

N∑
j=1

∫
G

Xjg(x)g(x)
d2θXj |∇Hd|

|∇Hd|3 dx

=:

∥∥∥∥ dθ

|∇Hd|L0g

∥∥∥∥2
L2(G,μ)

+ 2γ2b2X

∥∥∥∥ dθ

|∇Hd|∇Hg

∥∥∥∥2
L2(G,μ)

+ γ4b4X

∥∥∥∥ dθ

|∇Hd|g
∥∥∥∥2
L2(G,μ)

+ I1 + I2. (7.31)

Then, by Theorem 7.1.3 one has for Q+ 2θ − 2 > 0 that

2γ2b2X

∥∥∥∥ dθ

|∇Hd|∇Hg

∥∥∥∥2
L2(G,μ)

≥ 2γ2b2X

(
Q+ 2θ − 2

2

)2 ∥∥dθ−1g
∥∥2
L2(G,μ)

. (7.32)

On the other hand by Theorem 7.2.2 we get for Q + 2θ − 4 > 0 that∥∥∥∥ dθ

|∇Hd|L0g

∥∥∥∥2
L2(G,μ)

≥ (Q+ 2θ − 4)2(Q− 2θ)2

16

∥∥dθ−2|∇Hd|g∥∥2
L2(G,μ)

. (7.33)

Putting (7.32) and (7.33) into (7.31) we obtain for Q+ 2θ − 4 > 0 that∥∥∥∥ dθ

|∇Hd|LXf

∥∥∥∥2
L2(G,μX )

≥ (Q + 2θ − 4)2(Q− 2θ)2

16

∥∥dθ−2|∇Hd|g∥∥2
L2(G,μ)

+ 2γ2b2X

(
Q+ 2θ − 2

2

)2 ∥∥dθ−1g
∥∥2
L2(G,μ)

+ γ4b4X

∥∥∥∥ dθ

|∇Hd|g
∥∥∥∥2
L2(G,μ)

+ I1 + I2. (7.34)

Let us calculate I1 from (7.31):

I1 = 4γ2b2XθRe
N∑
j=1

∫
G

Xjg(x)g(x)
d2θ−1Xjd

|∇Hd|2 dx

= −4γ2b2XθRe

N∑
j=1

∫
G

g(x)Xjg(x)
d2θ−1Xjd

|∇Hd|2 dx

− 4γ2b2XθRe

N∑
j=1

∫
G

|g(x)|2Xj

(
d2θ−1Xjd

|∇Hd|2
)
dx.
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It follows that

I1 = 4γ2b2XθRe

N∑
j=1

∫
G

Xjg(x)g(x)
d2θ−1Xjd

|∇Hd|2 dx

= −2γ2b2Xθ

N∑
j=1

∫
G

|g(x)|2Xj

(
d2θ−1Xjd

|∇Hd|2
)
dx.

Putting d = u
1

2−Q we calculate

N∑
j=1

Xj

(
d2θ−1Xjd

|∇Hd|2
)

= (2−Q)

N∑
j=1

Xj

(
u

2θ−Q
2−Q

|∇Hu|2Xju

)

= (2−Q)

N∑
j=1

2θ −Q

2−Q
u

2θ−2
2−Q

(Xju)
2

|∇Hu|2 + (2−Q)

N∑
j=1

u
2θ−Q
2−Q X2

j u

|∇Hu|2

− 2(2−Q)
N∑
j=1

u
2θ−Q
2−Q Xju

|∇Hu|3 Xj |∇Hu|,

which implies, using (1.104), that

I1 = −2γ2b2Xθ

∫
G

⎛⎝ N∑
j=1

Xj

(
d2θ−1Xjd

|∇Hd|2
)⎞⎠ |g(x)|2dx

= −2γ2b2Xθ(2θ +Q− 2)

∫
G

u
2θ−2
2−Q |g(x)|2dx

= −2γ2b2Xθ(2θ +Q− 2)

∫
G

|g(x)|2d2θ−2dx. (7.35)

Now for I2 by integration by parts we get

I2 = −4γ2b2XRe

N∑
j=1

∫
G

Xjg(x)g(x)
d2θXj |∇Hd|

|∇Hd|3 dx

= 2γ2b2X

N∑
j=1

∫
G

|g(x)|2Xj

(
d2θXj |∇Hd|

|∇Hd|3
)
dx.

Using d = u
1

2−Q one has

N∑
j=1

Xj

(
d2θXj |∇Hd|

|∇Hd|3
)

= (2−Q)2
N∑
j=1

Xj

(
u

2θ−3Q+3
2−Q

|∇Hu|3 Xj

(
u

Q−1
2−Q |∇Hu|

))

= (2 −Q)2
N∑
j=1

Xj

(
Q− 1

2−Q
u

2θ−Q
2−Q

Xju

|∇Hu|2 + u
2θ−2Q+2

2−Q
Xj |∇Hu|
|∇Hu|3

)
=: (2 −Q)2J1 + (2−Q)2J2. (7.36)
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Then, taking into account (1.104) we have for J1 that

J1 =
N∑
j=1

Xj

(
Q− 1

2−Q
u

2θ−Q
2−Q

Xju

|∇Hu|2
)

=
(Q − 1)(2θ −Q)

(Q− 2)2
u

2θ−2
2−Q

N∑
j=1

(Xju)
2

|∇Hu|2

+
Q− 1

2−Q
u

2θ−Q
2−Q

N∑
j=1

X2
j u

|∇Hu|2 − 2(Q− 1)

(2 −Q)
u

2θ−Q
2−Q

N∑
j=1

XjuXj|∇Hu|
|∇Hu|3

=
(Q − 1)(2θ −Q)

(Q− 2)2
u

2θ−2
2−Q +

Q− 1

2−Q
u

2θ−Q
2−Q

Lu
|∇Hu|2 +

2(Q− 1)2

(Q− 2)2
u

2θ−2
2−Q . (7.37)

Now we calculate for J2 that

J2 =
N∑
j=1

Xj

(
u

2θ−2Q+2
2−Q

Xj |∇Hu|
|∇Hu|3

)

=
2θ − 2Q+ 2

2−Q
u

2θ−Q
2−Q

N∑
j=1

XjuXj|∇Hu|
|∇Hu|3

+ u
2θ−2Q+2

2−Q

N∑
j=1

X2
j |∇Hu|
|∇Hu|3 − 3u

2θ−2Q+2
2−Q

N∑
j=1

(Xj |∇Hu|)2
|∇Hu|4

=
2θ − 2Q+ 2

2−Q

(
Q− 1

Q− 2

)
u

2θ−2
2−Q + u

2θ−2Q+2
2−Q

L|∇Hu|
|∇Hu|3

− 3u
2θ−2Q+2

2−Q
|∇H |∇Hu||2

|∇Hu|4 , (7.38)

where we have used (1.104) in the last equality. Plugging (7.37) and (7.38) into
(7.36), we obtain

N∑
j=1

Xj

(
d2θXj |∇Hd|

|∇Hd|3
)

= (Q− 1)(3Q− 4)u
2θ−2
2−Q + (2−Q)(Q− 1)

Lu
|∇Hu|2

+ (Q− 2)2u
2θ−2Q+2

2−Q |∇Hu|−4(|∇Hu|L|∇Hu| − 3|∇H |∇Hu||2).
Then we get for I2 the expression

I2 = 2γ2b2X

N∑
j=1

∫
G

|g(x)|2Xj

(
d2θXj |∇Hd|

|∇Hd|3
)
dx

= 2γ2b2X(Q− 1)(3Q− 4)

∫
G

u
2θ−2
2−Q |g(x)|2dx

+ 2γ2b2X(Q− 2)2
∫
G

u
2θ−2Q+2

2−Q |∇Hu|−4(|∇Hu|L|∇Hu| − 3|∇H |∇Hu||2)|g(x)|2dx.
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Setting here u = d2−Q, we get for I2 that

I2 = 2γ2b2X(Q− 1)(3Q− 4)

∫
G

d2θ−2|g(x)|2dx

+ 2γ2b2X

∫
G

d2θ+2Q−2

|∇Hd|4
(
d1−Q|∇Hd|L(d1−Q|∇Hd|)− 3|∇H(d1−Q|∇Hd|)|2

)
|g(x)|2dx.

Thus, by this and (7.35) we have

I1 + I2 = 2γ2b2X((Q− 1)(3Q− 4)− θ(2θ +Q− 2))
∥∥∥dθ−1g

∥∥∥2

L2(G,μ)

+ 2γ2b2X

∫
G

d2θ+2Q−2

|∇Hd|4
(
d1−Q|∇Hd|L(d1−Q|∇Hd|)− 3|∇H (d1−Q|∇Hd|)|2

)
|g(x)|2dx.

Combining this with (7.34) and taking into account (1.101) we obtain Theorem
7.4.1. �

7.5 Hardy inequalities on the complex affine group

The aim of this section is to show that some of the above techniques are also
applicable for non-unimodular Lie groups. For example, consider the complex affine
groups:

Definition 7.5.1 (Complex affine group). The complex affine group is the semi-
direct product

G = C � C
∗,

where C∗ is the multiplicative group of nonzero complex numbers. This means
that G is equal to C×C∗ as a set, with the group composition law of the complex
affine group G given by

(x, y) ◦ (x′, y′) = (x+ yx′, yy′)

for all x, x′ ∈ C and y, y′ ∈ C∗. We will be also using the notation x := t+ is and
y := τ + iς . The complex affine group is a Lie group, with its Lie algebra denoted
by g.

We now fix a basis {X1, X2, X3, X4} of g given by

X1 =
∂

∂t
, X3 = t

∂

∂t
+ s

∂

∂s
+ τ

∂

∂τ
+ ς

∂

∂ς
,

X2 =
∂

∂s
, X4 = −s

∂

∂t
+ t

∂

∂s
− ς

∂

∂τ
+ τ

∂

∂ς
.

These right invariant vector fields correspond to the canonical basis elements of g,
and it will be convenient to work with right invariant vector fields here. Therefore,
the positive (sub-)Laplacian

ΔX = −
4∑

j=1

X2
j (7.39)
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is called a right invariant canonical Laplacian of the complex affine group G. The
fundamental solution of the Laplacian ΔX was computed explicitly by Gaudry
and Sjögren [GS98] in the following form

ε =
1

4π2

|y|2
|x|2 + |1− y|2 .

We will also use the notation

∇X = (X1, X2, X3, X4)

for the right invariant (canonical) gradient on G. The right invariant and the left
invariant Haar measures on G are defined by

dμr = dx
dy

|y|2 , dμl = dx
dy

|y|4 ,

with the modular function m(x, y) = |y|2, respectively. In addition, one has the
following integration rules with respect to the modular function∫

G

f(ηζ)dμl(η) = m−1(ζ)

∫
G

f(η)dμl(η),∫
G

f(η−1)m−1(η)dμl(η) =

∫
G

f(η)dμl(η).

We now present a Hardy type inequality on G with the proof relying on
properties of the fundamental solution of the right invariant canonical Laplacian
ΔX on the complex affine group G given in (7.39).

Theorem 7.5.2 (Hardy inequalities on the complex affine group). Let G be the
complex affine group. Let α ∈ R, α > 2− β, β > 2. Then we have∫

G

ε
α

2−β |∇Xu|2 dμl ≥
(
β + α− 2

2

)2 ∫
G

ε
α−2
2−β |∇Xε

1
2−β |2|u|2 dμl, (7.40)

for all u ∈ C∞
0 (G), where ∇X = (X1, X2, X3, X4).

Proof of Theorem 7.5.2. By using formula (2.8) we can assume without loss of
generality that u is real-valued. Then let us set u = dγq for some real-valued
functions d > 0, q, and a constant γ �= 0 to be chosen later. We use our usual
notation for the potential theory considerations:

∇̃u :=

4∑
k=1

(Xku)Xk.
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Then we can calculate

(∇̃u)u = (∇̃dγq)dγq

=

4∑
k=1

Xk(d
γq)Xk(d

γq)

= γ2d2γ−2
4∑

k=1

(Xkd)
2q2 + 2γd2γ−1q

4∑
k=1

XkdXkq + d2γ
4∑

k=1

(Xkq)
2

= γ2d2γ−2((∇̃d)d)q2 + 2γd2γ−1q(∇̃d)q + d2γ(∇̃q)q.

Integrating by parts we observe that

2γ

∫
G

dα+2γ−1q(∇̃d)qdμl =
γ

α+ 2γ

∫
G

(∇̃dα+2γ)q2dμl

=
γ

α+ 2γ

∫
G

(∇̃q2)dα+2γdμl

= − γ

α+ 2γ

∫
G

q2ΔXdα+2γdμl.

In particular, because of this, we will later choose γ so that dα+2γ = ε. Conse-
quently, we have∫

G

dα(∇̃u)udμl = γ2

∫
G

dα+2γ−2((∇̃d)d) q2dμl +
γ

α+ 2γ

∫
G

(∇̃dα+2γ)q2dμl

+

∫
G

dα+2γ(∇̃q)qdμl

= γ2

∫
G

dα+2γ−2((∇̃d)d) q2dμl (7.41)

− γ

α+ 2γ

∫
G

q2ΔXdα+2γdμl +

∫
G

dα+2γ(∇̃q)qdμl

≥ γ2

∫
G

dα+2γ−2((∇̃d)d) q2dμl − γ

α+ 2γ

∫
G

q2ΔXdα+2γdμl,

since d > 0 and (∇̃q)q = |∇Xq|2 ≥ 0. On the other hand, it can be readily checked
that for a vector field X we have

γ

α+ 2γ
X2(dα+2γ) = γX(dα+2γ−1Xd) =

γ

2− β
X(dα+2γ+β−2X(d2−β))

=
γ

2− β
(α+ 2γ + β − 2)dα+2γ+β−3(Xd)X(d2−β) +

γ

2− β
dα+2γ+β−2X2(d2−β)

= γ(α+ 2γ + β − 2)dα+2γ−2(Xd)2 +
γ

2− β
dα+2γ+β−2X2(d2−β).
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Consequently, we get the equality

− γ

α+ 2γ
ΔXdα+2γ = −γ(α+2γ+β−2)dα+2γ−2(∇̃d)d− γ

2− β
dα+2γ+β−2ΔXd2−β .

(7.42)
We now substitute (7.42) into (7.41) and use that q2 = d−2γu2, so that∫

G

dα(∇̃u)udμl ≥ (− γ2 − γ(α+ β − 2))

∫
G

dα−2((∇̃d)d)u2dμl

− γ

2− β

∫
G

(ΔXd2−β)dα+β−2u2dx.

We now take d := ε
1

2−β , and since β > 2 and ε is the fundamental solution to ΔX

we have ∫
G

(ΔXε)ε
α+β−2
2−β u2dx = 0, α > 2− β, β > 2.

Thus, we obtain∫
G

ε
α

2−β (∇̃u)u dμl ≥ (−γ2 − γ(α+ β − 2))

∫
G

ε
α−2
2−β (∇̃ε

1
2−β )ε

1
2−β u2 dμl.

Taking γ = 2−β−α
2 , we obtain (7.40). �

As usual, a Hardy inequality, such as the one in Theorem 7.5.2, implies
uncertainty principles:

Corollary 7.5.3 (Uncertainty principles on the complex affine group). Let G be the
complex affine group and let β > 2. Then for all u ∈ C∞

0 (G) we have∫
G

ε
2

2−β |∇Xε
1

2−β |2|u|2dμl

∫
G

|∇Xu|2dμl ≥
(
β − 2

2

)2 (∫
G

|∇Xε
1

2−β |2|u|2dμl

)2

,

(7.43)
as well as∫

G

ε
2

2−β

|∇Xε
1

2−β |2
|u|2dμl

∫
G

|∇Xu|2dμl ≥
(
β − 2

2

)2 (∫
G

|u|2dμl

)2

. (7.44)

Proof of Corollary 7.5.3. Taking α = 0 in the inequality (7.40) and using Hardy
inequality in Theorem 7.5.2, we get∫

G

ε
2

2−β |∇Xε
1

2−β |2|u|2dμl

∫
G

|∇Xu|2dμl

≥
(
β − 2

2

)2 ∫
G

ε
2

2−β |∇Xε
1

2−β |2|u|2dμl

∫
G

|∇Xε
1

2−β |2
ε

2
2−β

|u|2 dμl

≥
(
β − 2

2

)2 (∫
G

|∇Xε
1

2−β |2|u|2dμl

)2

,

which shows (7.43). The proof of (7.44) is similar. �



358 Chapter 7. Hardy–Rellich Inequalities and Fundamental Solutions

7.6 Hardy inequalities for Baouendi–Grushin operators

In this section, we describe a special case of the Hardy inequalities on homogeneous
groups, namely, inequalities associated to the Baouendi–Grushin vector fields on
Rn. However, the described methods also work for non-smooth vector fields al-
lowing a singularity at the origin, so we include such cases in our exposition as
well.

Definition 7.6.1 (Baouendi–Grushin operator and vector fields). Let

z = (x1, . . . , xm, y1, . . . , yk) = (x, y) ∈ R
m × R

k

with k,m ≥ 1, k + m = n. Let γ ≥ 0. Let us consider the (Baouendi–Grushin)
vector fields

Xi =
∂

∂xi
, i = 1, . . . ,m, Yj = |x|γ ∂

∂yj
, j = 1, . . . , k.

The corresponding subelliptic gradient, which is the n-dimensional vector field, is
then defined as

∇γ := (X1, . . . , Xm, Y1, . . . , Yk) = (∇x, |x|γ∇y). (7.45)

The Baouendi–Grushin operator on R
m+k is defined by

Δγ =
m∑
i=1

X2
i +

k∑
j=1

Y 2
j = Δx + |x|2γΔy = ∇γ · ∇γ , (7.46)

where Δx and Δy are the Laplace operators in the variables x ∈ Rm and y ∈ Rk,
respectively.

If γ is an even positive integer then the vector fields Xi, Yj are smooth, and
Δγ is hypoelliptic as a sum of squares of C∞ vector fields satisfying Hörmander’s
condition

rank Lie[X1, . . . , Xm, Y1, . . . , Yk] = n.

For any γ ≥ 0 the dilation structure on Rm+k associated to Δγ is

δλ(x, y) := (λx, λ1+γy)

for λ > 0. Indeed, it is easy to check that this dilation structure makes the vector
fields homogeneous,

Xi(δλ) = λδλ(Xi), Yi(δλ) = λδλ(Yi),

and hence also
∇γ ◦ δλ = λδλ∇γ .

The homogeneous dimension of Rm × Rk with respect to this dilation is

Q = m+ (1 + γ)k. (7.47)
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Definition 7.6.2 (Baouendi–Grushin distance). Let ρ(z) be the distance function,
for z = (x, y) ∈ Rm × Rk defined by

ρ = ρ(z) := (|x|2(1+γ) + (1 + γ)2|y|2) 1
2(1+γ) . (7.48)

It is easy to check that it satisfies

|∇γρ| = |x|γ
ργ

. (7.49)

We will formulate a refined version of the Hardy inequality for Baouendi–
Grushin vector fields, and then in Remark 7.6.4 we will put it in the context of
the existing rich literature on this subject.

Theorem 7.6.3 (Refined Hardy inequality for Baouendi–Grushin vector fields).
Let (x, y) = (x1, . . . , xm, y1, . . . , yk) ∈ Rm × Rk with k,m ≥ 1, k + m = n. Let
α1, α2 ∈ R be such that

Q+ α1 − 2 > 0 and m+ γα2 > 0.

Then for all complex-valued functions f ∈ C∞
0 (Rn\{0}) we have∫

Rn

ρα1 |∇γρ|α2

(∣∣∣∣ d

d|x|f
∣∣∣∣2 + |x|2γ |∇yf |2

)
dxdy

≥
(
Q+ α1 − 2

2

)2 ∫
Rn

ρα1 |∇γρ|α2
|∇γρ|2
ρ2

|f |2dxdy,
(7.50)

with sharp constant
(

Q+α1−2
2

)2

.

Remark 7.6.4.

1. First, a Hardy inequality for Grushin operators was obtained by Garofalo
[Gar93], who has shown the inequality∫

Rn

(|∇xf |2 + |x|2γ |∇yf |2)dxdy

≥
(
Q− 2

2

)2 ∫
Rn

( |x|2γ
|x|2+2γ + (1 + γ)2|y|2

)
|f |2dxdy,

(7.51)

where x ∈ R
m, y ∈ R

k with n = m+k, m, k ≥ 1, γ ≥ 0, Q = m+(1+γ)k and
f ∈ C∞

0 (Rm ×Rk\{(0, 0)}). Theorem 7.6.3 gives (7.51) when α1 = α2 = 0 in
view of the inequality ∣∣∣∣ d

d|x|f
∣∣∣∣ ≤ |∇xf |. (7.52)
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2. Weighted Lp-versions of (7.51) were investigated by D’Ambrosio in [D’A04a]
who has obtained the following estimate: Let Ω ⊂ Rn be an open set. Let
p > 1, k,m ≥ 1, α, β ∈ R be such that m+(1+γ)k > α−β and m > γp−β.
Then for every f ∈ D1,p

γ (Ω, |x|β−γpρ(1+γ)p−α) we have∫
Ω

|∇γf |p|x|β−γpρ(1+γ)p−αdxdy ≥
(
Q+ β − α

p

)p ∫
Ω

|f |p |x|
β

ρα
dxdy, (7.53)

where D1,p
γ (Ω, ω) stands for the closure of C∞

0 (Ω) in the norm(∫
Ω
|∇γf |pωdzdy

)1/p
for a weight ω ∈ L1

loc(Ω) with ω > 0 a.e. on Ω.

If 0 ∈ Ω, then the constant
(

Q+β−α
p

)p

in (7.53) is sharp. The inequality

(7.53) has also been obtained in [Kom15], and in [SJ12] for Ω = Rn with sharp
constant.

In view of (7.52), Theorem 7.6.3 refines (7.53) when p = 2 and Ω = Rn.
We also mention that in the case p = 2 inequality (7.53) has been also shown
in [Kom15] and [SJ12] by different methods.

3. In [SJ12], a Hardy–Rellich type inequality for the Baouendi–Grushin operator
was obtained in L2 with sharp constant:(

Q− α− 2

2

)2 ∫
Rn

|∇γf |2ραdxdy ≤
∫
Rn

|Δγf |2ρα+2|∇γρ|−2dxdy,

where p > 1, 2−Q
3 ≤ α ≤ Q− 2, f ∈ C∞

0 (Rn\{0}).
4. Inequalities of the above types have been also studied for subelliptic operators

of different types, see, e.g., [Gar93], [GL90], [D’A04b], [D’A04a] and [DGN06],
and also with remainder estimates, see, e.g., [DGN10] and references therein.

5. Magnetic Hardy inequalities for the Baouendi–Grushin operators have been
obtained in [LRY17]. There, the authors also obtained Hardy inequalities for
the magnetic Landau Hamiltonian.

Proof of Theorem 7.6.3. For the proof we follow [LRY17]. We denote

r := |x| and F (r, y) := ρα1 |∇γρ|α2 .

Then, using (7.48) and (7.49) we can write

F (r, y) = ρα1 |∇γρ|α2 = rα2γρα1−α2γ = rα2γ(r2(1+γ)+(1+γ)2|y|2)α1−α2γ

2(1+γ) . (7.54)

Let us first calculate the following expression∫
Rk

∫ ∞

0

(∣∣∣∣(∂r + α
∂rρ

ρ

)
f

∣∣∣∣2 + r2γ
∣∣∣∣(∇y + α

∇yρ

ρ

)
f

∣∣∣∣2
)
rm−1F (r, y)drdy

=

∫
Rk

∫ ∞

0

(|∂rf |2 + r2γ |∇yf |2
)
rm−1F (r, y)drdy
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+ α2

∫
Rk

∫ ∞

0

(∣∣∣∣∂rρρ
∣∣∣∣2 + r2γ

∣∣∣∣∇yρ

ρ

∣∣∣∣2
)
|f |2rm−1F (r, y)drdy

+ 2αRe

∫
Rk

∫ ∞

0

∂rρ

ρ
rm−1F (r, y)∂rf · fdrdy

+ 2αRe

∫
Rk

∫ ∞

0

∇yρ

ρ
· ∇yfr

2γ+m−1F (r, y)fdrdy

=: I1 + I2 + I3 + I4. (7.55)

We now calculate the terms I2, I3, I4. Using the expressions

∂rρ

ρ
=

r2γ+1

ρ2γ+2
and

∇yρ

ρ
=

(γ + 1)y

ρ2γ+2
,

we calculate∣∣∣∣∂rρρ
∣∣∣∣2 + r2γ

∣∣∣∣∇yρ

ρ

∣∣∣∣2 =
r4γ+2 + r2γ(γ + 1)2|y|2

ρ4γ+4
=

r2γ

ρ2γ+2
=

|∇γρ|2
ρ2

. (7.56)

Thus, we obtain

I2 = α2

∫ ∞

−∞

∫ ∞

0

|∇γρ|2
ρ2

|f |2rm−1F (r, y)drdy. (7.57)

For I3, we integrate by parts to get

I3 = −α

∫
Rk

∫ ∞

0

(2γ +m+ γα2)ρ
α1−α2γ−2γ−2r2γ+m−1+γα2 |f |2drdy

− α

∫
Rk

∫ ∞

0

(α1 − α2γ − 2γ − 2)ρα1−α2γ−4γ−4r4γ+m+γα2+1|f |2drdy.

Since F (r, y) = rα2γρα1−α2γ by (7.54), we obtain

I3 = − α

∫
Rk

∫ ∞

0

(
(2γ +m+ γα2)

r2γ

ρ2γ+2
+ (α1 − α2γ − 2γ − 2)

r4γ+2

ρ4γ+4

)
× rm−1F (r, y)|f |2drdy

= − α

∫
Rk

∫ ∞

0

(
2γ +m+ γα2 + (α1 − α2γ − 2γ − 2)

r2γ+2

ρ2γ+2

)
× |∇γρ|2

ρ2
|f |2rm−1F (r, y)drdy.

Similarly, we have for I4 that

I4 = − α

∫
Rk

∫ ∞

0

divy

(
F (r, y)

∇yρ

ρ

)
r2γ+m−1|f |2drdy

= − α(γ + 1)

∫
Rk

∫ ∞

0

divy
(
ρα1−α2γ−2γ−2y

)
rα2γ+2γ+m−1|f |2drdy
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= − α

∫
Rk

∫ ∞

0

(
(α1 − α2γ − 2γ − 2)ρα1−α2γ−2γ−3 (γ + 1)2|y|2

ρ2γ+1

)
× rα2γ+2γ+m−1|f |2drdy

− α

∫
Rk

∫ ∞

0

k(γ + 1)ρα1−α2γ−2γ−2rα2γ+2γ+m−1|f |2drdy.

Since r2γ

ρ2γ+2 =
|∇γρ|2

ρ2 and F (r, y) = rα2γρα1−α2γ by (7.56) and (7.54), respectively,
we have

I4 = − α

∫
Rk

∫ ∞

0

(
(α1 − α2γ − 2γ − 2)

(γ + 1)2|y|2
ρ2γ+2

+ k(γ + 1)

)
× |∇γρ|2

ρ2
|f |2rm−1F (r, y)drdy.

Then, taking into account (7.48) we get

I3 + I4 = − α

∫
Rk

∫ ∞

0

(α1 − α2γ − 2γ − 2 + 2γ +m+ γα2 + k(γ + 1))

× |∇γρ|2
ρ2

|f |2rm−1F (r, y)drdy.

Finally, using that Q = m+ (1 + γ)k we obtain

I3 + I4 = −α

∫
Rk

∫ ∞

0

(Q+ α1 − 2)
|∇γρ|2
ρ2

|f |2rm−1F (r, y)drdy. (7.58)

Putting (7.57) and (7.58) in (7.55) we get∫
Rk

∫ ∞

0

(∣∣∣∣(∂r + α
∂rρ

ρ

)
f

∣∣∣∣2 + r2γ
∣∣∣∣(∇y + α

∇yρ

ρ

)
f

∣∣∣∣2
)
rm−1F (r, y)drdy

=

∫
Rk

∫ ∞

0

(|∂rf |2 + r2γ |∇yf |2
)
rm−1F (r, y)drdy

− (
(Q+ α1 − 2)α− α2

) ∫
Rk

∫ ∞

0

|∇γρ|2
ρ2

|f |2rm−1F (r, y)drdy.

By substituting α = Q+α1−2
2 and taking into account (7.54), we obtain (7.50).

The sharpness of the constant
(
Q+α1−2

2

)2
in (7.50) follows from the inequal-

ities ∫
Rn

ρα1 |∇γρ|α2

(
|∇xf |2 + |x|2γ |∇yf |2

)
dxdy

≥
∫
Rn

ρα1 |∇γρ|α2

(∣∣∣∣ d

d|x|f
∣∣∣∣2 + |x|2γ |∇yf |2

)
dxdy

≥
(
Q + α1 − 2

2

)2 ∫
Rn

ρα1 |∇γρ|α2
|∇γρ|2
ρ2

|f |2dxdy,

since it is known that this inequality is sharp in (7.53), see Remark 7.6.4, Part 2.
�
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7.7 Weighted Lp-inequalities with boundary terms

In this section, we present a generalization of the weighted Lp-Hardy, Lp-Caffarelli–
Kohn–Nirenberg, and Lp-Rellich inequalities with respect to the inclusion of
boundary terms in the setting of stratified Lie groups. The appearing weights
are controlled by a real-valued function V with the property that LV does not
change sign. In addition to the inequalities themselves we will also give their re-
fined versions involving expressions appearing due to the boundary of the domain
in which these inequalities are derived. As a consequence, one can recover many
of the Hardy type inequalities and Heisenberg–Pauli–Weyl type uncertainty prin-
ciples on stratified groups by choosing special cases of the real-valued function
V and working with functions vanishing at the boundary. The exposition of this
section follows [RSS18d]. In Section 11.4 we will discuss boundary terms again but
emphasizing the use of the L-gauge in that discussion.

Setting of this section

Thus, throughout this section Ω is an admissible domain in the stratified group
G, and V is a real-valued function in L1

loc(Ω) with partial derivatives of order up
to two in L1

loc(Ω), and such that LV is of one sign. Also, as usual, N denotes the
dimension of the first stratum of the group G and ∇H the horizontal gradient on
G. Then, as in (1.87), the vector field ∇̃u is defined by

∇̃u :=

N∑
k=1

(Xku)Xk. (7.59)

7.7.1 Hardy and Caffarelli–Kohn–Nirenberg inequalities

We start with Hardy and Caffarelli–Kohn–Nirenberg inequalities with generalized
weights.

Theorem 7.7.1 (Lp-Hardy inequality with generalized weight and boundary term).
Let 1 < p < ∞. Let V be a real-valued function such that LV < 0 holds a.e. in Ω.
Then for all complex-valued functions u ∈ C2(Ω) ∩ C1(Ω) we have the inequality∥∥∥|LV | 1p u

∥∥∥p
Lp(Ω)

≤ p

∥∥∥∥∥ |∇HV |
|LV | p−1

p

|∇Hu|
∥∥∥∥∥
Lp(Ω)

∥∥∥|LV | 1p u
∥∥∥p−1

Lp(Ω)
−
∫
∂Ω

|u|p〈∇̃V, dx〉.

(7.60)

Proof of Theorem 7.7.1. Let us denote

υε := (|u|2 + ε2)
1
2 − ε.

Then υp
ε ∈ C2(Ω) ∩ C1(Ω) and using Green’s first formula in Theorem 1.4.6 and

the fact that LV < 0 we get∫
Ω

|LV |υp
ε dx = −

∫
Ω

LV υp
ε dx =

∫
Ω

(∇̃V )υp
ε dx−

∫
∂Ω

υp
ε 〈∇̃V, dx〉



364 Chapter 7. Hardy–Rellich Inequalities and Fundamental Solutions

=

∫
Ω

∇HV · ∇Hυp
ε dx−

∫
∂Ω

υp
ε 〈∇̃V, dx〉

≤
∫
Ω

|∇HV ||∇Hυp
ε |dx−

∫
∂Ω

υp
ε 〈∇̃V, dx〉

= p

∫
Ω

(
|∇HV |
|LV | p−1

p

)
|LV | p−1

p υp−1
ε |∇Hυε|dx−

∫
∂Ω

υp
ε 〈∇̃V, dx〉,

where, as usual, (∇̃u)v = ∇Hu · ∇Hv. We then have

∇Hυε = (|u|2 + ε2)−
1
2 |u|∇H |u|,

since 0 ≤ υε ≤ |u|. Thus, we also have

υp−1
ε |∇Hυε| ≤ |u|p−1|∇H |u||.

On the other hand, let us write

u(x) = R(x) + iI(x),

where R(x) and I(x) denote the real and imaginary parts of u. We can restrict to
the set where u �= 0. Then we have

(∇H |u|)(x) = 1

|u| (R(x)∇HR(x) + I(x)∇HI(x)) if u �= 0.

Since ∣∣∣∣ 1

|u| (R∇HR+ I∇HI)

∣∣∣∣2 ≤ |∇HR|2 + |∇HI|2,

we get that |∇H |u|| ≤ |∇Hu| a.e. in Ω. Therefore,∫
Ω

|LV |υp
ε dx ≤ p

∫
Ω

(
|∇HV |
|LV | p−1

p

|∇Hu|
)
|LV | p−1

p |u|p−1dx−
∫
∂Ω

υp
ε 〈∇̃V, dx〉

≤ p

(∫
Ω

( |∇HV |p
|LV |(p−1)

|∇Hu|p
)
dx

) 1
p
(∫

Ω

|LV ||u|pdx
) p−1

p

−
∫
∂Ω

υp
ε 〈∇̃V, dx〉,

where we have used Hölder’s inequality in the last line. Thus, when ε → 0, we
obtain (7.60). �
Remark 7.7.2.

1. If u vanishes on the boundary ∂Ω, then (7.60) extends the Davies and Hinz
result [DH98] to the following weighted Lp-Hardy type inequality on stratified
groups:∥∥∥|LV | 1p u

∥∥∥
Lp(Ω)

≤ p

∥∥∥∥∥ |∇HV |
|LV | p−1

p

|∇Hu|
∥∥∥∥∥
Lp(Ω)

, 1 < p < ∞. (7.61)
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2. There are a number of other interesting consequences of Theorem 7.7.1 that
we can record. We now discuss several such statements. First we present a
horizontal Lp-Caffarelli–Kohn–Nirenberg type inequality with the boundary
term on the stratified group G. Incidentally, this also gives another proof of
the horizontal Lp-Hardy type inequality (such as that in Theorem 6.2.1).

Corollary 7.7.3 (Horizontal Lp-Caffarelli–Kohn–Nirenberg inequality with bound-
ary term). Let 1 < p < ∞ and let α, β ∈ R. Let Ω be an admissible domain in a
stratified group G with N ≥ 3 being the dimension of the first stratum. Let | · |E be
the Euclidean norm on RN . Then for all u ∈ C2(Ω\{x′ = 0}) ∩ C1(Ω\{x′ = 0})
we have

|N − γ|
p

∥∥∥∥∥ u

|x′|
γ
p

E

∥∥∥∥∥
p

Lp(Ω)

≤
∥∥∥∥∇Hu

|x′|αE

∥∥∥∥
Lp(Ω)

∥∥∥∥∥∥ u

|x′|
β

p−1

E

∥∥∥∥∥∥
p−1

Lp(Ω)

− 1

p

∫
∂Ω

|u|p〈∇̃|x′|2−γ
E , dx〉,

(7.62)
for 2 < γ < N with γ = α + β + 1. In particular, if u vanishes on the boundary
∂Ω, we have (6.3).

Proof of Corollary 7.7.3. We will show that (7.62) follows as a special case of
(7.60). Let us take

V (x) := |x′|2−γ
E .

Then we have

|∇HV | = |2− γ||x′|1−γ
E , |LV | = |(2− γ)(N − γ)||x′|−γ

E ,

and observe that LV = (2 − γ)(N − γ)|x′|−γ
E < 0. To use (7.60) we calculate the

following expressions:∥∥∥|LV | 1pu
∥∥∥p
Lp(Ω)

= |(2− γ)(N − γ)|
∥∥∥∥∥ u

|x′|
γ
p

E

∥∥∥∥∥
p

Lp(Ω)

,

∥∥∥∥∥ |∇HV |
|LV | p−1

p

∇Hu

∥∥∥∥∥
Lp(Ω)

=
|2 − γ|

|(2− γ)(N − γ)| p−1
p

∥∥∥∥∥∥ |∇Hu|
|x′|

γ−p
p

E

∥∥∥∥∥∥
Lp(Ω)

,

∥∥∥|LV | 1pu
∥∥∥p−1

Lp(Ω)
= |(2− γ)(N − γ)| p−1

p

∥∥∥∥∥ u

|x′|
γ
p

E

∥∥∥∥∥
p−1

Lp(Ω)

.

Thus, (7.60) implies the inequality

|N − γ|
p

∥∥∥∥∥ u

|x′|
γ
p

E

∥∥∥∥∥
p

Lp(Ω)

≤
∥∥∥∥∥∥ ∇Hu

|x′|
γ−p
p

E

∥∥∥∥∥∥
Lp(Ω)

∥∥∥∥∥ u

|x′|
γ
p

E

∥∥∥∥∥
p−1

Lp(Ω)

− 1

p

∫
∂Ω

|u|p〈∇̃|x′|2−γ
E , dx〉.

If we denote α = γ−p
p and β

p−1 = γ
p , we obtain (7.62). �
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Another interesting feature of Theorem 7.7.1 is that it also allows one to
obtain inequalities with the L-gauge d.

Let us give an example.

Corollary 7.7.4 (Hardy inequality with L-gauge weights and boundary term). Let
Ω ⊂ G be an admissible domain in a stratified group G of homogeneous dimension
Q ≥ 3, and assume that 0 /∈ ∂Ω. Let 2−Q < α < 0. Let u ∈ C1(Ω\{0})∩C(Ω\{0}).
Then we have

|Q+ α− 2|
p

∥∥∥dα−2
p |∇Hd| 2pu

∥∥∥
Lp(Ω)

(7.63)

≤
∥∥∥d p+α−2

p |∇Hd| 2−p
p |∇Hu|

∥∥∥
Lp(Ω)

− 1

p

∥∥∥dα−2
p |∇Hd| 2p u

∥∥∥1−p

Lp(Ω)

∫
∂Ω

dα−1|u|p〈∇̃d, dx〉.

Proof of Corollary 7.7.4. First, we can multiply both sides of the inequality (7.60)

by
∥∥∥|LV | 1p u

∥∥∥1−p

Lp(Ω)
, so that we have the inequality

∥∥∥|LV | 1p u
∥∥∥
Lp(Ω)

≤ p

∥∥∥∥∥ |∇HV |
|LV | p−1

p

|∇Hu|
∥∥∥∥∥
Lp(Ω)

−
∥∥∥|LV | 1p u

∥∥∥1−p

Lp(Ω)

∫
∂Ω

|u|p〈∇̃V, dx〉.

(7.64)

Now, let us take V := dα. Since d = ε
1

2−Q for the fundamental solution ε of L, we
have

Ldα = ∇H(∇Hε
α

2−Q ) = ∇H

(
α

2−Q
ε

α+Q−2
2−Q ∇Hε

)
=

α(α +Q− 2)

(2−Q)2
ε

α−4+2Q
2−Q |∇Hε|2 + α

2−Q
ε

α+Q−2
2−Q Lε.

Since ε is the fundamental solution of L, it follows that

Ldα =
α(α+Q − 2)

(2 −Q)2
ε

α−4+2Q
2−Q |∇Hε|2 = α(α +Q− 2)dα−2|∇Hd|2.

From this we can observe that Ldα < 0, and also a direct calculation yields the
identities ∥∥∥|Ldα| 1p u∥∥∥

Lp(Ω)
= α

1
p |Q+ α− 2| 1p

∥∥∥dα−2
p |∇Hd| 2p u

∥∥∥
Lp(Ω)

,∥∥∥∥∥ |∇Hdα|
|Ldα| p−1

p

|∇Hu|
∥∥∥∥∥
Lp(Ω)

= α
1
p |Q+ α− 2| 1−p

p

∥∥∥dα−2+p
p |∇Hd| 2−p

p |∇Hu|
∥∥∥
Lp(Ω)

,

∥∥∥|Ldα| 1p u∥∥∥1−p

Lp(Ω)

∫
∂Ω

|u|p〈∇̃dα, dx〉

= α
1
p |Q + α− 2| 1−p

p

∥∥∥dα−2
p |∇Hd| 2p u

∥∥∥1−p

Lp(Ω)

∫
∂Ω

dα−1|u|p〈∇̃d, dx〉.
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Using (7.64) we arrive at

|Q+ α− 2|
p

∥∥∥dα−2
p |∇Hd| 2p u

∥∥∥
Lp(Ω)

≤
∥∥∥d p+α−2

p |∇Hd| 2−p
p |∇Hu|

∥∥∥
Lp(Ω)

− 1

p

∥∥∥dα−2
p |∇Hd| 2p u

∥∥∥1−p

Lp(Ω)

∫
∂Ω

dα−1|u|p〈∇̃d, dx〉,

which implies (7.63). �

The inequality (7.64) implies the following generalized Heisenberg–Pauli–
Weyl type uncertainty principle on stratified groups.

Corollary 7.7.5 (Weighted Heisenberg–Pauli–Weyl uncertainty principle with
boundary term). Let Ω ⊂ G be an admissible domain in a stratified group G

and let V ∈ C2(Ω) be real-valued. Then for all complex-valued functions u ∈
C2(Ω) ∩ C1(Ω) we have∥∥∥|LV |− 1

p u
∥∥∥
Lp(Ω)

∥∥∥∥∥ |∇HV |
|LV | p−1

p

|∇Hu|
∥∥∥∥∥
Lp(Ω)

≥ 1

p
‖u‖2Lp(Ω) +

1

p

∥∥∥|LV |− 1
p u

∥∥∥
Lp(Ω)

∥∥∥|LV | 1pu
∥∥∥1−p

Lp(Ω)

∫
∂Ω

|u|p〈∇̃V, dx〉.
(7.65)

In particular, if u vanishes on the boundary ∂Ω, then we have∥∥∥|LV |− 1
p u

∥∥∥
Lp(Ω)

∥∥∥∥∥ |∇HV |
|LV | p−1

p

|∇Hu|
∥∥∥∥∥
Lp(Ω)

≥ 1

p
‖u‖2Lp(Ω) . (7.66)

By setting V = |x′|α in the inequality (7.66), we recover the Heisenberg–
Pauli–Weyl type uncertainty principle on stratified groups.

Proof of Corollary 7.7.5. By using the extended Hölder inequality and (7.64) we
have∥∥∥|LV |− 1

p u
∥∥∥
Lp(Ω)

∥∥∥∥∥ |∇HV |
|LV | p−1

p

|∇Hu|
∥∥∥∥∥
Lp(Ω)

≥ 1

p

∥∥∥|LV |− 1
pu

∥∥∥
Lp(Ω)

∥∥∥|LV | 1p u
∥∥∥
Lp(Ω)

+
1

p

∥∥∥|LV |− 1
p u

∥∥∥
Lp(Ω)

∥∥∥|LV | 1p u
∥∥∥1−p

Lp(Ω)

∫
∂Ω

|u|p〈∇̃V, dx〉,

≥ 1

p

∥∥|u|2∥∥
L

p
2 (Ω)

+
1

p

∥∥∥|LV |− 1
pu

∥∥∥
Lp(Ω)

∥∥∥|LV | 1p u
∥∥∥1−p

Lp(Ω)

∫
∂Ω

|u|p〈∇̃V, dx〉.

=
1

p
‖u‖2Lp(Ω) +

1

p

∥∥∥|LV |− 1
p u

∥∥∥
Lp(Ω)

∥∥∥|LV | 1pu
∥∥∥1−p

Lp(Ω)

∫
∂Ω

|u|p〈∇̃V, dx〉,

proving (7.65). �
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7.7.2 Rellich inequalities

In this section, we describe weighted Rellich inequalities with boundary terms. We
consider first the L2 and then the Lp case.

Theorem 7.7.6 (L2-Rellich inequality with generalized weight and boundary term).
Let V ∈ C2(Ω) be a real-valued function such that LV (x) < 0 for all x ∈ Ω ⊂ G.
Then for every ε > 0 we have∥∥∥∥ |V |

|LV | 12 Lu
∥∥∥∥2
L2(Ω)

≥ 2ε
∥∥∥V 1

2 |∇Hu|
∥∥∥2
L2(Ω)

+ ε(1− ε)
∥∥∥|LV | 12 u

∥∥∥2
L2(Ω)

− ε

∫
∂Ω

(|u|2〈∇̃V, dx〉 − V 〈∇̃|u|2, dx〉),
(7.67)

for all complex-valued functions u ∈ C2(Ω) ∩ C1(Ω). In particular, if u vanishes
on the boundary ∂Ω, we have∥∥∥∥ |V |

|LV | 12 Lu
∥∥∥∥2
L2(Ω)

≥ 2ε
∥∥∥V 1

2 |∇Hu|
∥∥∥2
L2(Ω)

+ ε(1− ε)
∥∥∥|LV | 12u

∥∥∥2
L2(Ω)

.

Remark 7.7.7. In the case of Rn, an analogous L2-Rellich inequality was proved
by Schmincke [Sch72] and generalized further by Bennett [Ben89]. In the setting
of stratified group this and other results of this section were obtained in [RSS18d].

Proof of Theorem 7.7.6. Using Green’s second identity from Theorem 1.4.6 and
the condition that LV (x) < 0 in Ω, we obtain∫

Ω

|LV ||u|2dx = −
∫
Ω

V L|u|2dx−
∫
∂Ω

(|u|2〈∇̃V, dx〉 − V 〈∇̃|u|2, dx〉)

= −2

∫
Ω

V
(
Re(uLu) + |∇Hu|2) dx−

∫
∂Ω

(|u|2〈∇̃V, dx〉 − V 〈∇̃|u|2, dx〉).

Using the Cauchy–Schwarz inequality this implies∫
Ω

|LV ||u|2dx ≤ 2

(
1

ε

∫
Ω

|V |2
|LV | |Lu|

2dx

) 1/2 (
ε

∫
Ω

|LV ||u|2dx
) 1/2

− 2

∫
Ω

V |∇Hu|2dx−
∫
∂Ω

(|u|2〈∇̃V, dx〉 − V 〈∇̃|u|2, dx〉)

≤ 1

ε

∫
Ω

|V |2
|LV | |Lu|

2dx+ ε

∫
Ω

|LV ||u|2dx

− 2

∫
Ω

V |∇Hu|2dx−
∫
∂Ω

(|u|2〈∇̃V, dx〉 − V 〈∇̃|u|2, dx〉),

yielding (7.67). �
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We now move to the case of Lp-estimates.

Theorem 7.7.8 (Lp-Rellich inequality with generalized weight and boundary term).
Let 1 ≤ p < ∞. Let Ω be an admissible domain in a stratified group G. If

0 < V ∈ C(Ω), LV < 0 and L(V σ) ≤ 0

on Ω for some σ > 1, then for all u ∈ C∞
0 (Ω) we have∥∥∥|LV | 1pu

∥∥∥
Lp(Ω)

≤ p2

(p− 1)σ + 1

∥∥∥∥∥ V

|LV | p−1
p

Lu
∥∥∥∥∥
Lp(Ω)

. (7.68)

Before proving Theorem 7.7.8, let us make some remarks and establish some
preliminary properties needed for its proof.

Remark 7.7.9.

1. Choosing V = |x′|−(α−2)
E in Theorem 7.7.8, with the Euclidean distance

| · |E in the first stratum of G, we obtain for any 2 < α < N and all u ∈
C∞

0 (G\{x′ = 0}), the inequality∫
G

|u|p
|x′|αE

dx ≤ Cp
(N,p,α)

∫
G

|Lu|p
|x′|α−2p

E

dx, (7.69)

where

C(N,p,α) =
p2

(N − α) ((p− 1)N + α− 2p)
. (7.70)

2. Let d = ε
1

2−Q , where ε is the fundamental solution of the sub-Laplacian L.
Assume that Q ≥ 3, α < 2, and Q + α − 4 > 0. Choosing V = dα−2 in
Theorem 7.7.8, with d being the L-gauge as above, we obtain

(Q+ α− 4)2(Q − α)2

16

∫
G

dα−4|∇Hd|2|u|2dx ≤
∫
G

dα

|∇Hd|2 |Lu|
2dx. (7.71)

Theorem 7.7.8 will be proved as follows: it is a consequence of Lemma 7.7.11,

by putting C = (p−1)(σ−1)
p in Lemma 7.7.10.

Lemma 7.7.10. Let Ω be an admissible domain in a stratified group G. If V ≥ 0,
LV < 0, and there exists a constant C ≥ 0 such that

C
∥∥∥|LV | 1pu

∥∥∥p
Lp(Ω)

≤ p(p− 1)
∥∥∥V 1

p |u| p−2
p |∇Hu| 2p

∥∥∥p
Lp(Ω)

, 1 < p < ∞, (7.72)

for all u ∈ C∞
0 (Ω), then we have

(1 + C)
∥∥∥|LV | 1p u

∥∥∥
Lp(Ω)

≤ p

∥∥∥∥∥ V

|LV | p−1
p

Lu
∥∥∥∥∥
Lp(Ω)

, (7.73)

for all u ∈ C∞
0 (Ω). If p = 1 then the statement holds for C = 0.
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Proof of Lemma 7.7.10. In view of (2.8) we can assume that u is real-valued. Let
ε > 0 and set

uε := (|u|2 + ε2)p/2 − εp.

Then 0 ≤ uε ∈ C∞
0 and∫
Ω

|LV |uεdx = −
∫
Ω

(LV )uεdx = −
∫
Ω

V Luεdx,

where

Luε = L
(
(|u|2 + ε2)

p
2 − εp

)
= ∇H · (∇H((|u|2 + ε2)

p
2 − εp))

= ∇H(p(|u|2 + ε2)
p−2
2 u∇Hu)

= p(p− 2)(|u|2 + ε2)
p−4
2 u2|∇Hu|2

+ p(|u|2 + ε2)
p−2
2 |∇Hu|2 + p(|u|2 + ε2)

p−2
2 uLu.

Then we have∫
Ω

|LV |uεdx = −
∫
Ω

(
p(p− 2)u2(u2 + ε2)

p−4
2 + p(u2 + ε2)

p−2
2

)
V |∇Hu|2dx

− p

∫
Ω

V u(u2 + ε2)
p−2
2 Ludx.

Hence we have the inequality∫
Ω

|LV |uε +
(
p(p− 2)u2(u2 + ε2)

p−4
2 + p(u2 + ε2)

p−2
2

)
V |∇Hu|2dx

≤ p

∫
Ω

V |u|(u2 + ε2)
p−2
2 |Lu|dx.

When ε → 0, the integrand on the left-hand side is non-negative and tends to

|LV ||u|p + p(p− 1)V |u|p−2|∇Hu|2

pointwise, only for u �= 0 when p < 2, otherwise for any x. On the other hand, the
integrand on the right-hand side is bounded by

V (max |u|2 + 1)(p−1)/2 max |Lu|
and it is integrable because u ∈ C∞

0 (Ω), and so the integral tends to∫
Ω

V |u|p−1|Lu|dx

by the dominated convergence theorem. It then follows by Fatou’s lemma that∥∥∥|LV | 1p u
∥∥∥p
Lp(Ω)

+ p(p− 1)
∥∥∥V 1

p |u| p−2
p |∇Hu| 2p

∥∥∥p
Lp(Ω)

≤ p
∥∥∥V 1

p |u| p−1
p |Lu| 1p

∥∥∥p
Lp(Ω)

.
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By using (7.72), followed by Hölder’s inequality, we obtain

(1 + C)
∥∥∥|LV | 1p u

∥∥∥p
Lp(Ω)

≤ p
∥∥∥|LV |(p−1)V

1
p |u| p−1

p |LV |−(p−1)|Lu| 1p
∥∥∥p
Lp(Ω)

≤ p
∥∥∥|LV | 1p u

∥∥∥p−1

Lp(Ω)

∥∥∥∥∥ |V |
|LV | p−1

p

Lu
∥∥∥∥∥
Lp(Ω)

.

This implies (7.73). �
Lemma 7.7.11. Let 1 < p < ∞. Let Ω be an admissible domain in a stratified
group G. If

0 < V ∈ C(Ω), LV < 0 and LV σ ≤ 0

on Ω for some σ > 1, then we have

(σ − 1)

∫
Ω

|LV ||u|pdx ≤ p2
∫
{x∈Ω,u(x) 	=0}

V |u|p−2|∇Hu|2dx < ∞, (7.74)

for all u ∈ C∞
0 (Ω).

Proof of Lemma 7.7.11. We shall use that

0 ≥ L(V σ) = σV σ−2
(
(σ − 1)|∇HV |2 + V LV )

, (7.75)

and hence
(σ − 1)|∇HV |2 ≤ V |LV |.

First we consider the case p = 2: we use the inequality (7.61) to get

(σ − 1)

∫
Ω

|LV ||u|2dx ≤ 4(σ − 1)

∫
Ω

|∇HV |2
|LV | |∇Hu|2dx

≤ 4

∫
Ω

V |∇Hu|2dx

= 4

∫
{x∈Ω;u(x) 	=0,|∇Hu|	=0}

V |∇Hu|2dx, (7.76)

the last equality valid since |{x ∈ Ω;u(x) = 0, |∇Hu| �= 0}| = 0. This proves
Lemma 7.7.11 for p = 2.

For p �= 2, denote
vε := (u2 + ε2)p/4 − ε p/2,

and let ε → 0. Since
0 ≤ vε ≤ |u| p2 ,

the left-hand side of (7.76), with u replaced by vε, tends to

(σ − 1)

∫
Ω

|LV ||u|pdx



372 Chapter 7. Hardy–Rellich Inequalities and Fundamental Solutions

by the dominated convergence theorem. If u �= 0, then

|∇Hvε|2V =
∣∣∣p
2
u(u2 + ε2)

p−4
4 ∇Hu

∣∣∣2 V.
For ε → 0 we obtain

|∇Hu|pV =
p2

4
|u|p−2|∇Hu|2V.

It follows as in the proof of Lemma 7.7.10, by using Fatou’s lemma, that the
right-hand side of (7.76) tends to

p2
∫
{x∈Ω;u(x) 	=0,|∇Hu|	=0}

V |u|p−2|∇Hu|2dx,

and this completes the proof. �
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