
Chapter 6

Horizontal Inequalities on Stratified Groups

In this chapter we discuss versions of some of the inequalities from the previous
chapters in the setting of stratified groups. Because of the stratified structure here
we can use the horizontal gradient in the estimates.

As already outlined in the introduction there are three versions of estimates
on stratified groups available in the literature:

(A) Using the homogeneous semi-norm, sometimes called the L-gauge, given by
the appropriate power of the fundamental solution of the sub-Laplacian L.
Thus, if d(x) is the L-gauge, then d(x)2−Q is a constant multiple of Folland’s
[Fol75] fundamental solution of the sub-Laplacian L, with Q being the ho-
mogeneous dimension of the stratified group G; these will be discussed in
Chapter 7.

(B) Using the Carnot–Carathéodory distance, i.e., the control distance associated
to the sub-Laplacian.

(C) Using the Euclidean distance on the first stratum of the group.

The constants in the corresponding inequalities may depend on the quasi-
norm that one is using. There is an extensive literature on Hardy type inequalities
of stratified Lie groups, see, e.g., [DGP11], [GL90], [GK08], [Gri03], [JS11], [KS16],
[KÖ13], [Lia13], [NZW01]). For example, in the case (A) the Hardy inequality takes
the form ∥∥∥∥ f

d(x)

∥∥∥∥
Lp(G)

≤ p

Q− p
‖∇Hf‖Lp(G) , Q ≥ 3, 1 < p < Q, (6.1)

where Q is the homogeneous dimension of the stratified group G, ∇H is the hor-
izontal gradient, and d(x) is the L-gauge from (A). The analysis in the case (A)
in terms of the fundamental solution of the sub-Laplacian will be the subject of
Chapter 11. The results on Hardy and other inequalities for the case (B) are less
extensive, mostly devoted to the case of the Heisenberg group.

In this chapter we concentrate on the case (C). Thus, here throughout we
adopt the notations from Section 1.4.8 concerning the stratified groups. In this
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case there are several additional properties available assisting the analysis, such as
formulae (1.72) and (1.73), making certain calculations possible. It is also worth
noting that generally, for the same types of inequalities, the optimal constants in
case (C) are different than the optimal constants in case (A).

Some analysis of inequalities of the case (C) is known in the literature, see,
e.g., [BT02a] and [D’A04b]. However, in this chapter we aim at developing an
independent point of view based on the divergence relations (1.72) and (1.73).

Notation. As already mentioned, throughout this chapter we adopt the notations
from Section 1.4.8 concerning the stratified groups. In particular, G will always
be a stratified group of homogeneous dimension Q, with N being the dimension
of the first stratum. Also, x′ will denote the variables in the first stratum of G,
and ∇H will denote the horizontal gradient. To simplify the notation, we denote
simply by

|x′| =
√
x′2
1 + · · ·+ x′2

N

the Euclidean norm on the first stratum of G, which can be identified with RN .

6.1 Horizontal Lp-Caffarelli–Kohn–Nirenberg

type inequalities

In this section we establish the horizontal version on stratified groups of the Lp-
Caffarelli–Kohn–Nirenberg type inequalities from Section 3.3.1. In particular, this
would imply the horizontal version, as in the case (C) above, of the Lp-Hardy
inequality with the sharp constant:∥∥∥∥ f

|x′|
∥∥∥∥
Lp(G)

≤ p

N − p
‖∇Hf‖Lp(G) , 1 < p < N. (6.2)

We obtain it as a special case of the following more general inequality, see Remark
6.1.2, Part 3.

Theorem 6.1.1 (Horizontal Lp-Caffarelli–Kohn–Nirenberg inequalities). For any
α, β ∈ R and every complex-valued function f ∈ C∞

0 (G\{x′ = 0}), we have

|N − γ|
p

∥∥∥∥∥ f

|x′| γp

∥∥∥∥∥
p

Lp(G)

≤
∥∥∥∥ 1

|x′|α∇Hf

∥∥∥∥
Lp(G)

∥∥∥∥∥ f

|x′| β
p−1

∥∥∥∥∥
p−1

Lp(G)

, 1 < p < ∞, (6.3)

where γ = α+ β + 1. If γ �= N then the constant |N−γ|
p is sharp.
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Before proving Theorem 6.1.1, let us point out some of its consequences.

Remark 6.1.2.

1. In the Abelian case G = (Rn,+), we have N = n, ∇H = ∇ = (∂x1 , . . . , ∂xn),
so (6.3) gives the Lp-Caffarelli–Kohn–Nirenberg type inequality for Rn with
the sharp constant:

|n− γ|
p

∥∥∥∥∥ f

|x|
γ
p

E

∥∥∥∥∥
p

Lp(Rn)

≤
∥∥∥∥ 1

|x|αE
∇f

∥∥∥∥
Lp(Rn)

∥∥∥∥∥∥ f

|x|
β

p−1

E

∥∥∥∥∥∥
p−1

Lp(Rn)

, (6.4)

for all f ∈ C∞
0 (Rn\{0}), and |x|E =

√
x2
1 + · · ·+ x2

n. In this case it becomes
a special case of Theorem 3.3.3 because a particular (Euclidean) norm is used.
In this case the inequality of this type has been analysed in, e.g., [Cos08] and
[DJSJ13].

2. (Horizontal weighted Lp-Hardy inequality) In the case

β = γ

(
1− 1

p

)
,

i.e., with β = (α + 1)(p − 1) and γ = p(α + 1), inequality (6.3) implies the
horizontal weighted Lp-Hardy type inequality

|N − p(α+ 1)|
p

∥∥∥∥ f

|x′|α+1

∥∥∥∥
Lp(G)

≤
∥∥∥∥ 1

|x′|α∇Hf

∥∥∥∥
Lp(G)

, 1 < p < ∞, (6.5)

for any f ∈ C∞
0 (G\{x′ = 0}) and all α ∈ R, with sharp constant in (6.5) for

p(α+ 1) �= N .

3. (Horizontal Lp-Hardy inequality) In particular, in the case of α = 0, the
inequality (6.5) implies the following stratified group version of horizontal
Lp-Hardy inequality with the sharp constant:∥∥∥∥ f

|x′|
∥∥∥∥
Lp(G)

≤ p

N − p
‖∇Hf‖Lp(G) , 1 < p < N. (6.6)

Such a type of inequalities was also considered in [D’A04b], and in [Yen16]
in the case of the Heisenberg group.

In the case p = 2 this inequality can be in turn sharpened to the fol-
lowing inequality: If N ≥ 3 and α ∈ R, then for all complex-valued functions
f ∈ C∞

0 (G\{x′ = 0}) we have∥∥∥∥ f

|x′|
∥∥∥∥
L2(G)

≤ 2

N − 2

∥∥∥∥x′ · ∇Hf

|x′|
∥∥∥∥
L2(G)

, (6.7)

where the constant 2
N−2 is sharp. This refinement will be shown in Theorem

6.4.4 by using the factorization method.
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4. Clearly, when G = (Rn,+), n ≥ 3, (6.6) implies the classical Hardy inequality
for Rn: ∥∥∥∥ f

|x|E

∥∥∥∥
Lp(Rn)

≤ p

n− p
‖∇f‖Lp(Rn) ,

for all f ∈ C∞
0 (Rn\{0}), and |x|E =

√
x2
1 + · · ·+ x2

n.

Similar to Corollary 3.3.5, Theorem 6.1.1, and even the corresponding Hardy
inequality, immediately implies a version of the Heisenberg–Pauli–Weyl uncer-
tainty principle.

Corollary 6.1.3 (Horizontal Heisenberg–Pauli–Weyl uncertainty principle). For all
f ∈ C∞

0 (G\{x′ = 0}) we have

‖f‖2L2(G) ≤
p

N − p
‖∇Hf‖Lp(G) ‖|x′|f‖

L
p

p−1 (G)
, 1 < p < N. (6.8)

Proof of Corollary 6.1.3. Using (6.6) the Hölder inequality we immediately obtain

‖f‖2L2(G) ≤
∥∥∥∥ 1

|x′|f
∥∥∥∥
Lp(G)

‖|x′|f‖
L

p
p−1 (G)

≤ p

N − p
‖∇Hf‖Lp(G) ‖|x′|f‖

L
p

p−1 (G)
, 1 < p < N,

(6.9)

giving (6.8). �
Remark 6.1.4.

1. In the Abelian case G = (Rn,+), taking N = n, we get that (6.8) with p = 2
implies the classical uncertainty principle on Rn, namely,(∫

Rn

|f(x)|2dx
)2

≤
(

2

n− 2

)2 ∫
Rn

|∇f(x)|2dx
∫
Rn

|x|2E |f(x)|2dx, (6.10)

for all f ∈ C∞
0 (Rn\{0}). This is the Heisenberg–Pauli–Weyl uncertainty prin-

ciple on Rn. We note that we can also obtain (6.10) already as a consequence
of the radial Heisenberg–Pauli–Weyl uncertainty principle on homogeneous
groups, see Remark 3.3.6, Part 1. However, since the proofs of Theorem 3.3.3
and Theorem 6.1.1 are different, they give two different proofs of (6.10).

2. We can point out some inequalities with sharp constants as special cases of
(6.3). For example, for αp = α+ β + 1 we get

|N − αp|
p

∥∥∥∥ f

|x′|α
∥∥∥∥p
Lp(G)

≤
∥∥∥∥∇Hf

|x′|α
∥∥∥∥
Lp(G)

∥∥∥|x′| 1
p−1−αf

∥∥∥p−1

Lp(G)
. (6.11)

Also, if 0 = α+ β + 1 and α = −p, then

N

p
‖f‖pLp(G) ≤ ‖|x′|p∇Hf‖Lp(G)

∥∥∥∥ f

|x′|
∥∥∥∥p−1

Lp(G)

, (6.12)

with constants in both of these inequalities being sharp.
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Proof of Theorem 6.1.1. We may assume that γ �= N since for γ = N the in-
equality (6.3) is trivial. By using the identity (1.73), the divergence theorem, and
Schwarz’ inequality, one calculates∫

G

|f(x)|p
|x′|γ dx =

1

N − γ

∫
G

|f(x)|pdivH
(

x′

|x′|γ
)
dx

= − 1

N − γ
Re

∫
G

pf(x)|f(x)|p−2 x
′ · ∇Hf

|x′|γ dx

≤
∣∣∣∣ p

N − γ

∣∣∣∣ ∫
G

|f(x)|p−1

|x′|γ |x′ · ∇Hf | dx

≤
∣∣∣∣ p

N − γ

∣∣∣∣ ∫
G

|f(x)|p−1

|x′|α+β
|∇Hf(x)| dx

≤
∣∣∣∣ p

N − γ

∣∣∣∣ (∫
G

|∇Hf(x)|p
|x′|αp dx

) 1
p

(∫
G

|f(x)|p
|x′| βp

p−1

dx

) p−1
p

.

Here in the last line we used Hölder’s inequality. This gives∣∣∣∣N − γ

p

∣∣∣∣ ∫
G

|f(x)|p
|x′|γ dx ≤

(∫
G

|∇Hf(x)|p
|x′|αp dx

) 1
p

(∫
G

|f(x)|p
|x′| βp

p−1

dx

) p−1
p

,

proving (6.3). Let us now show the sharpness of the constant. For this, we look at
the equality condition in Hölder’s inequality. Let us consider the function

g(x) =

{
e−

C
λ |x′|λ , λ := α− β

p−1 + 1 �= 0,
1

|x′|C , α− β
p−1 + 1 = 0,

where C =
∣∣∣N−γ

p

∣∣∣ and γ �= N. Then it can be checked that∣∣∣∣ p

N − γ

∣∣∣∣p |∇Hg(x)|p
|x′|αp =

|g(x)|p
|x′| βp

p−1

.

Finally, approximating this function by functions in C∞
0 (G\{x′ = 0}) completes

the proof. �

6.1.1 Badiale–Tarantello conjecture

The idea of the proof of Theorem 6.1.1 implies the following similar fact in Rn

which we may split into two factors as Rn = RN × Rn−N . The best constant in
the Hardy inequality of the type of inequality (6.13) was conjectured by Badiale
and Tarantello in [BT02a, Remark 2.3]. Although it was subsequently established
in [SSW03], here we follow [RS17e] to present an independent proof of a more
general result.
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Proposition 6.1.5 (Lp-Caffarelli–Kohn–Nirenberg inequality for Euclidean decom-
position). Let x = (x′, x′′) ∈ RN × Rn−N , 1 ≤ N ≤ n, and α, β ∈ R. Then for
any f ∈ C∞

0 (Rn\{x′ = 0}), and all 1 < p < ∞, we have

|N − γ|
p

∥∥∥∥∥ f

|x′| γp

∥∥∥∥∥
p

Lp(Rn)

≤
∥∥∥∥ 1

|x′|α∇f

∥∥∥∥
Lp(Rn)

∥∥∥∥∥ f

|x′| β
p−1

∥∥∥∥∥
p−1

Lp(Rn)

, (6.13)

where γ = α + β + 1 and |x′| is the Euclidean norm on R
N . If γ �= N then the

constant |N−γ|
p is sharp.

Proof of Proposition 6.1.5. The proof is a modification of the proof of Theorem
6.1.1. For γ = N the inequality (6.13) is trivial, so let us assume γ �= N . Thus, by
using the identity

divN
x′

|x′|γ =
N − γ

|x′|γ ,

for all γ ∈ R and x′ ∈ RN with |x′| �= 0, where divN is the standard divergence
on RN , and applying the divergence theorem and Schwarz’ inequality one can
calculate∫

Rn

|f(x)|p
|x′|γ dx =

1

N − γ

∫
Rn

|f(x)|pdivN
(

x′

|x′|γ
)
dx

= − 1

N − γ
Re

∫
Rn

pf(x)|f(x)|p−2 x
′ · ∇Nf

|x′|γ dx

≤
∣∣∣∣ p

N − γ

∣∣∣∣ ∫
Rn

|f(x)|p−1

|x′|γ |x′ · ∇Nf | dx

=

∣∣∣∣ p

N − γ

∣∣∣∣ ∫
Rn

|f(x)|p−1

|x′|γ |x′
0 · ∇f | dx

≤
∣∣∣∣ p

N − γ

∣∣∣∣ ∫
Rn

|f(x)|p−1

|x′|α+β
|∇f(x)| dx

≤
∣∣∣∣ p

N − γ

∣∣∣∣ (∫
Rn

|∇f(x)|p
|x′|αp dx

) 1
p

(∫
Rn

|f(x)|p
|x′| βp

p−1

dx

) p−1
p

,

where x′
0 = (x′, 0) ∈ Rn, that is |x′

0| = |x′|, ∇N is the standard gradient on RN ,
and ∇ is the gradient on Rn. Here we have used Hölder’s inequality in the last
line. This gives

∣∣∣∣N − γ

p

∣∣∣∣ ∫
Rn

|f(x)|p
|x′|γ dx ≤

(∫
Rn

|∇f(x)|p
|x′|αp dx

) 1
p

(∫
Rn

|f(x)|p
|x′| βp

p−1

dx

) p−1
p

,
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which proves (6.13). Again as in the proof of Theorem 6.1.1 let us examine the
equality condition in the above Hölder inequality. Thus, we consider

g(x) =

{
e−

C
λ |x′|λ , λ := α− β

p−1 + 1 �= 0,
1

|x′|C , α− β
p−1 + 1 = 0,

where C =
∣∣∣N−γ

p

∣∣∣ and γ �= N. Then it can be directly checked that∣∣∣∣ p

N − γ

∣∣∣∣p |∇g(x)|p
|x′|αp =

∣∣∣∣ p

N − γ

∣∣∣∣p |∇Ng(x)|p
|x′|αp =

|g(x)|p
|x′| βp

p−1

,

which satisfies the equality condition in Hölder’s inequality. Approximating this

function by functions in C∞
0 (Rn\{x′ = 0}) shows that the constant

∣∣∣N−γ
p

∣∣∣ is

sharp. �
Remark 6.1.6. For β = (α+1)(p− 1) and γ = p(α+1) the inequality (6.13) gives
that

|N − p(α+ 1)|
p

∥∥∥∥ f

|x′|α+1

∥∥∥∥
Lp(Rn)

≤
∥∥∥∥ 1

|x′|α∇f

∥∥∥∥
Lp(Rn)

, 1 < p < ∞, (6.14)

for all f ∈ C∞
0 (Rn\{x′ = 0}) and for all α ∈ R, with the sharp constant. For

α = 0 and 1 < p < N, 2 ≤ N ≤ n, the inequality (6.14) implies that∥∥∥∥ f

|x′|
∥∥∥∥
Lp(Rn)

≤ p

N − p
‖∇f‖Lp(Rn) , (6.15)

again with p
N−p being the best constant.

6.1.2 Horizontal higher-order versions

We can iterate the Lp-Caffarelli–Kohn–Nirenberg type inequalities from Theorem
6.1.1 to obtain higher-order inequalities. Let us denote inductively

∇2
Hf := ∇H |∇Hf | and ∇m

Hf := ∇H |∇m−1
H f |, m ∈ N.

Then as a consequence of Theorem 6.1.1 we obtain

Corollary 6.1.7 (Higher-order horizontal Lp-Caffarelli–Kohn–Nirenberg type in-
equalities). For any k,m ∈ N and 1 < p < ∞ we have

|N − γ|
p

∥∥∥∥∥ f

|x′| γp

∥∥∥∥∥
p

Lp(G)

≤ Ãα,mÃβ,k

∥∥∥∥ 1

|x′|α−m
∇m+1

H f

∥∥∥∥
Lp(G)

∥∥∥∥∥ 1

|x′| β
p−1−k

∇k
Hf

∥∥∥∥∥
p−1

Lp(G)

,

(6.16)
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for all f ∈ C∞
0 (G\{x′ = 0}), where γ = α + β + 1, and all α ∈ R such that∏m−1

j=0 |N − p(α− j)| �= 0, and

Ãα,m := pm

⎡⎣m−1∏
j=0

|N − p(α− j)|
⎤⎦−1

,

as well as all β ∈ R such that
∏k−1

j=0

∣∣∣N − p
(

β
p−1 − j

)∣∣∣ �= 0, and

Ãβ,k := pk(p−1)

⎡⎣k−1∏
j=0

∣∣∣∣N − p

(
β

p− 1
− j

)∣∣∣∣
⎤⎦−(p−1)

.

Proof of Corollary 6.1.7. Taking |∇Hf | instead of f and α−1 instead of α in (6.5)
we consequently get∥∥∥∥∇Hf

|x′|α
∥∥∥∥
Lp(G)

≤ p

|N − pα|
∥∥∥∥ 1

|x′|α−1
∇2

Hf

∥∥∥∥
Lp(G)

,

for α �= N
p . Combining it with (6.5) we obtain∥∥∥∥ f

|x′|α+1

∥∥∥∥
Lp(G)

≤ p

|N − p(α+ 1)|
p

|N − pα|
∥∥∥∥ 1

|x′|α−1
∇2

Hf

∥∥∥∥
Lp(G)

,

for each α ∈ R such that α �= N
p − 1 and α �= N

p . This iteration process gives∥∥∥∥ f

|x′|θ+1

∥∥∥∥
Lp(G)

≤ Aθ,k

∥∥∥∥ 1

|x′|θ+1−k
∇k

Hf

∥∥∥∥
Lp(G)

, 1 < p < ∞, (6.17)

for all f ∈ C∞
0 (G\{x′ = 0}) and all θ ∈ R such that

∏k−1
j=0 |N − p(θ + 1− j)| �= 0,

and

Aθ,k := pk

⎡⎣k−1∏
j=0

|N − p(θ + 1− j)|
⎤⎦−1

.

Similarly, we have∥∥∥∥ ∇Hf

|x′|ϑ+1

∥∥∥∥
Lp(G)

≤ Aϑ,m

∥∥∥∥ 1

|x′|ϑ+1−m
∇m+1

H f

∥∥∥∥
Lp(G)

, 1 < p < ∞, (6.18)

for all f ∈ C∞
0 (G\{x′ = 0}) and all ϑ ∈ R such that

∏m−1
j=0 |N − p(ϑ+ 1− j)| �= 0,

and

Aϑ,m := pm

⎡⎣m−1∏
j=0

|N − p(ϑ+ 1− j)|
⎤⎦−1

.

Now putting ϑ+ 1 = α and θ+ 1 = β
p−1 into (6.18) and (6.17), respectively, from

(6.3) we obtain (6.16). �
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6.2 Horizontal Hardy and Rellich inequalities

First of all let us record the horizontal Hardy inequalities discussed in Remark
6.1.2:

Corollary 6.2.1 (Horizontal Lp Hardy inequalities). Let G be a stratified group with
N being the dimension of the first stratum. Then for any 1 < p < ∞, α ∈ R, and
for all f ∈ C∞

0 (G\{x′ = 0}) we have∥∥∥∥ 1

|x′|α∇Hf

∥∥∥∥
Lp(G)

≥ |N − p(α+ 1)|
p

∥∥∥∥ f

|x′|α+1

∥∥∥∥
Lp(G)

. (6.19)

If p(α+ 1) �= N then the constant |N−p(α+1)|
p is sharp.

From this we move on to Rellich inequalities.

Theorem 6.2.2 (Horizontal Rellich inequalities). Let G be a stratified group with
N ≥ 3 being the dimension of the first stratum. Let δ ∈ R with −N/2 ≤ δ ≤ −1.
Then for all functions f ∈ C∞

0 (G\{x′ = 0}) we have∥∥∥∥ Lf
|x′|δ

∥∥∥∥
L2(G)

≥
∣∣∣∣(N − 2δ − 4)(N + 2δ)

4

∣∣∣∣ ∥∥∥∥ f

|x′|δ+2

∥∥∥∥
L2(G)

. (6.20)

If N + 2δ �= 0, then the constant in (6.20) is sharp.

We note that another version of the Rellich inequality will be given in Corol-
lary 6.5.2.

Proof of Theorem 6.2.2. In the case p = 2 and α = δ + 1, Corollary 6.2.1 implies∥∥∥∥ ∇Hf

|x′|δ+1

∥∥∥∥
L2(G)

≥
∣∣∣∣N − 2δ − 4

2

∣∣∣∣ ∥∥∥∥ f

|x′|δ+2

∥∥∥∥
L2(G)

. (6.21)

It also follows that the constant
∣∣N−2δ−4

2

∣∣ is sharp when N − 2δ − 4 �= 0. On the
other hand, Corollary 6.5.2 gives (see also Theorem 6.8.1 with p = 2, γ = 2β and
α = β − 1) ∥∥∥∥ Lf

|x′|β−1

∥∥∥∥
L2(G)

≥
∣∣∣∣N + 2β − 2

2

∣∣∣∣ ∥∥∥∥∇Hf

|x′|β
∥∥∥∥
L2(G)

(6.22)

for 2−N ≤ 2β ≤ 0 and N ≥ 3.

Putting δ + 1 instead of β this gives∥∥∥∥ Lf
|x′|δ

∥∥∥∥
L2(G)

≥
∣∣∣∣N + 2δ

2

∣∣∣∣ ∥∥∥∥ ∇Hf

|x′|δ+1

∥∥∥∥
L2(G)

(6.23)

for 2−N ≤ 2δ+2 ≤ 0 and N ≥ 3. Combining (6.21) and (6.23), we obtain (6.20).

Now, to show the sharpness of the constant in (6.20), we observe first that
in Theorem 6.2.2 the sharpness of the constant is reduced to that in Theorem
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6.1.1 which in turn is obtained by checking the equality condition in Hölder’s
inequality. Namely, the function |x′|C1 satisfies this equality condition for any real
number C1 �= 0. Similarly, in Theorem 6.8.1, the sharpness of the constant will
be obtained again from the equality condition in Hölder’s inequality, so that we
see that the same function |x′|C1 satisfies the equality condition. Therefore, the
constant in (6.23) is sharp when N + 2δ �= 0, so, the constant in (6.20) is sharp
for N + 2δ �= 0. �

6.3 Critical horizontal Hardy type inequality

For p = N the inequality (6.2) fails, and in this section we consider its critical
versions.

Theorem 6.3.1 (Critical horizontal Hardy inequality). For a bounded domain Ω ⊂
G with 0 ∈ Ω and for all f ∈ C∞

0 (Ω\{x′ = 0}) we have∥∥∥∥∥ f

|x′|log R
|x′|

∥∥∥∥∥
LN (Ω)

≤ N

N − 1

∥∥∥∥ x′

|x′| · ∇Hf

∥∥∥∥
LN (Ω)

, 1 < N < ∞, (6.24)

where R = sup
x∈Ω

|x′|.

To show Theorem 6.3.1 we will first prove the following more abstract theo-
rem, and then the proof of Theorem 6.3.1 will follows directly from this. Moreover,
it will imply a number of other estimates, for example the critical LN -Poincaré
inequality.

Theorem 6.3.2. Let 0 ∈ Ω ⊂ G be a bounded domain. Let g : (1,∞) → R be a
C2-function such that

g′(t) < 0, g′′(t) > 0, (6.25)

for all t > 1, and such that

(−g′(t))2(N−1)

(g′′(t))N−1
≤ C < ∞, for all t > 1. (6.26)

Then we have(
N − 1

N

)N ∫
Ω

|f(x)|N
|x′|N

(
−g′

(
log

Re

|x′|
))N−2

g′′
(
log

Re

|x′|
)
dx

≤
∫
Ω

(
−g′

(
log Re

|x′|
))2(N−1)

(
g′′
(
log Re

|x′|
))N−1

∣∣∣∣ x′

|x′| · ∇Hf(x)

∣∣∣∣N dx,

(6.27)

for all f ∈ C∞
0 (Ω\{x′ = 0}), with R = sup

x∈Ω
|x′|.
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Proof of Theorem 6.3.2. For ε > 0 a direct calculation shows

|∇HGε(x)|N−2∇HGε(x) = (−g′(Fε(x)))
N−1

( |x′|N−2x′

(|x′|2 + ε2)N−1

)
,

where

Fε(x) := log
Rεe√|x′|2 + ε2

, Rε := sup
x∈Ω

√
|x′|2 + 2ε2,

and

Gε(x) = g(Fε(x)).

Since g′(t) < 0, with LN as in (1.71), we have

LNGε(x) = divH(|∇HGε(x)|N−2∇HGε(x))

= (N − 1) (−g′(Fε(x)))
N−2

g′′(Fε(x))
|x′|N

(|x′|2 + ε2)N

+ (N − 1) (−g′(Fε(x)))
N−1 2ε2|x′|N−2

(|x′|2 + ε2)N
.

The divergence theorem gives∫
Ω

|f |NLNGε(x)dx =

∫
Ω

|f |NdivH(|∇HGε(x)|N−2∇HGε(x))dx

= −
∫
Ω

∇H |f |N · (|∇HGε(x)|N−2∇HGε(x))dx.

(6.28)

We have∫
Ω

|f |NLNGε(x)dx

= (N − 1)

∫
Ω

|f |N (−g′(Fε(x)))
N−2

g′′(Fε(x))
|x′|N

(|x′|2 + ε2)N
dx

+ (N − 1)

∫
Ω

|f |N (−g′(Fε(x)))
N−1 2ε2|x′|N−2

(|x′|2 + ε2)N
dx

≥ (N − 1)

∫
Ω

|f |N (−g′(Fε(x)))
N−2

g′′(Fε(x))
|x′|N

(|x′|2 + ε2)N
dx. (6.29)

Moreover,∣∣∣∣− ∫
Ω

∇H |f(x)|N · (|∇HGε(x)|N−2∇HGε(x))dx

∣∣∣∣
=

∣∣∣∣N ∫
Ω

|f(x)|N−2f(x) (−g′(Fε(x)))
N−1

( |x′|N−2x′ · ∇Hf

(|x′|2 + ε2)N−1

)
dx

∣∣∣∣
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= N

∫
Ω

|f(x)|N−1 (−g′(Fε(x)))
N−1

( |x′|N−2 |x′ · ∇Hf |
(|x′|2 + ε2)N−1

)
dx

≤ N

(∫
Ω

(−g′(Fε(x)))
N−2

g′′(Fε(x))
|x′|N |f(x)|N
(|x′|2 + ε2)N

dx

)N−1
N

×
(∫

Ω

(−g′(Fε(x)))
2(N−1)

(g′′(Fε(x)))
−(N−1)

∣∣∣∣ x′

|x′| · ∇Hf

∣∣∣∣N dx

) 1
N

. (6.30)

Combining (6.28), (6.29) and (6.30) we obtain

(N − 1)

∫
Ω

|f |N (−g′(Fε(x)))
N−2

g′′(Fε(x))
|x′|N

(|x′|2 + ε2)N
dx

≤ N

(∫
Ω

(−g′(Fε(x)))
N−2

g′′(Fε(x))
|x′|N |f(x)|N
(|x′|2 + ε2)N

dx

)N−1
N

×
(∫

Ω

(−g′(Fε(x)))
2(N−1)

(g′′(Fε(x)))
−(N−1)

∣∣∣∣ x′

|x′| · ∇Hf

∣∣∣∣N dx

) 1
N

,

which means(
N − 1

N

)N ∫
Ω

|f |N (−g′(Fε(x)))
N−2

g′′(Fε(x))
|x′|N

(|x′|2 + ε2)N
dx

≤
∫
Ω

(−g′(Fε(x)))
2(N−1)

(g′′(Fε(x)))
−(N−1)

∣∣∣∣ x′

|x′| · ∇Hf

∣∣∣∣N dx.

Now letting ε → 0 we obtain (6.27). �

Proof of Theorem 6.3.1. If we take

g(t) = −log(t− 1),

for t > 1, then we see that this function satisfies all assumptions of Theorem 6.3.2.
That is,

g′(t) = − 1

t− 1
< 0, g′′(t) =

1

(t− 1)2
> 0,

and
(−g′(t))2(N−1)

(g′′(t))N−1
= 1, for all t > 1.

Therefore, putting

g′
(
log

Re

|x′|
)

= − 1

log R
|x′|

and g′′
(
log

Re

|x′|
)

=
1(

log R
|x′|
)2

in (6.27) we obtain (6.24). �
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One can obtain a number of inequalities from Theorem 6.3.2 by choosing
different functions g(t). For example, we get the following analogue of the LN -
Poincaré inequality for the horizontal gradient.

Corollary 6.3.3 (Horizontal critical Poincaré inequality). Let R := sup
x∈Ω

|x′|. Then
for all f ∈ C∞

0 (Ω\{x′ = 0}) we have

‖f‖LN(Ω) ≤ R ‖∇Hf‖LN (Ω) . (6.31)

Proof. Let us take

g(t) = e
Nt

1−N , t > 1,

in (6.27). Then we have

‖f‖LN(Ω) ≤
∥∥∥∥|x′| x

′

|x′| · ∇Hf

∥∥∥∥
LN (Ω)

.

For R = sup
x∈Ω

|x′|, the Cauchy–Schwarz inequality implies (6.31). �

Remark 6.3.4. In the Euclidean case the idea of proving Theorem 6.3.1 using
Theorem 6.3.2 was realized in [Tak15]. In this section our presentation followed
[RS17e].

6.4 Two-parameter Hardy–Rellich inequalities

by factorization

In this section we apply the factorization method, similar to the ideas explained
in Section 2.1.5, but now in the setting of stratified groups. As a result we obtain
two-parameter inequalities analogous to the Gesztesy–Littlejohn type inequalities
described in Example 2.1.13. The presentation of this section follows [RY17].

Theorem 6.4.1 (Two-parameter Hardy–Rellich inequalities). Let G be a stratified
group with N ≥ 2 being the dimension of the first stratum, and let α, β ∈ R. Then
for all complex-valued functions f ∈ C∞

0 (G\{x′ = 0}) we have

‖Lf‖2L2(G) ≥ (α(N − 2)− 2β)

∥∥∥∥∇Hf

|x′|
∥∥∥∥2
L2(G)

− α2

∥∥∥∥x′ · ∇Hf

|x′|2
∥∥∥∥2
L2(G)

+ CN,α,β

∥∥∥∥ f

|x′|2
∥∥∥∥2
L2(G)

,

(6.32)

where

CN,α,β = α(N − 4)(N − 2)− α2(N − 2) + 2β(4−N)− β2 + αβ(N − 2).
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Remark 6.4.2.

1. Using the Cauchy–Schwarz inequality∫
G

|x′ · (∇Hf)(x)|2
|x′|4 dx ≤

∫
G

|(∇Hf)(x)|2
|x′|2 dx,

inequality (6.32) implies the inequality

‖Lf‖2L2(G) ≥ (α(N−2)−2β−α2)

∥∥∥∥∇Hf

|x′|
∥∥∥∥2
L2(G)

+CN,α,β

∥∥∥∥ f

|x′|2
∥∥∥∥2
L2(G)

. (6.33)

2. In the Abelian case G = (Rn,+), we have N = n, ∇H = ∇ = (∂x1 , . . . , ∂xn)
is the usual (full) gradient, so (6.32) implies for α, β ∈ R and for any f ∈
C∞

0 (Rn\{0}) with n ≥ 2 the inequality

‖Δf‖2L2(Rn) ≥ (α(n− 2)− 2β)

∥∥∥∥∇f

|x|
∥∥∥∥2
L2(Rn)

− α2

∥∥∥∥x · ∇f

|x|2
∥∥∥∥2
L2(Rn)

+ Cn,α,β

∥∥∥∥ f

|x|2
∥∥∥∥2
L2(Rn)

.

(6.34)

This can be also compared with inequality (2.34).

Proof of Theorem 6.4.1. For two parameters α, β ∈ R, let us define

Tα,β := −L+ α
x′ · ∇H

|x′|2 +
β

|x′|2 .

One can readily check that its formal adjoint is given by

T+
α,β := −L− α

x′ · ∇H

|x′|2 − α(N − 2)− β

|x′|2 ,

for x′ �= 0. Then, by a direct calculation for any function f ∈ C∞
0 (G\{x′ = 0}) we

have

(T+
α,βTα,βf)(x)

=

(
−L− α

x′ · ∇H

|x′|2 − α(N − 2)− β

|x′|2
)(

−(Lf)(x) + α
x′ · (∇Hf)

|x′|2 +
βf(x)

|x′|2
)

= (L2f)(x) + α

(
−L

(
x′ · (∇Hf)

|x′|2
)
(x) +

x′ · ∇H

|x′|2 (Lf)(x) + N − 2

|x′|2 (Lf)(x)
)

+ β

(
−L

(
f

|x′|2
)
(x) − (Lf)(x)

|x′|2
)

+ αβ

(
−x′ · ∇H

|x′|2
(

f

|x′|2
)
(x) +

x′ · (∇Hf)(x)

|x′|4 − (N − 2)f(x)

|x′|4
)
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+ α2

(
−
(
x′ · ∇H

|x′|2
)(

x′ · (∇Hf)

|x′|2
)
(x) − (N − 2)

x′ · (∇Hf)(x)

|x′|4
)
+ β2 f(x)

|x′|4 .

Now we calculate in the other direction,

(Tα,βT
+
α,βf)(x)

=

(
−L+ α

x′ · ∇H

|x′|2 +
β

|x′|2
)

×
(
−(Lf)(x) − α

x′ · (∇Hf)(x)

|x′|2 − (α(N − 2)− β)f(x)

|x′|2
)

= (L2f)(x) + α

(
L
(
x′ · (∇Hf)

|x′|2
)
(x) − x′ · ∇H

|x′|2 (Lf)(x) + (N − 2)L
(

f

|x′|2
)
(x)

)
+ β

(
−L

(
f

|x′|2
)
(x) − (Lf)(x)

|x′|2
)

+ αβ

(
x′ · ∇H

|x′|2
(

f

|x′|2
)
(x)− x′ · (∇Hf)(x)

|x′|4 − (N − 2)f(x)

|x′|4
)

+ α2

(
−
(
x′ · ∇H

|x′|2
)(

x′ · (∇Hf)

|x′|2
)
(x) − (N − 2)

x′ · ∇H

|x′|2
(

f

|x′|2
)
(x)

)
+ β2 f(x)

|x′|4 . (6.35)

Using that

L
(

f

|x′|2
)
(x) =

N∑
j=1

X2
j

(
f

|x′|2
)
(x)

=

N∑
j=1

Xj

(
Xjf

|x′|2 − 2x′
jf

|x′|4
)
(x)

=

N∑
j=1

(
(X2

j f)(x)

|x′|2 − 4x′
j(Xjf)(x)

|x′|4 +
8(x′

j)
2f(x)

|x′|6 − 2f(x)

|x′|4
)

=
(Lf)(x)
|x′|2 − 4x′ · (∇Hf)(x)

|x′|4 − (2N − 8)
f(x)

|x′|4
and

x′ · ∇H

|x′|2
(

f

|x′|2
)
(x) =

f(x)

|x′|2
N∑
j=1

x′
jXj(|x′|−2) +

x′ · (∇Hf)(x)

|x′|4

= −2

N∑
j=1

(x′
j)

2f(x)

|x′|6 +
x′ · (∇Hf)(x)

|x′|4

= −2
f(x)

|x′|4 +
x′ · (∇Hf)(x)

|x′|4 ,
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in (6.35), we can write the sum (T+
α,βTα,βf)(x) + (Tα,βT

+
α,βf)(x) as

(T+
α,βTα,βf)(x) + (Tα,βT

+
α,βf)(x)

= 2(L2f)(x) + 2α(N − 2)

(
(Lf)(x)
|x′|2 − 2

x′ · (∇Hf)(x)

|x′|4 + (4 −N)
f(x)

|x′|4
)

+ 2β

(
−2(Lf)(x)

|x′|2 +
4x′ · (∇Hf)(x)

|x′|4 + (2N − 8)
f(x)

|x′|4
)
− 2αβ(N − 2)

f(x)

|x′|4

+ 2α2

(
−
(
x′ · ∇H

|x′|2
)(

x′ · (∇Hf)

|x′|2
)
(x)

− (N − 2)
x′ · (∇Hf)(x)

|x′|4 + (N − 2)
f(x)

|x′|4
)

+ 2β2 f(x)

|x′|4 . (6.36)

In order to simplify this, let us rewrite the following expression:

− 2

(
x′ · ∇H

|x′|2
)(

x′ · (∇Hf)

|x′|2
)
(x)− 2(N − 2)

x′ · (∇Hf)(x)

|x′|4 + 2(N − 2)
f(x)

|x′|4

= −2
∑N

j,k=1(x
′
jXj)(x

′
k(Xkf))(x)

|x′|4 − 2

N∑
j,k=1

x′
j(−2)|x′|−3Xj |x′|x

′
k(Xkf)(x)

|x′|2

− 2(N − 2)
x′ · (∇Hf)(x)

|x′|4 + 2(N − 2)
f(x)

|x′|4

= −2
∑N

k=1 x
′
k(Xkf)(x)

|x′|4 − 2
∑N

j,k=1 x
′
jx

′
kXj(Xkf)(x)

|x′|4 +
4
∑N

k=1 x
′
k(Xkf)(x)

|x′|4

− 2(N − 2)
x′ · (∇Hf)(x)

|x′|4 + 2(N − 2)
f(x)

|x′|4

= −2(N − 3)
x′ · (∇Hf)(x)

|x′|4 − 2
∑N

j,k=1 x
′
jx

′
k(XjXkf)(x)

|x′|4 + 2(N − 2)
f(x)

|x′|4 .

Now putting this in (6.36), we obtain

(T+
α,βTα,βf)(x) + (Tα,βT

+
α,βf)(x)

= 2(L2f)(x) + (2α(N − 2)− 4β)
(Lf)(x)
|x′|2

+ (−4α(N − 2)− 2α2(N − 3) + 8β)
x′ · (∇Hf)(x)

|x′|4
+ (2α(N − 2)(4−N) + 2α2(N − 2)− 2αβ(N − 2)

+ (4N − 16)β + 2β2)
f(x)

|x′|4 − 2α2

∑N
j,k=1 x

′
jx

′
k(XjXkf)(x)

|x′|4 . (6.37)
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In general, the non-negativity of T+
α,βTα,β + Tα,βT

+
α,β and integration by parts

imply∫
G

|(Tα,βf)(x)|2dx+
∫
G

|(T+
α,βf)(x)|2dx =

∫
G

f(x)((T+
α,βTα,β+Tα,βT

+
α,β)f)(x)dx ≥ 0.

Putting (6.37) into this inequality, one calculates

2

∫
G

|(Lf)(x)|2dx+ (2α(N − 2)− 4β)

∫
G

f(x)(Lf)(x)
|x′|2 dx

+ (−4α(N − 2)− 2α2(N − 3) + 8β)

∫
G

f(x)(x′ · (∇Hf)(x))

|x′|4 dx

+ (2α(N − 2)(4−N) + 2α2(N − 2)− 2αβ(N − 2)

+ (4N − 16)β + 2β2)

∫
G

|f(x)|2
|x′|4 dx

− 2α2
N∑

j,k=1

∫
G

f(x)x′
jx

′
k(XjXkf)(x)

|x′|4 dx ≥ 0. (6.38)

Using the identities∫
G

f(x)(Lf)(x)
|x′|2 dx = −

N∑
j=1

∫
G

(Xjf)(x)(Xjf)(x)

|x′|2

−
N∑
j=1

∫
G

f(x)(−2)|x′|−3Xj |x′|(Xjf)(x)dx

= 2

∫
G

f(x)(x′ · (∇Hf)(x))

|x′|4 dx−
∫
G

|(∇Hf)(x)|2
|x′|2 dx

and

N∑
j,k=1

∫
G

f(x)x′
jx

′
k(XjXkf)(x)

|x′|4 dx

= −(N − 1)

N∑
k=1

∫
G

f(x)x′
k(Xkf)(x)

|x′|4 dx− 2

N∑
k=1

∫
G

f(x)x′
k(Xkf)(x)

|x′|4 dx

−
N∑

j,k=1

∫
G

x′
jx

′
k(Xjf)(x)(Xkf)(x)

|x′|4 dx

−
N∑

j,k=1

∫
G

f(x)x′
jx

′
k(Xkf)(x)(−4)|x′|−5Xj |x′|dx
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= −(N + 1)
N∑

k=1

∫
G

f(x)x′
k(Xkf)(x)

|x′|4 dx+ 4
N∑

j,k=1

∫
G

f(x)(x′
j)

2x′
k(Xkf)(x)

|x′|6 dx

−
∫
G

|x′ · (∇Hf)(x)|2
|x′|4 dx

= −(N − 3)

∫
G

f(x)(x′ · (∇Hf)(x))

|x′|4 dx−
∫
G

|x′ · (∇Hf)(x)|2
|x′|4 dx

in (6.38), we obtain

2

∫
G

|(Lf)(x)|2dx+(4α(N−2)−8β−4α(N−2)+8β−2α2(N−3)+2α2(N−3))

×
∫
G

f(x)(x′ ·(∇Hf)(x))

|x′|4 dx

+(2α(N−2)(4−N)+2α2(N−2)−2αβ(N−2)+(4N−16)β+2β2)

×
∫
G

|f(x)|2
|x′|4 dx−(2α(N−2)−4β)

∫
G

|(∇Hf)(x)|2
|x′|2 dx

+2α2

∫
G

|x′ ·(∇Hf)(x)|2
|x′|4 dx≥0,

which implies (6.32). �

The factorization method can be used to give an elementary proof of the
horizontal L2-weighted inequality given in Remark 6.1.2, Part 3.

Proposition 6.4.3 (Horizontal L2-Hardy inequality). Let G be a stratified group
with N ≥ 3 being the dimension of the first stratum. Let α ∈ R. Then for all
complex-valued functions f ∈ C∞

0 (G\{x′ = 0}) we have

‖∇Hf‖L2(G) ≥ N − 2

2

∥∥∥∥ f

|x′|
∥∥∥∥
L2(G)

, (6.39)

where the constant N−2
2 is sharp.

Proof of Proposition 6.4.3. Let

T̃α := ∇H + α
x′

|x′|2 .

One can readily check that its formal adjoint is given by

T̃+
α = −divH + α

x′

|x′|2 ,

where x′ �= 0.
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Using (1.73) we have

T̃+
α T̃αf = −(Lf)(x) − αdivH

(
x′

|x′|2 f
)
(x) + α

x′ · (∇Hf)(x)

|x′|2 + α2 f(x)

|x′|2

= −(Lf)(x) − αdivH

(
x′

|x′|2
)
f(x) + α2 f(x)

|x′|2

= −(Lf)(x) + α(α+ 2−N)

|x′|2 f(x).

By integrating by parts and using the non-negativity of T̃+
α T̃α we have

0 ≤
∫
G

|T̃αf |2dx

=

∫
G

f(x)(T̃+
α T̃αf)(x)dx

=

∫
G

|∇Hf |2dx+ α(α+ 2−N)

∫
G

|f(x)|2
|x′|2 dx.

It follows from this that∫
G

|∇Hf(x)|2dx ≥ α(N − 2− α)

∫
G

|f(x)|2
|x′|2 dx.

By maximizing the constant with respect to α we obtain (6.39). The sharpness of
the constant follows from Remark 6.1.2, Part 3. �

By modifying the differential expression T̃α in the proof of Proposition 6.4.3
we can also show the following refinement of the L2-Hardy inequality (6.39). The
fact that it is indeed a refinement, that is, that (6.40) implies (6.39) follows by the
Cauchy–Schwarz inequality. Consequently, the sharpness of the constant in (6.40)
also follows from the sharpness of the constant in (6.39).

Theorem 6.4.4 (Refined horizontal L2-Hardy inequality). Let G be a stratified
group with N ≥ 3 being the dimension of the first stratum. Let α ∈ R. Then for
all complex-valued functions f ∈ C∞

0 (G\{x′ = 0}) we have∥∥∥∥x′ · ∇Hf

|x′|
∥∥∥∥
L2(G)

≥ N − 2

2

∥∥∥∥ f

|x′|
∥∥∥∥
L2(G)

, (6.40)

where the constant N−2
2 is sharp.

Proof of Theorem 6.4.4. Let us define

T̂α :=
x′ · ∇H

|x′| +
α

|x′| .
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One can readily check that its formal adjoint is given by

T̂+
α := −x′ · ∇H

|x′| +
α−N + 1

|x′| ,

where x′ �= 0. Using (1.73) we get(
x′ · ∇H

|x′|
)(

x′ · (∇Hf)(x)

|x′|
)

=

∑N
j,k=1(x

′
jXj)(x

′
k(Xkf)(x))

|x′|2 +

N∑
j,k=1

x′
j(−1)|x′|−2Xj |x′|x

′
k(Xkf)(x)

|x′|

=

∑N
k=1 x

′
k(Xkf)(x)

|x′|2 +

∑N
j,k=1 x

′
jx

′
k(XjXkf)(x)

|x′|2 −
∑N

k=1 x
′
k(Xkf)(x)

|x′|2

=

∑N
j,k=1 x

′
jx

′
k(XjXkf)(x)

|x′|2
and

(x′ · ∇H)

(
f

|x′|
)

=

∑N
k=1 x

′
k(Xkf)(x)

|x′| +
N∑

k=1

x′
k(−1)|x′|−2Xk|x′|f(x)

=
x′ · (∇Hf)(x)

|x′| − f(x)

|x′| .

From these identities we get

T̂+
α T̂αf(x) = −

∑N
j,k=1 x

′
jx

′
k(XjXkf)(x)

|x′|2

− (N − 1)
x′ · (∇Hf)(x)

|x′|2 +
α(α + 2−N)

|x′|2 f(x).

Using (1.73) again we have

N∑
j,k=1

∫
G

f(x)x′
jx

′
k(XjXkf)(x)

|x′|2 dx

= −(N − 1)

N∑
k=1

∫
G

f(x)x′
k(Xkf)(x)

|x′|2 dx− 2

N∑
k=1

∫
G

f(x)x′
k(Xkf)(x)

|x′|2 dx

−
N∑

j,k=1

∫
G

x′
jx

′
k(Xjf)(x)(Xkf)(x)

|x′|2 dx

−
N∑

j,k=1

∫
G

f(x)x′
jx

′
k(Xkf)(x)(−2)|x′|−3Xj |x′|dx
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= −(N + 1)
N∑

k=1

∫
G

f(x)x′
k(Xkf)(x)

|x′|2 dx+ 2
N∑

j,k=1

∫
G

f(x)(x′
j)

2x′
k(Xkf)(x)

|x′|4 dx

−
∫
G

|x′ · (∇Hf)(x)|2
|x′|2 dx

= −(N − 1)

∫
G

f(x)(x′ · (∇Hf)(x))

|x′|2 dx−
∫
G

|x′ · (∇Hf)(x)|2
|x′|2 dx. (6.41)

Taking into account this, integrating by parts, and using the non-negativity of the
operator T̂+

α T̂α, we get

0 ≤
∫
G

|T̂αf |2dx =

∫
G

f(x)(T̂+
α T̂αf)(x)dx

= −
∫
G

(∑N
j,k=1 x

′
jx

′
kf(x)(XjXkf)(x)

|x′|2 +
(N − 1)f(x)(x′ · (∇Hf)(x))

|x′|2
)
dx

+ α(α−N + 2)

∫
G

|f(x)|2
|x′|2 dx.

Consequently, using (6.41) we obtain∫
G

( |x′ · (∇Hf)(x)|2
|x′|2 + α(α−N + 2)

|f(x)|2
|x′|2

)
dx ≥ 0.

It now follows that∫
G

|x′ · (∇Hf)(x)|2
|x′|2 dx ≥ α((N − 2)− α)

∫
G

|f(x)|2
|x′|2 dx.

By maximizing α((N − 2)− α) with respect to α we obtain (6.40). �

Further two-parameter inequalities by factorization method are possible in
the setting of the Heisenberg group, for which we can refer the reader to [RY17].
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6.5 Hardy–Rellich type inequalities

and embedding results

We now discuss several refinements of the Hardy–Rellich inequalities with respect
to the variables in the first stratum. We recall that N stands for the dimension of
the first stratum of a stratified Lie group G here. As a consequence, we formulate
several corollaries for the embeddings of the appearing function spaces.

Theorem 6.5.1 (Horizontal L2-Hardy–Rellich type inequalities). Let α, β ∈ R. Let
N ≥ 2 be the dimension of the first stratum of a stratified Lie group G, and let | · |
be the Euclidean norm on RN . Then for all f ∈ C∞

0 (G\{x′ = 0}) we have(
N − (α+ β + 3)

2

∫
G

|∇Hf |2
|x′|α+β+1

dx+ (α + β + 1)

∫
G

(x′ · ∇Hf)2

|x′|α+β+3
dx

)2

≤
∫
G

|Lf |2
|x′|2β dx

∫
G

|∇Hf |2
|x′|2α dx.

(6.42)

Moreover, if α+ β + 1 ≤ 0 then we have

N + α+ β − 1

2

∫
G

|∇Hf |2
|x′|α+β+1

dx ≤
(∫

G

|Lf |2
|x′|2β dx

)1/2(∫
G

|∇Hf |2
|x′|2α dx

) 1/2

.

(6.43)

The inequality (6.43) can be considered as a special case (p = 2) of Theo-
rem 6.8.1. In particular, taking α = β + 1, we obtain the following Rellich type
inequality:

Corollary 6.5.2 (Horizontal L2-Rellich type inequality). Let N be the dimension
of the first stratum of a stratified Lie group G and let α ≤ 0. Then for all f ∈
C∞

0 (G\{x′ = 0}) we have

(N + 2α− 2)2

4

∫
G

|∇Hf |2
|x′|2α dx ≤

∫
G

|Lf |2
|x′|2α−2

dx. (6.44)

Furthermore, we have

(N + 2α− 2)2(N − 2α− 2)2

16

∫
G

|f(x)|2
|x′|2α+2

dx ≤
∫
G

|Lf |2
|x′|2α−2

dx. (6.45)

We can compare it with another version given in Theorem 6.2.2.

Proof of Corollary 6.5.2. Inequality (6.44) follows from Theorem 6.5.1 by taking
α = β + 1. Inequality (6.45) follows from (6.44) and Corollary 6.2.1 with p = 2
which says that∥∥∥∥ 1

|x′|α∇Hf

∥∥∥∥
L2(G)

≥ |N − 2(α+ 1)|
2

∥∥∥∥ f

|x′|α+1

∥∥∥∥
L2(G)

.
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Note that the sharpness of the constant follows from the fact that in both inequal-
ities the best constants are attained when there are equalities in the corresponding
Hölder inequalities in their proofs, and these are attained on powers of |x′|. �

We note that another version of the horizontal Rellich inequality is given in
Theorem 6.2.2.

Note that when G = (Rn,+), that is, N = n, ∇H = ∇ = (∂x1 , . . . , ∂xn), then
(6.42) implies the following Hardy–Rellich type inequality for all f ∈ C∞

0 (Rn\{0}):(
n− (α+ β + 3)

2

∫
Rn

|∇f |2
|x|α+β+1

E

dx+ (α+ β + 1)

∫
Rn

(x · ∇f)2

|x|α+β+3
E

dx

)2

≤
∫
Rn

|Δf |2
|x|2βE

dx

∫
Rn

|∇f |2
|x|2αE

dx,

(6.46)

where |x|E =
√
x2
1 + · · ·+ x2

n. This inequality was also discussed in [Cos08] and
[DJSJ13].

Proof of Theorem 6.5.1. First we note that for all s ∈ R we have∫
G

∣∣∣∣∇Hf

|x′|α + s
x′

|x′|β+1
Lf
∣∣∣∣2 dx ≥ 0,

that is, ∫
G

|∇Hf |2
|x′|2α dx+ 2s

∫
G

x′ · ∇Hf

|x′|α+β+1
Lfdx+ s2

∫
G

|Lf |2
|x′|2β dx ≥ 0. (6.47)

Since ∫
G

x′ · ∇Hf

|x′|α+β+1
Lfdx =

∫
G

divH(∇Hf)

(
x′ · ∇Hf

|x′|α+β+1

)
dx

by using the divergence theorem (Theorem 1.4.5) and (1.73) we obtain∫
G

divH(∇Hf)

(
x′ · ∇Hf

|x′|α+β+1

)
dx = −1

2

∫
G

x′

|x′|α+β+1
· ∇H(|∇Hf |2)dx

−
∫
G

|∇Hf |2
|x′|α+β+1

dx+ (α + β + 1)

∫
G

(x′ · ∇Hf)2

|x′|α+β+3
dx.

Again by Theorem 1.4.5 and (1.73) we have the equality

−1

2

∫
G

x′

|x′|α+β+1
· ∇H(|∇Hf |2)dx =

N − (α+ β + 1)

2

∫
G

|∇Hf |2
|x′|α+β+1

dx.

Thus,∫
G

x′ · ∇Hf

|x′|α+β+1
Lfdx

=
N − (α+ β + 3)

2

∫
G

|∇Hf |2
|x′|α+β+1

dx+ (α + β + 1)

∫
G

(x′ · ∇Hf)2

|x′|α+β+3
dx.

(6.48)
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Therefore, the inequality (6.47) can be rewritten as

s2
∫
G

|Lf |2
|x′|2β dx+ 2s

(
N − (α+ β + 3)

2

∫
G

|∇Hf |2
|x′|α+β+1

dx

+ (α+ β + 1)

∫
G

(x′ · ∇Hf)2

|x′|α+β+3
dx

)
+

∫
G

|∇Hf |2
|x′|2α dx ≥ 0.

Denoting

a :=

∫
G

|Lf |2
|x′|2β dx,

b :=
N − (α+ β + 3)

2

∫
G

|∇Hf |2
|x′|α+β+1

dx+ (α + β + 1)

∫
G

(x′ · ∇Hf)2

|x′|α+β+3
dx,

and

c :=

∫
G

|∇Hf |2
|x′|2α dx

we arrive at

as2 + 2bs+ c ≥ 0,

which is equivalent to b2 − ac ≤ 0. Thus, we have(
N − (α+ β + 3)

2

∫
G

|∇Hf |2
|x′|α+β+1

dx + (α+ β + 1)

∫
G

(x′ · ∇Hf)2

|x′|α+β+3
dx

)2

≤
∫
G

|Lf |2
|x′|2β dx

∫
G

|∇Hf |2
|x′|2α dx.

This shows the inequality (6.42). Now let us show the inequality (6.43). By using
Schwarz’ and Hölder’s inequality we obtain∫

G

x′ · ∇Hf

|x′|α+β+1
Lfdx ≤

∫
G

|∇Hf |
|x′|α+β

Lfdx ≤
(∫

G

|Lf |2
|x′|2β dx

)1/2(∫
G

|∇Hf |2
|x′|2α dx

) 1/2

.

On the other hand, since α+ β + 1 ≤ 0 by Schwarz’ inequality we have

N − (α+ β + 3)

2

∫
G

|∇Hf |2
|x′|α+β+1

dx + (α+ β + 1)

∫
G

(x′ · ∇Hf)2

|x′|α+β+3
dx

≥ N − (α+ β + 3)

2

∫
G

|∇Hf |2
|x′|α+β+1

dx+ (α+ β + 1)

∫
G

|∇Hf |2
|x′|α+β+1

dx

=
N + α+ β − 1

2

∫
G

|∇Hf |2
|x′|α+β+1

dx.

Combining the above inequalities with (6.48) we obtain (6.42). �
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The special case of Theorem 6.1.1 with p = 2 can be also shown using the
divergence formula techniques in the proof of Theorem 6.5.1:

Corollary 6.5.3 (Horizontal L2-Caffarelli–Kohn–Nirenberg inequalities). Let G be
a homogeneous stratified group with N being the dimension of the first stratum.
Let α, β ∈ R. Then for all f ∈ C∞

0 (G\{x′ = 0}) we have

|N − γ|
2

∥∥∥∥ f

|x′| γ2
∥∥∥∥2
L2(G)

≤
∥∥∥∥∇Hf

|x′|α
∥∥∥∥
L2(G)

∥∥∥∥ f

|x′|β
∥∥∥∥
L2(G)

, (6.49)

where γ = α+ β + 1, and the constant |N−γ|
2 is sharp.

Proof. For all f ∈ C∞
0 (G\{x′ = 0}), α, β ∈ R and s ∈ R we have∫

G

∣∣∣∣∇Hf

|x′|β + s
x′

|x′|α+1
f

∣∣∣∣2 dx � 0.

This can be written as∫
G

|∇Hf |2
|x′|2β dx+ s2

∫
G

|f |2
|x′|2α dx+ 2s

∫
G

f
x′ · ∇Hf

|x′|γ dx � 0.

By the divergence theorem (Theorem 1.4.5) we have∫
G

f
x′ · ∇Hf

|x′|γ dx = −N − γ

2

∫
G

|f |2
|x′|γ dx.

Denoting

a :=

∫
G

|f |2
|x′|2α dx, b := |N − γ|

∫
G

|f |2
|x′|γ , c :=

∫
G

|∇Hf |2
|x′|2β dx,

this means that
as2 − bs+ c � 0,

which is equivalent to b2 − 4ac � 0, that is,

|N − γ|2
(∫

G

|f |2
|x′|γ

)2

� 4

(∫
G

|f |2
|x′|2α dx

)(∫
G

|∇Hf |2
|x′|2β dx

)
,

which gives (6.49). �

The appearance of the horizontal weights in Theorem 6.5.1 prompts one
to define the following weighted Sobolev type spaces on the stratified Lie group
G (in Chapter 10 we will be discussing analogous spaces but there on general
homogeneous groups).

Definition 6.5.4 (Sobolev types spaces with horizontal weights). Let us define the
following spaces:
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(1) Let L2
α(G) be the completion of C∞

0 (G\{x′ = 0}) with respect to the norm

‖f‖L2
α
:=

(∫
G

|f |2
|x′|2α dx

) 1/2

.

(2) Let D1,2
γ (G) be the completion of C∞

0 (G\{x′ = 0}) with respect to the norm

‖f‖D1,2
γ (G) :=

(∫
G

|∇Hf |2
|x′|2γ dx

) 1/2

.

(3) Let D2,2
γ (G) be the completion of C∞

0 (G\{x′ = 0}) with respect to the norm

‖f‖D2,2
γ (G) :=

(∫
G

|Lf |2
|x′|2γ dx

)1/2

.

(4) Let H1
α,β(G) be the completion of C∞

0 (G\{x′ = 0}) with respect to the norm

‖f‖H1
α,β

:=

(∫
G

[ |f |2
|x′|2α +

|∇Hf |2
|x′|2β

]
dx

) 1/2

.

(5) Let H2
α,β(G) be the completion of C∞

0 (G\{x′ = 0}) with respect to the norm

‖f‖H2
α,β(G) :=

(∫
G

|∇Hf |2
|x′|2α +

|Lf |2
|x′|2β dx

) 1/2

.

Theorem 6.5.5 (Several horizontal embeddings). Let α, β ∈ R. We have the fol-
lowing continuous embeddings

(i) H2
α,β(G) ⊂ D2,2

α+β+1
2

(G) for α+ β − 1 �= N.

(ii) D2,2
α (G) ⊂ D1,2

α+1(G) for α ≤ N
2 − 2.

(iii) H1
α,β(G) ⊂ L2

γ/2(G) and H1
β,α(G) ⊂ L2

γ/2(G) for γ = α + β + 1, provided
that γ �= N .

Proof of Theorem 6.5.5. Since N �= α+ β − 1, from (6.43) we obtain∫
G

|∇Hf |2
|x′|2 (α+β+1)

2

dx ≤ 2

|N + α+ β − 1|
(∫

G

|Lf |2
|x′|2β dx

) 1/2(∫
G

|∇Hf |2
|x′|2α dx

)1/2

≤ 2

|N + α+ β − 1|
(∫

G

|Lf |2
|x′|2β dx+

∫
G

|∇Hf |2
|x′|2α dx

)
,

for all f ∈ C∞
0 (G\{x′ = 0}). This proves Part (i).

Part (ii) follows from the inequality (6.43), namely assuming α+ β + 3 ≤ N
and letting β = α+ 1, α �= N

2 .

The first inequality in Part (iii) follows from inequality (6.49). Since the
spaces are symmetric with respect to the parameters α, β we also have the second
embedding. �
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Using inequality (6.43) and choosing different values of α and β we can obtain
a number of Heisenberg–Pauli–Weyl type uncertainty inequalities. Let us list some
interesting cases.

Corollary 6.5.6 (Horizontal Heisenberg–Pauli–Weyl type uncertainty inequalities).
We have the following inequalities:

(1) For α ≤ N
2 − 2 and any f ∈ H2

α,α+1(G),

|N + 2α|
2

∫
G

|∇Hf |2
|x′|2(α+1)

dx ≤
(∫

G

|Lf |2
|x′|2(α+1)

dx

) 1/2(∫
G

|∇Hf |2
|x′|2α dx

)1/2

.

(2) For N ≥ 3 and any f ∈ D1,2
0 (G),

|N − 2|
2

∫
G

|∇Hf |2dx ≤
(∫

G

|x′|2(α+1)|∇Hf |2dx
) 1/2(∫

G

|Lf |2
|x′|2α dx

) 1/2

.

(3) For any f ∈ D1,2
1 (G),

N

2

∫
G

|∇Hf |2
|x′|2 dx ≤

(∫
G

|∇Hf |2dx
) 1/2(∫

G

|Lf |2
|x′|2 dx

)1/2

.

(4) For N ≥ 2 and any f ∈ D1,2
1/2(G),

N − 1

2

∫
G

|∇Hf |2
|x′| dx ≤

(∫
G

|x′|2|∇Hf |2dx
)1/2(∫

G

|Lf |2
|x′|2 dx

) 1/2

.

(5) For N ≥ 2 and any f ∈ D1,2
1/2(G),

N − 1

2

∫
G

|∇Hf |2
|x′| dx ≤

(∫
G

|∇Hf |2dx
)1/2(∫

G

|Lf |2dx
) 1/2

.

Moreover, the following inequalities hold true with sharp constants:

(6) For any f ∈ D1,2(G), taking α = 1, β = 0,(
N − 2

2

)2 ∫
G

|f |2
|x′|2 dx ≤

∫
G

|∇Hf |2dx.

(7) For any f ∈ H1
β+1,β(G), taking α = β + 1,(
N − 2(β + 1)

2

)2 ∫
G

|f |2
|x′|2(β+1)

dx ≤
∫
G

|∇Hf |2
|x′|2β dx.
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(8) For any f ∈ H1
α,α+1(G), taking β = α+ 1,(

N − 2(α+ 1)

2

)2 ∫
G

|f |2
|x′|2(α+1)

dx ≤
(∫

G

|f |2
|x′|2α dx

)1/2(∫
G

|∇Hf |2
|x′|2(α+1)

dx

)1/2
.

(9) For any f ∈ H1
−(β+1),β(G), taking α = −(β + 1), then f ∈ L2(G) and(

N

2

)∫
G

|u|2dx ≤
(∫

G

|x′|2(β+1)|f |2dx
) 1/2(∫

G

|∇Hf |2
|x′|2β dx

)1/2

.

(10) For any f ∈ H1
0,1(G), taking α = 0, β = 1, then f ∈ L2

1(G) and∣∣∣∣N − 2

2

∣∣∣∣ ∫
G

|u|2
|x′|2 dx ≤

(∫
G

|f |2dx
) 1/2(∫

G

|∇Hf |2
|x′|2 dx

) 1/2

.

(11) For any f ∈ H1−1,1(G), N > 1, taking α = −1, β = 1, then f ∈ L2
1/2(G) and(

N − 1

2

)∫
G

|u|2
|x′|2 dx ≤

(∫
G

|x′|2|f |2dx
) 1/2(∫

G

|∇Hf |2
|x′|2 dx

) 1/2

.

(12) For any f ∈ H1(G) = H1
0,0(G), N > 1, taking α = 0, β = 0, then

f ∈ L2
1/2(G) and(

N − 1

2

)∫
G

|u|2
|x′|2 dx ≤

(∫
G

|f |2dx
)1/2(∫

G

|∇Hf |2dx
) 1/2

.

6.6 Horizontal Sobolev type inequalities

In this section, first, we are interested in Sobolev inequalities, so let us repeat
them briefly again for the sake of the reader comparing to the full homogeneous
group version discussed in Section 3.2.2. The (Euclidean) Sobolev inequality in its
simplest form has the form

‖g‖Lp(Rn) ≤ C(p)‖∇g‖Lp∗(Rn),

for all 1 < p, p∗ < ∞ with
1

p
=

1

p∗
− 1

n
.

Here ∇ is the usual gradient in Rn. The following version of a Sobolev type in-
equality with respect to the operator x ·∇ instead of the standard gradient ∇ was
considered in [BEHL08, OS09]:

‖g‖Lp(Rn) ≤ C′(p)‖x · ∇g‖Lq(Rn). (6.50)
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By putting g(x) = h(λx), λ > 0, into this inequality, we see that p = q is a
necessary condition to have (6.50).

We can notice that in formula (6.50) the operator x · ∇ can be interpreted
as the homogeneous Euler operator on general homogeneous groups (see Section
1.3.2) as well as an operator on stratified groups by substituting x and ∇ with the
corresponding horizontal operations x′ and ∇H related to the first stratum of the
group.

The homogeneous groups version of such inequalities was discussed in Section
3.2.2. Thus, we will now concentrate on the horizontal interpretation presenting a
range of Caffarelli–Kohn–Nirenberg and weighted Lp-Sobolev type inequalities on
stratified Lie groups. All the inequalities can be obtained with sharp constants.

The presentation of the following results follows [RSY17a].

We start with an Lp-weighted Sobolev type inequality.

Theorem 6.6.1 (Horizontal weighted Lp-Sobolev type inequality). Let G be a
stratified group with N being the dimension of the first stratum. For any f ∈
C∞

0 (G\{x′ = 0}), and all α ∈ R, we have

|N − αp|
p

∥∥∥∥ f

|x′|α
∥∥∥∥
Lp(G)

≤
∥∥∥∥x′ · ∇Hf

|x′|α
∥∥∥∥
Lp(G)

, 1 < p < ∞, (6.51)

where | · | is the Euclidean norm on RN . The constant |N−αp|
p is sharp when

N �= αp.

Remark 6.6.2.

1. In the Abelian case G=(Rn,+), that is, N=n and ∇H =∇= (∂x1 , . . . , ∂xn),
the inequality (6.51) yields the Lp-weighted Sobolev type inequality for G =
Rn with the sharp constant:

|n− αp|
p

∥∥∥∥ f

|x|αE

∥∥∥∥
Lp(Rn)

≤
∥∥∥∥x · ∇f

|x|αE

∥∥∥∥
Lp(Rn)

, (6.52)

for all f ∈ C∞
0 (Rn\{0}), and |x|E =

√
x2
1 + · · ·+ x2

n. This Euclidean in-
equality was shown in [OS09].

2. Using Schwarz’ inequality in the right-hand side of (6.51) we see that (6.51)
is a refinement of the Lp-weighted Hardy inequality on stratified groups: For
any f ∈ C∞

0 (G\{x′ = 0}), and all α ∈ R, we have

|N − αp|
p

∥∥∥∥ f

|x′|α
∥∥∥∥
Lp(G)

≤
∥∥∥∥ ∇Hf

|x′|α−1

∥∥∥∥
Lp(G)

, 1 < p < ∞, (6.53)

where | · | is the Euclidean norm on RN . If N �= αp then the constant |N−αp|
p

is sharp. Thus, (6.51) can be regarded as a refinement of (6.53). In the case
of p = 2 they are actually equivalent, see Theorem 6.6.3. These results have
been obtained in [RSY17a].
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3. For α = 0, inequality (6.51) gives the weighted version of the homogeneous
groups inequality in Proposition 3.2.1, Part (i). In particular, in the Eu-
clidean case of Rn we have N = n, and this gives the weighted version of the
inequality in Remark 3.2.2, Part 2.

Proof of Theorem 6.6.1. Let us assume αp �= N since when αp = N there is
nothing to prove. By using the identity (1.73) and the divergence theorem we
obtain ∫

G

|f(x)|p
|x′|αp =

1

N − αp

∫
G

|f(x)|pdivH
(

x′

|x′|αp
)
dx

= − p

N − αp
Re

∫
G

pf(x)|f(x)|p−2 x
′ · ∇Hf

|x′|αp dx

≤
∣∣∣∣ p

N − αp

∣∣∣∣ ∫
G

|f(x)|p−1

|x′|αp |x′ · ∇Hf |dx

≤
∣∣∣∣ p

N − αp

∣∣∣∣ ∫
G

|f(x)|p−1

|x′|α(p−1)

|x′ · ∇Hf |
|x′|α dx

≤
∣∣∣∣ p

N − αp

∣∣∣∣ ( |f(x)|p
|x′|αp dx

) (p−1)/p( |x′ · ∇Hf |p
|x′|αp dx

) 1/p

,

which implies (6.51). Here in the last line the Hölder inequality has been used.
Now it remains to show the sharpness of the constant. Observe that the function

h1(x) =
1

|x′| |N−αp|
p

, N �= αp,

satisfies the equality condition in the Hölder inequality∣∣∣∣ p

N − αp

∣∣∣∣p |x′ · ∇Hh1(x)|p
|x′|αp =

|h1(x)|p
|x′|αp .

This means that the constant |N−αp|
p is sharp. �

In the case of L2 the horizontal Sobolev type inequality is actually equivalent
to the Hardy inequality:

Theorem 6.6.3 (Equivalence of Sobolev type and Hardy inequalities in L2). Let G
be a stratified group with N being the dimension of the first stratum with N ≥ 3.
Then the following two statements are equivalent:

(a) For any f ∈ C∞
0 (G\{x′ = 0}), we have

‖f‖L2(G) ≤ 2

N
‖x′ · ∇Hf‖L2(G). (6.54)
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(b) For any g ∈ C∞
0 (G\{x′ = 0}), we have∥∥∥∥ g

|x′|
∥∥∥∥
L2(G)

≤ 2

N − 2

∥∥∥∥ x′

|x′| · ∇Hg

∥∥∥∥
L2(G)

. (6.55)

Proof of Theorem 6.6.3. Setting g = |x′|f we obtain that

‖x′ · ∇Hf‖2L2(G) =

∥∥∥∥− g

|x′| +
x′

|x′| · ∇Hg

∥∥∥∥2
L2(G)

(6.56)

=

∥∥∥∥ g

|x′|
∥∥∥∥2
L2(G)

− 2Re

∫
G

g(x)

|x′|
x′

|x′| · ∇Hg(x)dx +

∥∥∥∥ x′

|x′| · ∇Hg

∥∥∥∥2
L2(G)

.

By (1.73), one calculates

−2Re

∫
G

g(x)

|x′|
x′

|x′| · ∇Hg(x)dx = −
∫
G

x′

|x′|2∇H |g(x)|2dx

=

∫
G

divH

(
x′

|x′|2
)
|g(x)|2dx

= (N − 2)

∫
G

|g(x)|2
|x′|2 dx.

We obtain from the statement (a) and (6.56) that∥∥∥∥ g

|x′|
∥∥∥∥2
L2(G)

≤ 4

N2

(
(N − 1)

∥∥∥∥ g

|x′|
∥∥∥∥2
L2(G)

+

∥∥∥∥ x′

|x′| · ∇Hg

∥∥∥∥2
L2(G)

)
,

which implies (6.55). This shows that the statement (a) gives (b).

Conversely, assume that (b) holds. Put f = g/|x′|. Then we obtain∥∥∥∥ x′

|x′| · ∇H(|x′|f)
∥∥∥∥2
L2(G)

= ‖f + x′ · ∇Hf‖2L2(G)

= ‖f‖2L2(G) + 2Re

∫
G

x′f(x)∇Hfdx+ ‖x′ · ∇Hf‖2L2(G).

Using (1.73), we have

2Re

∫
G

x′f(x)∇Hfdx = −N‖f‖2L2(G).

It follows from the statement (b) that

‖f‖2L2(G) ≤
4

(N − 2)2
(‖x′ · ∇Hf‖2L2(G) − (N − 1)‖f‖2L2(G)),

which implies (6.54). �
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6.7 Horizontal extended Caffarelli–Kohn–Nirenberg

inequalities

We now present horizontal extended Caffarelli–Kohn–Nirenberg inequalities in the
setting of stratified groups. We recall that another version of such inequalities
on general homogeneous groups involving the radial derivative was discussed in
Section 3.3.

Theorem 6.7.1 (Horizontal Caffarelli–Kohn–Nirenberg type inequalities). Let 1 <
p, q < ∞, 0 < r < ∞ with p + q ≥ r, δ ∈ [0, 1] ∩ [ r−q

r , p
r

]
and a, b, c ∈ R. In

addition, assume that

δr

p
+

(1 − δ)r

q
= 1 and c = δ(a− 1) + b(1− δ).

Let G be a stratified group with N being the dimension of the first stratum with
N �= p(1− a). Then the following inequality holds:

‖|x′|cf‖Lr(G) ≤
∣∣∣∣ p

N + p(a− 1)

∣∣∣∣δ ‖|x′|a∇Hf‖δLp(G)

∥∥|x′|bf∥∥1−δ

Lq(G)
(6.57)

for all f ∈ C∞
0 (G\{0}). The constant in the inequality (6.57) is sharp for p = q

with a− b = 1 or p �= q with p(1− a) + bq �= 0, or for δ = 0, 1.

Remark 6.7.2.

1. In the Abelian case G=(Rn,+), we have N=n and ∇H =∇= (∂x1 , . . . , ∂xn),
so (6.57) implies the following Caffarelli–Kohn–Nirenberg type inequality for
G = R

n: Let 1 < p, q < ∞, 0 < r < ∞ with p+ q ≥ r and δ ∈ [0, 1]∩ [r−q
r , p

r

]
and a, b, c ∈ R. Assume that δr

p + (1−δ)r
q = 1 and c = δ(a − 1) + b(1 − δ).

Then we have

‖|x|cf‖Lr(Rn) ≤
∣∣∣∣ p

n+ p(a− 1)

∣∣∣∣δ ‖|x|a∇f‖δLp(Rn)

∥∥|x|bf∥∥1−δ

Lq(Rn)
, (6.58)

for all f ∈ C∞
0 (Rn\{0}), |x| =

√
x2
1 + · · ·+ x2

n, and n �= p(1 − a). The
constant in the inequality (6.58) is sharp for p = q with a − b = 1 or p �= q
with p(1− a) + bq �= 0, or for δ = 0, 1.

2. The inequalities (6.58) give an extension of the Caffarelli–Kohn–Nirenberg in
equalities Theorem 3.3.3 with respect to the range of indices. For example,
let us take 1 < p = q = r < ∞, a = −n−2p

p , b = −n
p and c = −n−δp

p . Then

by (6.58), for all f ∈ C∞
0 (Rn\{0}) and all 1 < p < ∞, 0 ≤ δ ≤ 1, we have

the inequality∥∥∥∥∥ f

|x|n−δp
p

∥∥∥∥∥
Lp(Rn)

≤
∥∥∥∥∥ ∇f

|x|n−2p
p

∥∥∥∥∥
δ

Lp(Rn)

∥∥∥∥ f

|x|np
∥∥∥∥1−δ

Lp(Rn)

, (6.59)
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where ∇ is the standard gradient in Rn. Since we have

1

q
+

b

n
=

1

p
+

1

n

(
−n

p

)
= 0,

we see that (3.99) fails, so that the inequality (6.59) is not covered by Theo-
rem 3.3.1.

Proof of Theorem 6.7.1. Case δ = 0. Notice that in this case we have q = r and

b = c by δr
p + (1−δ)r

q = 1 and c = δ(a − 1) + b(1 − δ), respectively. Then, the

inequality (6.57) is reduced to

‖|x′|bf‖Lq(G) ≤
∥∥|x′|bf∥∥

Lq(G)
,

which is trivial.

Case δ = 1. In this case we have p = r and a−1 = c. By (6.53), for N+cp �= 0
we obtain

‖|x′|cf‖Lr(G) ≤
∣∣∣∣ p

N + cp

∣∣∣∣ ‖|x′|c+1∇Hf‖Lr(G).

The constants in (6.53) is sharp, therefore, in this case the constant in (6.57) is
sharp.

Case δ ∈ (0, 1)∩[ r−q
r , p

r

]
. By using c = δ(a−1)+b(1−δ), a direct calculation

gives

‖|x′|cf‖Lr(G) =

(∫
G

|x′|cr|f(x)|rdx
)1/r

=

(∫
G

|f(x)|δr
|x′|δr(1−a)

|f(x)|(1−δ)r

|x′|−br(1−δ)
dx

)1/r

.

Since we have δ ∈ (0, 1)∩[ r−q
r , p

r

]
and p+q ≥ r, then by using Hölder’s inequality

for δr
p + (1−δ)r

q = 1, we obtain

‖|x′|cf‖Lr(G) ≤
(∫

G

|f(x)|p
|x′|p(1−a)

dx

) δ/p(∫
G

|f(x)|q
|x′|−bq

dx

) (1−δ)/q

=

∥∥∥∥ f

|x′|1−a

∥∥∥∥δ
Lp(G)

∥∥∥∥ f

|x′|−b

∥∥∥∥1−δ

Lq(G)

.

(6.60)

When p = q and a − b = 1, the Hölder equality condition is satisfied for all
compactly supported smooth functions. We also note that in the case p �= q the
function

h2(x) = |x′| 1
(p−q) (p(1−a)+bq) (6.61)

satisfies the Hölder equality condition:

|h2(x)|p
|x′|p(1−a)

=
|h2(x)|q
|x′|−bq

.
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If N �= p(1− a), then by (6.53), we have∥∥∥∥ f

|x′|1−a

∥∥∥∥δ
Lp(G)

≤
∣∣∣∣ p

N + p(a− 1)

∣∣∣∣δ ∥∥∥∥ ∇Hf

|x′|−a

∥∥∥∥δ
Lp(G)

. (6.62)

Combining this with (6.60), we get

‖|x′|cf‖Lr(G) ≤
∣∣∣∣ p

N + p(a− 1)

∣∣∣∣δ ∥∥∥∥ ∇Hf

|x′|−a

∥∥∥∥δ
Lp(G)

∥∥∥∥ f

|x′|−b

∥∥∥∥1−δ

Lq(G)

.

When we prove (6.62), in the same way as in the proof of Theorem 6.6.1, we note
that

h3(x) = |x′|C , C �= 0, (6.63)

satisfies the Hölder equality condition. Therefore, in the case p = q, a − b = 1
the Hölder equality condition of the inequalities (6.60) and (6.62) holds true for
h3(x) in (6.63). Moreover, in the case p �= q and p(1 − a) + bq �= 0 the Hölder
equality condition of the inequalities (6.60) and (6.62) holds true for h2(x) in
(6.61). Therefore, the constant in (6.57) is sharp when p = q, a− b = 1 or p �= q,
p(1− a) + bq �= 0. �

6.8 Horizontal Hardy–Rellich type inequalities

for p-sub-Laplacians

We prove the following Hardy–Rellich type inequalities for p-sub-Laplacians on
the stratified group G. As usual, N is the dimension of the first stratum and | · |
is the Euclidean norm on it, identified with RN .

Theorem 6.8.1 (Horizontal Hardy–Rellich inequalities for p-sub-Laplacian). Let
1 < p < N with 1

p + 1
q = 1 and α, β ∈ R be such that

p−N

p− 1
≤ γ := α+ β + 1 ≤ 0.

Then for all f ∈ C∞
0 (G\{x′ = 0}) we have

N + γ(p− 1)− p

p

∥∥∥∥∥∇Hf

|x′| γp

∥∥∥∥∥
p

Lp(G)

≤
∥∥∥∥ 1

|x′|αLpf

∥∥∥∥
Lp(G)

∥∥∥∥∇Hf

|x′|β
∥∥∥∥
Lq(G)

, (6.64)

where Lp is the p-sub-Laplacian operator defined by

Lpf := divH(|∇Hf |p−2∇Hf). (6.65)
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Remark 6.8.2.

1. For β = 0, α = −1 and q = p
p−1 , the inequality (6.64) gives a stratified group

Rellich type inequality for the p-sub-Laplacian Lp:

‖∇Hf‖pLp(G) ≤
p

N − p
‖|x′|Lpf‖Lp(G) ‖∇Hf‖

L
p

p−1 (G)
, 1 < p < N, (6.66)

for all f ∈ C∞
0 (G\{x′ = 0}).

2. For α = 0, β = −1, the inequality (6.64) implies the following Heisenberg–
Pauli–Weyl type uncertainty principle for the p-sub-Laplacian Lp: for 1 <
p < N and for all f ∈ C∞

0 (G\{x′ = 0}) we have

‖∇Hf‖pLp(G) ≤
p

N − p
‖Lpf‖Lp(G) ‖|x′|∇Hf‖Lq(G) ,

1

p
+

1

q
= 1. (6.67)

Proof of Theorem 6.8.1. As in the proof of Theorem 6.1.1 we have∫
G

|∇Hf(x)|p
|x′|γ dx =

1

N − γ

∫
G

|∇Hf(x)|pdivH
(

x′

|x′|γ
)
dx

= − 1

N − γ

∫
G

p

2
|∇Hf(x)|p−2 x

′ · ∇H |∇Hf(x)|2
|x′|γ dx

=
p

2(γ −N)

∫
G

|∇Hf(x)|p−2 x
′ · ∇H |∇Hf(x)|2

|x′|γ dx.

(6.68)

Moreover, we have∫
G

Lpf

|x′|γ x
′ · ∇Hf(x)dx =

∫
G

divH(|∇Hf(x)|p−2∇Hf(x))

|x′|γ x′ · ∇Hf(x)dx

= −
∫
G

|∇Hf(x)|p−2∇Hf(x) · ∇H

(
x′ · ∇Hf(x)

|x′|γ
)
dx

= −
∫
G

|∇Hf(x)|p−2

(
|∇Hf(x)|2

|x′|γ +
x′ · ∇H |∇Hf(x)|2

2|x′|γ − γ |x′ · ∇Hf(x)|2
|x′|γ+2

)
dx,

that is, ∫
G

|∇Hf(x)|p−2

|x′|γ x′ · ∇H |∇Hf(x)|2dx

= 2γ

∫
G

|∇Hf(x)|p−2 |x′ · ∇Hf(x)|2
|x′|γ+2

dx− 2

∫
G

|∇Hf(x)|p
|x′|γ dx

− 2

∫
G

Lpf

|x′|γ x
′ · ∇Hf(x)dx.
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Putting this in the right-hand side of (6.68) we obtain∫
G

|∇Hf(x)|p
|x′|γ dx =

pγ

γ −N

∫
G

|∇Hf(x)|p−2 |x′ · ∇Hf(x)|2
|x′|γ+2

dx

− p

γ −N

∫
G

|∇Hf(x)|p
|x′|γ dx − p

γ −N

∫
G

Lpf

|x′|γ x
′ · ∇Hf(x)dx.

Thus, ∫
G

Lpf

|x′|γ x
′ · ∇Hf(x)dx =

N − p− γ

p

∫
G

|∇Hf(x)|p
|x′|γ dx

+ γ

∫
G

|∇Hf(x)|p−2 |x′ · ∇Hf(x)|2
|x′|γ+2

dx.

Since γ ≤ 0, applying the Cauchy–Schwarz inequality to the last integrants we get∫
G

Lpf

|x′|γ x
′ · ∇Hf(x)dx

=
N − p− γ

p

∫
G

|∇Hf(x)|p
|x′|γ dx + γ

∫
G

|∇Hf(x)|p−2 |x′ · ∇Hf(x)|2
|x′|γ+2

dx

≥ N − p− γ

p

∫
G

|∇Hf(x)|p
|x′|γ dx + γ

∫
G

|∇Hf(x)|p
|x′|γ dx

=
N + γ(p− 1)− p

p

∫
G

|∇Hf(x)|p
|x′|γ dx. (6.69)

Moreover, again applying the Cauchy–Schwarz inequality and the Hölder inequal-
ity we obtain∫

G

Lpf

|x′|γ x
′ · ∇Hf(x)dx ≤

∫
G

Lpf

|x′|γ−1
|∇Hf(x)| dx

≤
(∫

G

∣∣∣∣ Lpf

|x′|α
∣∣∣∣p dx)1/p(∫

G

∣∣∣∣∇Hf

|x′|β
∣∣∣∣q dx)1/q

.

Combining it with (6.69), the proof of Theorem 6.8.1 is complete. �

6.8.1 Inequalities for weighted p-sub-Laplacians

In this section, for a non-negative function 0 ≤ ρ ∈ C1(G) we consider the corre-
sponding weighted p-sub-Laplacian

Lp,ρf = divH
(
ρ(x)|∇Hf |p−2∇Hf

)
, 1 < p < ∞. (6.70)

Depending on the function ρ, it satisfies the following inequalities.
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Theorem 6.8.3 (Inequalities for weighted p-sub-Laplacian). Let 0 < F ∈ C∞(G)
and 0 ≤ η ∈ L1

loc(G) be such that

ηF p−1 ≤ −Lp,ρF (6.71)

holds almost everywhere in G. Then for each 2 ≤ p < ∞ there is a positive constant
Cp > 0 such that we have

‖η 1
p f‖pLp(G) + Cp

∥∥∥∥ρ 1
pF∇H

f

F

∥∥∥∥p
Lp(G)

≤ ‖ρ 1
p∇Hf‖pLp(G), (6.72)

for all real-valued functions f ∈ C∞
0 (G).

Proof of Theorem 6.8.3. We observe first that for all x, y ∈ R
n there exists a

positive number Cp such that

|x|p + Cp|y|p + p|x|p−2x · y ≤ |x+ y|p, 2 ≤ p < ∞. (6.73)

Therefore, we have the estimate

|g|p|∇HF |p + CpF
p|∇Hg|p + F |∇HF |p−2∇HF · ∇H |g|p

≤ |g∇HF + F∇Hg|p = |∇Hf |p,

with g = f
F . This implies that∫

G

ρ(x)|∇Hf(x)|pdx ≥
∫
G

ρ(x)|∇HF (x)|p|g(x)|pdx

+ Cp

∫
G

ρ(x)|∇Hg(x)|p|F (x)|pdx

−
∫
G

divH(ρ(x)F (x)|∇HF (x)|p−2∇HF (x))|g(x)|pdx

≥ Cp

∫
G

ρ(x)|∇Hg(x)|p|F (x)|pdx

+

∫
G

−divH(ρ(x)|∇HF (x)|p−2∇HF (x))F (x)|g(x)|pdx.

Using the assumption (6.71) it follows that∫
G

η(x)|g(x)|p|F (x)|pdx+ Cp

∫
G

ρ(x)|∇Hg(x)|p|F (x)|pdx ≤
∫
G

ρ(x)|∇Hf(x)|pdx.

Since g = f
F we obtain

‖η 1
p f‖pLp(G) + Cp

∥∥∥∥ρ 1
pF∇H

(
f

F

)∥∥∥∥p
Lp(G)

≤ ‖ρ 1
p∇Hf‖pLp(G),

proving (6.72). �
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Remark 6.8.4.

1. For p = 2, the inequality (6.73) becomes an equality with C2 = 1. Therefore,
the proof yields a remainder formula for p = 2 in the form∥∥∥∥ρ 1

2F∇H
f

F

∥∥∥∥2
L2(G)

= ‖ρ 1
2∇Hf‖2L2(G) − ‖η 1

2 f‖2L2(G). (6.74)

2. In the case of 1 < p < 2 the inequality (6.73) can be also stated in the form
that for all x, y ∈ Rn there exists a positive constant Cp > 0 such that

|x|p + Cp
|y|p

(|x|+ |y|)2−p
+ p|x|p−2x · y ≤ |x+ y|p, 1 < p < 2, (6.75)

see, e.g., [Lin90, Lemma 4.2]. Thus, from the proof it then follows that we
have

‖η 1
p f‖pLp(G) + Cp

∥∥∥∥∥ρ 1
2

(∣∣∣∣ fF ∇HF

∣∣∣∣+ F

∣∣∣∣∇H

(
f

F

)∣∣∣∣)
p−2
2

|F |∇H

(
f

F

)∥∥∥∥∥
2

L2(G)

≤ ‖ρ 1
p∇Hf‖pLp(G), (6.76)

for all real-valued functions f ∈ C∞
0 (G).

As a special case, we can apply Theorem 6.8.3 to the usual p-sub-Laplacian
by taking the function ρ ≡ 1. In turn, this gives another proof of the Lp-Hardy
inequality (6.6):

Corollary 6.8.5 (Horizontal Lp-Hardy inequality). For f ∈ C∞
0 (G\{0}) we have∥∥∥∥ f

|x′|
∥∥∥∥
Lp

≤ p

N − p
‖∇Hf‖Lp , 1 < p < N. (6.77)

Proof of Corollary 6.8.5. In Theorem 6.8.3 setting ρ = 1 and

Fε = |x′
ε|−

θ−p−2
p =

(
(x′

1 + ε)2 + · · ·+ (x′
n + ε)2

)− θ−p−2
2p ,

for a given ε > 0, using the identity (1.72) we obtain

−Lp,1Fε = −divH
(|∇HFε|p−2∇HFε

)
= −divH

(
|∇H |x′

ε|−
θ−p−2

p |p−2∇H |x′
ε|−

θ−p−2
p

)
=

θ − p− 2

p

∣∣∣∣θ − p− 2

p

∣∣∣∣p−2(
θ − p− 2

p
− θ + 2 +N

)
|x′

ε|−
(θ−p−2)(p−1)

p −p
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=

(∣∣∣∣θ − p− 2

p

∣∣∣∣p + θ − p− 2

p

∣∣∣∣θ − p− 2

p

∣∣∣∣p−2

(−θ + 2 +N)

)
|x′

ε|−
(θ−p−2)(p−1)

p −p.

(6.78)
If 1 < p < θ − 2 and θ ≤ 2 +N , then (6.78) gives

−Lp,1Fε ≥
∣∣∣∣θ − p− 2

p

∣∣∣∣p 1

|x′
ε|p

F p−1
ε ,

that is, according to the assumption in Theorem 6.8.3, we can set

η(x) =

∣∣∣∣θ − p− 2

p

∣∣∣∣p 1

|x′
ε|p

.

It follows that (6.72) (and also (6.76)) implies∥∥∥∥ f

|x′|
∥∥∥∥
Lp

≤ p

θ − p− 2
‖∇Hf‖Lp , 1 < p < θ − 2, θ ≤ 2 +N, θ ∈ R.

Optimizing with respect to θ we obtain (6.77). �

Remark 6.8.6.

1 A version of Theorem 6.8.3 in the Euclidean case was shown in [Yen16]. In
the presentation of this section we followed [RS17e].

2. The Heisenberg group version of (6.77) was shown in [D’A04b]. Here it is
worth to recall that on the Heisenberg group we have Q = N + 2.

3. We have included Corollary 6.8.5 as a consequence of Theorem 6.8.3 to
demonstrate that this method actually also yields best constants in some
inequalities, as this constant in the Lp-Hardy inequality (6.6) was sharp.

6.9 Horizontal Rellich inequalities for

sub-Laplacians with drift

In this section, we discuss (weighted) Rellich inequalities for sub-Laplacians with
drift. For this, we assume all the notation of Section 1.4.6 where sub-Laplacians
with drift have been discussed.

In this section we will discuss the horizontal versions, that is, with the weights
being the powers of |x′|. In Section 7.4, we will discuss a version with weights in
terms of the L-gauge but that analysis is currently available only in the setting of
polarizable Carnot groups. In the presentation of this section as well as of Section
7.4 we follow [RY18b].

The following result shows that the drift allows one to improve over the
Rellich inequality without drift, given in Theorem 6.2.2.
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Theorem 6.9.1 (Horizontal Rellich inequalities for sub-Laplacians with drift). Let
G be a stratified group with N ≥ 3 being the dimension of the first stratum. Let
δ ∈ R with −N/2 ≤ δ ≤ −1. Then for all functions f ∈ C∞

0 (G\{x′ = 0}) we have∥∥∥∥LXf

|x′|δ
∥∥∥∥2
L2(G,μX )

≥
(
(N − 2δ − 4)(N + 2δ)

4

)2 ∥∥∥∥ f

|x′|δ+2

∥∥∥∥2
L2(G,μX )

+ γ2b2X
(N − 2δ − 2)(N + 2δ − 2)

2

∥∥∥∥ f

|x′|δ+1

∥∥∥∥2
L2(G,μX )

+ γ4b4X

∥∥∥∥ f

|x′|δ
∥∥∥∥2
L2(G,μX )

,

(6.79)

where LX and bX are defined in (1.93) and (1.95), respectively. If (N + 2δ)(N +
2δ − 2) �= 0, then the constants in (6.79) are sharp. Moreover, when δ = 0 and
N > 4, for all functions f ∈ C∞

0 (G\{x′ = 0}) we have

‖LXf‖2L2(G,μX ) ≥
(
N(N − 4)

4

)2 ∥∥∥∥ f

|x′|2
∥∥∥∥2
L2(G,μX )

+ γ2b2X
(N − 2)2

2

∥∥∥∥ f

|x′|
∥∥∥∥2
L2(G,μX )

+ γ4b4X‖f‖2L2(G,μX),

(6.80)

with sharp constants. The constants in (6.79) and (6.80) are sharp in the sense
that there is a sequence of functions such that the equalities in (6.79) and (6.80)
are attained in the limit of this sequence of functions, respectively.

Remark 6.9.2.

1. The improvement in Rellich inequalities with drift compared to the standard
ones as in Theorem 6.2.2 can be seen since for (N − 2δ− 2)(N +2δ− 2) ≥ 0,
by dropping positive terms in (6.79) we get the following ‘standard’ Rellich
type inequality for all functions f ∈ C∞

0 (G\{x′ = 0})∥∥∥∥LXf

|x′|δ
∥∥∥∥2
L2(G,μX)

≥
(
(N − 2δ − 4)(N + 2δ)

4

)2 ∥∥∥∥ f

|x′|δ+2

∥∥∥∥2
L2(G,μX)

, (6.81)

where δ ∈ R with −N/2 ≤ δ ≤ −1 and N ≥ 3.

Similarly, from (6.80) we obtain for N > 4 and for all functions f ∈
C∞

0 (G\{x′ = 0}) the inequality

‖LXf‖L2(G,μX ) ≥
N(N − 4)

4

∥∥∥∥ f

|x′|2
∥∥∥∥
L2(G,μX )

, (6.82)

which can be compared to the Rellich inequality in Corollary 6.5.2.
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2. In the Euclidean caseG = (Rn,+), we haveN = n,∇H = ∇ = (∂x1 , . . . , ∂xn)
is the usual full gradient, and setting

X =
n∑

i=1

ai∂xi

for ai ∈ R for i = 1, . . . , n, and δ = −α, γ ∈ R, (6.79) implies, for α ≥ 1 and
n ≥ max{3, 2α}, n+ 2α− 4 > 0, that for all functions f ∈ C∞

0 (Rn\{0}) we
have ∥∥∥∥∥|x|α

(
Δ+ γ

n∑
i=1

ai∂xi

)
f

∥∥∥∥∥
2

L2(Rn,μX )

≥ (n+ 2α− 4)2(n− 2α)2

16

∥∥|x|α−2
E f

∥∥2
L2(Rn,μX )

+ γ2b2X
(n+ 2α− 2)(n− 2α− 2)

2

∥∥|x|α−1
E f

∥∥2
L2(Rn,μX )

+ γ4b4X ‖|x|αEf‖2L2(Rn,μX ) ,

(6.83)

with the measure μX on R
n given by

dμX = e−γ
∑n

i=1 aixidx,

where dx is the Lebesgue measure, and

bX =
1

2

⎛⎝ n∑
j=1

a2j

⎞⎠ 1/2

.

If (n − 2α)(n − 2α − 2) �= 0 with α ≥ 1 and n ≥ 2α, then the constants in
(6.83) are sharp, in the sense that there is a sequence of functions such that
the equality in (6.83) is attained in the limit of this sequence of functions.

In particular, for α = 0, in the Euclidean setting of Rn with n ≥ 5, for
all ai ∈ R for i = 1, . . . , n and γ ∈ R, and all f ∈ C∞

0 (Rn\{0}) we have a
family of inequalities∥∥∥∥∥

(
Δ+ γ

n∑
i=1

ai∂xi

)
f

∥∥∥∥∥
2

L2(Rn,μX )

≥ n2(n− 4)2

16

∥∥∥∥ f

|x|2
∥∥∥∥2
L2(Rn,μX)

+ γ4b4X‖f‖2L2(Rn,μX )

+ γ2b2X
(n− 2)2

2

∥∥∥∥ f

|x|
∥∥∥∥2
L2(Rn,μX )

. (6.84)
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All the constants in (6.84) are sharp in the sense that there is a sequence
of functions such that the equality in (6.84) is attained in the limit of this
sequence of functions.

Proof of Theorem 6.9.1. We denote by χ the positive character onG that appeared
in Proposition 1.4.14. Let g = g(x) ∈ C∞

0 (G\{x′ = 0}) be such that f = χ−1/2g.
Since the mapping (1.101) is an isomorphism we have∥∥∥∥LXf

|x′|δ
∥∥∥∥
L2(G,μX )

=

∥∥∥∥χ 1/2LXf

|x′|δ
∥∥∥∥
L2(G,μ)

=

∥∥∥∥χ 1/2LX(χ−1/2g)

|x′|δ
∥∥∥∥
L2(G,μ)

.

By this, (1.100) and integration by parts, we have the equalities∥∥∥∥LXf

|x′|δ
∥∥∥∥2
L2(G,μX )

=

∥∥∥∥ (L0 + γ2b2X)g

|x′|δ
∥∥∥∥2
L2(G,μ)

=

∥∥∥∥ L0g

|x′|δ
∥∥∥∥2
L2(G,μ)

+ 2γ2b2XRe

∫
G

L0g(x)g(x)

|x′|2δ dx+ γ4b4X

∥∥∥∥ g

|x′|δ
∥∥∥∥2
L2(G,μ)

=

∥∥∥∥ L0g

|x′|δ
∥∥∥∥2
L2(G,μ)

− 2γ2b2XRe

N∑
j=1

∫
G

X2
j g(x)g(x)

|x′|2δ dx+ γ4b4X

∥∥∥∥ g

|x′|δ
∥∥∥∥2
L2(G,μ)

=

∥∥∥∥ L0g

|x′|δ
∥∥∥∥2
L2(G,μ)

+ 2γ2b2X

∫
G

|∇Hg(x)|2
|x′|2δ

− 4δγ2b2XRe

N∑
j=1

∫
G

x′
jXjg(x)g(x)

|x′|2δ+2
dx+ γ4b4X

∥∥∥∥ g

|x′|δ
∥∥∥∥2
L2(G,μ)

. (6.85)

Since we also have the equality

Re

N∑
j=1

∫
G

x′
jXjg(x)g(x)

|x′|2δ+2
dx

= (2δ + 2−N)

∫
G

|g(x)|2
|x′|2δ+2

dx− Re
N∑
j=1

∫
G

x′
jg(x)Xjg(x)

|x′|2δ+2
dx,

we obtain

Re

N∑
j=1

∫
G

x′
jXjg(x)g(x)

|x′|2δ+2
dx =

2δ + 2−N

2

∫
G

|g(x)|2
|x′|2δ+2

dx.

If we plug this into (6.85) we get∥∥∥∥LXf

|x′|δ
∥∥∥∥2
L2(G,μX )

=

∥∥∥∥ L0g

|x′|δ
∥∥∥∥2
L2(G,μ)

+ 2γ2b2X

∥∥∥∥∇Hg

|x′|δ
∥∥∥∥2
L2(G,μ)

(6.86)

+ 2δ(N − 2δ − 2)γ2b2X

∥∥∥∥ g

|x′|δ+1

∥∥∥∥2
L2(G,μ)

+ γ4b4X

∥∥∥∥ g

|x′|δ
∥∥∥∥2
L2(G,μ)

.
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Using the Rellich (6.20) and Hardy (6.21) inequalities, we get from (6.86) that∥∥∥∥LXf

|x′|δ
∥∥∥∥2
L2(G,μX )

≥
(
(N − 2δ − 4)(N + 2δ)

4

)2 ∥∥∥∥ g

|x′|δ+2

∥∥∥∥2
L2(G,μ)

+ γ4b4X

∥∥∥∥ g

|x′|δ
∥∥∥∥2
L2(G,μ)

+ 2γ2b2X

(
N − 2δ − 2

2

)2 ∥∥∥∥ g

|x′|δ+1

∥∥∥∥2
L2(G,μ)

+ 2δ(N − 2δ − 2)γ2b2X

∥∥∥∥ g

|x′|δ+1

∥∥∥∥2
L2(G,μ)

.

It follows then that∥∥∥∥LXf

|x′|δ
∥∥∥∥2
L2(G,μX )

≥
(
(N − 2δ − 4)(N + 2δ)

4

)2 ∥∥∥∥ f

|x′|δ+2

∥∥∥∥2
L2(G,μX )

+ γ4b4X

∥∥∥∥ f

|x′|δ
∥∥∥∥2
L2(G,μX )

+ γ2b2X
(N − 2δ − 2)(N + 2δ − 2)

2

∥∥∥∥ f

|x′|δ+1

∥∥∥∥2
L2(G,μX )

.

As we have discussed in the proof of Theorem 6.2.2, since the same function
satisfies the equality conditions in Hölder’s inequalities, the constants in (6.79)
are sharp.

To obtain (6.80), that is the unweighted case δ = 0, we use the inequality
(6.21) and (6.43) in Corollary 6.5.2 that gives the inequality

‖Lf‖L2(G) ≥ N(N − 4)

4

∥∥∥∥ f

|x′|2
∥∥∥∥
L2(G)

, N ≥ 5, (6.87)

for f ∈ C∞
0 (G\{x′ = 0}). Since it is known from Corollary 6.5.2 that the constant

N(N−4)
4 is sharp in (6.87), using the same argument as for the constants in (6.79),

we obtain the sharpness of the constants in (6.80). �
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6.10 Horizontal anisotropic Hardy and

Rellich inequalities

In this section we discuss the anisotropic versions of horizontal Hardy and Rel-
lich inequalities. These inequalities appear in the analysis of anisotropic p-sub-
Laplacians. The presentation of this section follows [RSS18a]. To put the notions
in perspective, we start by recalling the Euclidean counterparts of the appearing
objects.

The anisotropic Laplacian (on RN ) is defined by

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi

∣∣∣∣pi−2
∂u

∂xi

)
, (6.88)

for pi > 1, with i = 1, . . . , N . Note that choosing pi = 2 or pi = p for all i in (6.88)
we get the Laplacian and the pseudo-p-Laplacian, respectively.

A subelliptic analogue of the operator in (6.88) is the anisotropic p-sub-
Laplacian on stratified groups which is the operator of the form

Lpf :=
N∑
i=1

Xi

(|Xif |pi−2Xif
)
, 1 < pi < ∞,

where Xi, i = 1, . . . , N , are the generators of the first stratum of a stratified Lie
group.

Following the classical scheme for the analysis of such operators, first, we
present the horizontal versions of the so-called Picone type identities. As a conse-
quence, Hardy and Rellich type inequalities for anisotropic sub-Laplacians can be
obtained.

6.10.1 Horizontal Picone identities

First, we discuss the horizontal Picone type identity on a stratified group G.

Lemma 6.10.1 (Horizontal Picone identity). Let Ω ⊂ G be an open set of a strat-
ified group G, and let N be the dimension of the first stratum of G. Let u, v be
differentiable a.e. in Ω, v > 0 a.e. in Ω and u ≥ 0. Denote

R(u, v) :=

N∑
i=1

|Xiu|pi −
N∑
i=1

Xi

(
upi

vpi−1

)
|Xiv|pi−2

Xiv, (6.89)

and

L(u, v) :=

N∑
i=1

|Xiu|pi −
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2

XivXiu

+

N∑
i=1

(pi − 1)
upi

vpi
|Xiv|pi , (6.90)
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where pi > 1, i = 1, . . . , N . Then we have

L(u, v) = R(u, v) ≥ 0. (6.91)

In addition, we have L(u, v) = 0 a.e. in Ω if and only if u = cv a.e. in Ω with a
positive constant c.

Remark 6.10.2.

1. The Euclidean case of Lemma 6.10.1 was obtained by Feng and Cui [FC17].

2. Our proof of Lemma 6.10.1 follows [RSS18a] and is based on the method
of Allegretto and Huang [AH98] for the (Euclidean) p-Laplacian, see also
[NZW01].

Proof of Lemma 6.10.1. A direct computation gives

R(u, v) =

N∑
i=1

|Xiu|pi −
N∑
i=1

Xi

(
upi

vpi−1

)
|Xiv|pi−2Xiv

=

N∑
i=1

|Xiu|pi −
N∑
i=1

piu
pi−1Xiuv

pi−1 − upi(pi − 1)vpi−2Xiv

(vpi−1)2
|Xiv|pi−2Xiv

=
N∑
i=1

|Xiu|pi −
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2XivXiu+

N∑
i=1

(pi − 1)
upi

vpi
|Xiv|pi

= L(u, v).

This proves the equality in (6.91). Now we rewrite L(u, v) to see that L(u, v) ≥ 0,
that is, we write

L(u, v) =

N∑
i=1

|Xiu|pi −
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−1|Xiu|+

N∑
i=1

(pi − 1)
upi

vpi
|Xiv|pi

+
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2 (|Xiv||Xiu| −XivXiu) = S1 + S2,

where we denote

S1 :=

N∑
i=1

pi

[
1

pi
|Xiu|pi +

pi − 1

pi

((u
v
|Xiv|

)pi−1
) pi

pi−1

]

−
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−1|Xiu|,

and

S2 :=
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2 (|Xiv||Xiu| −XivXiu) .
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We can see that S2 ≥ 0 due to |Xiv||Xiu| ≥ XivXiu. To check that we also have
S1 ≥ 0, we will use Young’s inequality for a ≥ 0 and b ≥ 0:

ab ≤ api

pi
+

bqi

qi
, (6.92)

for pi > 1, qi > 1 and 1
pi

+ 1
qi

= 1, for all i = 1, . . . , N . The equality in (6.92)

holds if and only if api = bqi , that is, if a = b
1

pi−1 .

Let us now take a = |Xiu| and b =
(
u
v |Xiv|

)pi−1
and apply (6.92) to get

pi|Xiu|
(u
v
|Xiv|

)pi−1

≤ pi

[
1

pi
|Xiu|pi +

pi − 1

pi

((u
v
|Xiv|

)pi−1
) pi

pi−1

]
. (6.93)

From this we see that S1 ≥ 0 which proves that L(u, v) = S1 + S2 ≥ 0.

It is easy to see that u = cv implies R(u, v) = 0. Now let us prove that
L(u, v) = 0 implies u = cv. Due to u(x) ≥ 0 and since L(u, v)(x0) = 0, x0 ∈ Ω, we
can consider two cases u(x0) > 0 and u(x0) = 0.

(a) For the case u(x0) > 0 we conclude from L(u, v)(x0) = 0 that S1 = 0 and
S2 = 0. Then S1 = 0 implies

|Xiu| = u

v
|Xiv|, i = 1, . . . , N, (6.94)

and S2 = 0 implies

|Xiv||Xiu| −XivXiu = 0, i = 1, . . . , N. (6.95)

The combination of (6.94) and (6.95) gives

Xiu

Xiv
=

u

v
= c, with c �= 0, i = 1, . . . , N. (6.96)

(b) Let us denote
Ω∗ := {x ∈ Ω : u(x) = 0}.

If Ω∗ �= Ω, then suppose that x0 ∈ ∂Ω∗. Then there exists a sequence xk /∈ Ω∗

such that xk → x0. In particular, u(xk) �= 0, and hence by Case (a) we have
u(xk) = cv(xk). Passing to the limit we get u(x0) = cv(x0). Since u(x0) = 0
and v(x0) �= 0, we get that c = 0. But then by Case (a) again, since u = cv
and u �= 0 in Ω\Ω∗, it is impossible to have c = 0. This contradiction implies
that Ω∗ = Ω.

This completes the proof of Lemma 6.10.1. �

The following consequence of Lemma 6.10.1 will be instrumental in the proof
of the horizontal anisotropic Hardy inequality in Theorem 6.10.5.
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Lemma 6.10.3. Let Ω ⊂ G be an open set of a stratified group G, and let N be
the dimension of the first stratum of G. Let constants Ki > 0 and functions Hi(x)
with i = 1, . . . , N , be such that for an a.e. differentiable function v, such that v > 0
a.e. in Ω, we have

−Xi(|Xiv|pi−2Xiv) ≥ KiHi(x)v
pi−1, i = 1, . . . , N. (6.97)

Then, for all non-negative functions u ∈ C1(Ω) we have

N∑
i=1

∫
Ω

|Xiu|pidx ≥
N∑
i=1

Ki

∫
Ω

Hi(x)u
pidx. (6.98)

Proof of Lemma 6.10.3. In view of (6.91) and (6.97) we have

0 ≤
∫
Ω

L(u, v)dx =

∫
Ω

R(u, v)dx

=
N∑
i=1

∫
Ω

|Xiu|pidx−
N∑
i=1

∫
Ω

Xi

(
upi

vpi−1

)
|Xiv|pi−2Xivdx

=

N∑
i=1

∫
Ω

|Xiu|pidx+

N∑
i=1

∫
Ω

upi

vpi−1
Xi

(|Xiv|pi−2Xiv
)
dx

≤
N∑
i=1

∫
Ω

|Xiu|pidx−
N∑
i=1

Ki

∫
Ω

Hi(x)u
pidx,

proving the statement. �

We now present the second-order horizontal Picone type identity that will
be instrumental in the proof of Theorem 6.10.6 giving the Rellich type inequality
for the anisotropic sub-Laplacians.

Lemma 6.10.4 (Second-order horizontal Picone identity). Let Ω ⊂ G be an open
set of a stratified group G, and let N be the dimension of the first stratum of G.
Let u, v be twice differentiable a.e. in Ω and satisfying the following conditions:
u ≥ 0, v > 0, X2

i v < 0 a.e. in Ω for pi > 1, i = 1, . . . , N . Then we have

L1(u, v) = R1(u, v) ≥ 0, (6.99)

where

R1(u, v) :=

N∑
i=1

|X2
i u|pi −

N∑
i=1

X2
i

(
upi

vpi−1

)
|X2

i v|pi−2X2
i v,

and

L1(u, v) :=

N∑
i=1

|X2
i u|pi −

N∑
i=1

pi

(u
v

)pi−1

X2
i uX

2
i v|X2

i v|pi−2
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+
N∑
i=1

(pi − 1)
(u
v

)pi |X2
i v|pi

−
N∑
i=1

pi(pi − 1)
upi−2

vpi−1
|X2

i v|pi−2X2
i v
(
Xiu− u

v
Xiv

)2
.

Proof of Lemma 6.10.4. A direct computation gives

X2
i

(
upi

vpi−1

)
= Xi

(
pi
upi−1

vpi−1
Xiu− (pi − 1)

upi

vpi
Xiv

)
= pi(pi − 1)

upi−2

vpi−2

(
(Xiu)v − u(Xiv)

v2

)
Xiu+ pi

upi−1

vpi−1
X2

i u

− pi(pi − 1)
upi−1

vpi−1

(
(Xiu)v − u(Xiv)

v2

)
Xiv − (pi − 1)

upi

vpi
X2

i v

= pi(pi − 1)

(
upi−2

vpi−1
|Xiu|2 − 2

upi−1

vpi
XivXiu+

upi

vpi+1
|Xiv|2

)
+ pi

upi−1

vpi−1
X2

i u− (pi − 1)
upi

vpi
X2

i v

= pi(pi − 1)
upi−2

vpi−1

(
Xiu− u

v
Xiv

)2
+ pi

upi−1

vpi−1
X2

i u− (pi − 1)
upi

vpi
X2

i v,

which yields (6.99). By Young’s inequality (6.92) we have

upi−1

vpi−1
X2

i uX
2
i v|X2

i v|pi−2 ≤ |X2
i u|pi

pi
+

1

qi

upi

vpi
|X2

i v|pi , i = 1, . . . , N,

where pi > 1, qi > 1, 1
pi

+ 1
qi

= 1. Since X2
i v < 0 we arrive at

L1(u, v) ≥
N∑
i=1

|X2
i u|pi +

N∑
i=1

(pi − 1)
upi

vpi
|X2

i v|pi −
N∑
i=1

pi

( |X2
i u|pi

pi
+

1

qi

upi

vpi
|X2

i v|pi

)

−
N∑
i=1

pi(pi − 1)
upi−2

vpi−1
|X2

i v|pi−2X2
i v
∣∣∣Xiu− u

v
Xiv

∣∣∣2
=

N∑
i=1

(
pi − 1− pi

qi

)
upi

vpi
|X2

i v|pi

−
N∑
i=1

pi(pi − 1)
upi−2

vpi−1
|X2

i v|pi−2X2
i v
∣∣∣Xiu− u

v
Xiv

∣∣∣2 ≥ 0.

This completes the proof of Lemma 6.10.4. �
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6.10.2 Horizontal anisotropic Hardy type inequality

As a consequence of the horizontal Picone type identity in Lemma 6.10.1 we can
obtain the Hardy type inequality for the anisotropic sub-Laplacian on stratified
Lie groups. We recall that for x ∈ G we write customarily

x = (x′, x′′),

with coordinates x′ corresponding to the first stratum of G.

Theorem 6.10.5 (Horizontal anisotropic Hardy type inequality). Let G be a strati-
fied group with N being the dimension of its first stratum, and let Ω ⊂ G\{x′ = 0}
be an open set. Let 1 < pi < N for all i = 1, . . . , N. Then we have

N∑
i=1

∫
Ω

|Xiu|pidx ≥
N∑
i=1

(
pi − 1

pi

)pi
∫
Ω

|u|pi

|x′
i|pi

dx, (6.100)

for all u ∈ C1(Ω).

Proof of Theorem 6.10.5. The proof is based on the application of Lemma 6.10.3.
For this, we introduce the auxiliary function

v :=

N∏
j=1

|x′
j |αj = |x′

i|αiVi, (6.101)

where Vi =
∏N

j=1,j 	=i |x′
j |αj and αj =

pj−1
pj

. Then we have

Xiv = αiVi|x′
i|αi−2x′

i,

|Xiv|pi−2 = αpi−2
i V pi−2

i |x′
i|αipi−2αi−pi+2,

|Xiv|pi−2Xiv = αpi−1
i V pi−1

i |x′
i|αipi−αi−pix′

i.

Consequently, we also have

−Xi(|Xiv|pi−2Xiv) =

(
pi − 1

pi

)pi vpi−1

|x′
i|pi

. (6.102)

To complete the proof of Theorem 6.10.5, we choose Ki =
(

pi−1
pi

)pi

and Hi(x) =
1

|x′
i|pi , and use Lemma 6.10.3. �

6.10.3 Horizontal anisotropic Rellich type inequality

Now we present the horizontal anisotropic Rellich type inequality on stratified Lie
groups.
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Theorem 6.10.6 (Horizontal anisotropic Rellich type inequality). Let G be a strati-
fied group with N being the dimension of its first stratum, and let Ω ⊂ G\{x′ = 0}
be an open set. Then for a function u ≥ 0, u ∈ C2(Ω), and 2 < αi < N − 2 we
have the following inequality

N∑
i=1

∫
Ω

|X2
i u|pidx ≥

N∑
i=1

Ci(αi, pi)

∫
Ω

|u|pi

|x′
i|2pi

dx, (6.103)

where 1 < pi < N for i = 1, . . . , N , and

Ci(αi, pi) = (αi(αi − 1))pi−1(αipi − 2pi − αi + 2)(αipi − 2pi − αi + 1).

Proof of Theorem 6.10.6. We introduce the auxiliary function

v :=
N∏
j=1

|x′
j |αj = |x′

i|αiVi,

we choose αj later, and where Vi :=
∏N

j=1,j 	=i |x′
j |αj . Then we have

X2
i v = Xi(αiVi|x′

i|αi−2x′
i) = αi(αi − 1)Vi|x′

i|αi−2,

|X2
i v|pi−2 = (αi(αi − 1))pi−2V pi−2

i |x′
i|αipi−2pi−2αi+4,

|X2
i v|pi−2X2

i v = (αi(αi − 1))pi−1V pi−1
i |x′

i|αipi−2pi−αi+2.

Consequently, we obtain

X2
i (|X2

i v|pi−2X2
i v)

= (αi(αi − 1))pi−1V pi−1
i X2

i (|x′
i|αipi−2pi−αi+2)

= (αi(αi − 1))pi−1(αipi − 2pi − αi + 2)V pi−1
i Xi

(|x′
i|αipi−2pi−αix′

i

)
= (αi(αi − 1))pi−1(αipi − 2pi − αi + 2)(αipi − 2pi − αi + 1)

× V pi−1
i |x′

i|αi(pi−1)−2pi .

Thus, for a twice differentiable function v > 0 a.e. in Ω with X2
i v < 0, we have

X2
i (|X2

i |pi−2X2
i v) = Ci(αi, pi)

vpi−1

|x′
i|2pi

(6.104)

a.e. in Ω. Using (6.104) we compute

0 ≤
∫
Ω

L1(u, v)dx =

∫
Ω

R1(u, v)dx

=

N∑
i=1

∫
Ω

|X2
i u|pidx−

N∑
i=1

∫
Ω

X2
i

(
upi

vpi−1

)
|X2

i v|pi−2X2
i vdx
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=
N∑
i=1

∫
Ω

|X2
i u|pidx−

N∑
i=1

∫
Ω

upi

vpi−1
X2

i

(|X2
i v|pi−2X2

i v
)
dx

=

N∑
i=1

∫
Ω

|X2
i u|pidx−

N∑
i=1

Ci(αi, pi)

∫
Ω

|u|pi

|x′
i|2pi

dx.

The proof of Theorem 6.10.6 is complete. �

6.11 Horizontal Hardy inequalities with

multiple singularities

In this section we obtain the analogue of the Hardy inequality with multiple singu-
larities on stratified Lie groups. The singularities will be represented by a family of
points {ak}mk=1 ∈ G.We will be using the usual notation ak = (a′k, a

′′
k), with a′k cor-

responding to the first stratum ofG. In turn, we can also write a′k = (a′k1, . . . , a
′
kN ).

From (1.17) it follows that
(xa−1

k )′ = x′ − a′k.

We denote by (xa−1
k )′j = x′

j − a′kj the jth component of xa−1
k .

Theorem 6.11.1 (Horizontal Hardy inequality with multiple singularities). Let G
be a stratified group with N being the dimension of its first stratum, and let Ω ⊂ G

be an open set. Let N ≥ 3, x = (x′, x′′) ∈ G with x′ = (x′
1, . . . , x

′
N ) being in the

first stratum of G, and let ak ∈ G, k = 1, . . . ,m, be the singularities. Then we have

∫
Ω

|∇Hu|2dx ≥
(
N − 2

2

)2 ∫
Ω

∑N
j=1

∣∣∣∣∑m
k=1

(xa−1
k

)′j
|(xa−1

k )′|N

∣∣∣∣2(∑m
k=1

1
|(xa−1

k )′|N−2

)2 |u|2dx, (6.105)

for all u ∈ C∞
0 (Ω).

Remark 6.11.2. The Euclidean case of the inequality (6.105) was obtained by
Kapitanski and Laptev [KL16]. Theorem 6.11.1 was obtained in [RSS18a] and our
presentation here follows the arguments there.

Proof of Theorem 6.11.1. Let us fix a vector-valued function

A(x) = (A1(x), . . . ,AN (x))

to be specified later. Also let λ be a real parameter. We start with the inequality

0 ≤
∫
Ω

N∑
j=1

(|Xju− λAju|2)dx

=

∫
Ω

⎛⎝|∇Hu|2 − 2λRe
N∑
j=1

AjuXju+ λ2
N∑
j=1

|Aj |2|u|2
⎞⎠ dx.
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By using the integration by parts we get

−
∫
Ω

⎛⎝λ2
N∑
j=1

|Aj |2 + λdivHA
⎞⎠ |u|2dx ≤

∫
Ω

|∇Hu|2dx. (6.106)

We differentiate the integral on the left-hand side with respect to λ to optimize
it, yielding

2λ|A|2 + divHA = 0,

for all x ∈ Ω. This is the condition that we impose on A(x), that is, the quotient
divHA(x)
|A(x)|2 must be constant. For λ = 1

2 we get

divHA(x) = −|A(x)|2. (6.107)

Then putting (6.107) in (6.106) we have the following Hardy inequality

1

4

∫
Ω

N∑
j=1

|Aj(x)|2|u|2dx ≤
∫
Ω

|∇Hu|2dx. (6.108)

Now if we assume that A = ∇Hφ for some function φ, then (6.107) becomes

Lφ+ |∇Hφ|2 = 0.

It follows that the function
w = eφ ≥ 0

is harmonic with respect to the sub-Laplacian L. Thus, w is a constant > 0 or it
has a singularity. Let us now take

w(x) :=

m∑
k=1

1

|(xa−1
k )′|N−2

,

and then also
φ(x) := ln(w(x)).

Therefore

A(x) = ∇H(lnw) =
1

w
∇H

(
m∑

k=1

|(xa−1
k )′|2−N

)

=
1

w

m∑
k=1

∇H

⎛⎝ N∑
j=1

((xa−1
k )′j)

2

⎞⎠
2−N

2

= −N − 2

w

(
m∑

k=1

(xa−1
k )′

|(xa−1
k )′|N

)
,
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and

|A(x)|2 =

N∑
j=1

|Aj(x)|2 =

(
N − 2

w

)2 N∑
j=1

∣∣∣∣∣
m∑

k=1

(xa−1
k )′j

|(xa−1
k )′|N

∣∣∣∣∣
2

.

The inequality (6.105) now follows from (6.108), completing the proof of Theorem
6.11.1. �

We then also obtain the corresponding uncertainty principle.

Corollary 6.11.3 (Uncertainty principle with multiple singularities). Let G be a
stratified group with N being the dimension of its first stratum, and let Ω ⊂ G be
an open set. Let N ≥ 3, x = (x′, x′′) ∈ G with x′ = (x′

1, . . . , x
′
N ) corresponding

to the first stratum of G. Let ak ∈ G, k = 1, . . . ,m, be the singularities, and let
1 < pi < N for i = 1, . . . , N. Then we have

N − 2

2

∫
Ω

|u|2dx ≤
(∫

Ω

|∇Hu|2dx
)1/2

⎛⎜⎜⎜⎝
∫
Ω

(∑m
k=1

1
|(xa−1

k )′|N−2

)2
∑N

j=1

∣∣∣∣∑m
k=1

(xa−1
k )′j

|(xa−1
k

)′|N

∣∣∣∣2
|u|2dx

⎞⎟⎟⎟⎠
1/2

,

for all u ∈ C∞
0 (Ω).

Proof of Corollary 6.11.3. By (6.105) and the Cauchy–Schwarz inequality we get

∫
Ω

|∇Hu|2dx
∫
Ω

(∑m
k=1

1
|(xa−1

k )′|N−2

)2
∑N

j=1

∣∣∣∣∑m
k=1

(xa−1
k )′j

|(xa−1
k )′|N

∣∣∣∣2
|u|2dx

≥
(
N − 2

2

)2 ∫
Ω

∑N
j=1

∣∣∣∣∑m
k=1

(xa−1
k )′j

|(xa−1
k )′|N

∣∣∣∣2(∑m
k=1

1
|(xa−1

k )′|N−2

)2 |u|2dx

×
∫
Ω

(∑m
k=1

1
|(xa−1

k )′|N−2

)2
∑N

j=1

∣∣∣∣∑m
k=1

(xa−1
k )′j

|(xa−1
k )′|N

∣∣∣∣2
|u|2dx

≥
(
N − 2

2

)2(∫
Ω

|u|2dx
)2

.

The proof is complete. �
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6.12 Horizontal many-particle Hardy inequality

In this section we discuss Hardy inequalities for n ≥ 1 particles on stratified Lie
groups. We denote by Gn the product

G
n :=

n︷ ︸︸ ︷
G× · · · ×G .

We consider the points x = (x1, . . . , xn) ∈ Gn, with xj ∈ G. The horizontal
component of x ∈ Gn will be denoted by x′ = (x′

1, . . . , x
′
n), with x′

i = (x′
i1, . . . , x

′
iN )

being the coordinates corresponding to the first stratum of G for i = 1, . . . , n. The
(horizontal) distance between particles xi, xj ∈ G can be defined by

rij := |(xix
−1
j )′| = |x′

i − x′
j | =

√√√√ N∑
k=1

(x′
ik − x′

jk)
2.

We will also use the notation

∇Hi = (Xi1, . . . , XiN )

for the horizontal gradient associated to the ith particle. We denote

∇Hn := (∇H1 , . . . ,∇Hn), and Li :=
N∑

k=1

X2
ik,

the sub-Laplacian associated to the ith particle. We note that

L =

N∑
i=1

Li.

We now recall a simple but crucial inequality on Rm.

Lemma 6.12.1. Let m ≥ 1, and let

A = (A1(x), . . . ,Am(x))

be a mapping A : Rm → Rm whose components and their first derivatives are
uniformly bounded on Rm. Then for every non-trivial u ∈ C1

0 (R
m) we have∫

Rm

|∇u|2dx ≥ 1

4

(∫
Rm divA|u|2dx)2∫
Rm |A|2|u|2dx . (6.109)

Proof of Lemma 6.12.1. We have∣∣∣∣∫
Rm

divA|u|2dx
∣∣∣∣ = 2

∣∣∣∣Re ∫
Rm

〈A,∇u〉udx
∣∣∣∣

≤ 2

(∫
Rm

|A|2|u|2dx
) 1/2(∫

Rm

|∇u|2dx
)1/2

,

using the Cauchy–Schwarz inequality in the last line. This implies (6.109). �
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Theorem 6.12.2 (Horizontal many-particle Hardy inequality). Let G be a stratified
group with N being the dimension of its first stratum, and let Ω ⊂ Gn be an open
set. Let N ≥ 2 and n ≥ 3. Let rij = |(xix

−1
j )′| = |x′

i − x′
j |. Then we have∫

Ω

|∇Hnu|2dx ≥ (N − 2)2

n

∫
Ω

∑
1≤i<j≤n

|u|2
r2ij

dx, (6.110)

for all u ∈ C1(Ω).

Remark 6.12.3. The Euclidean case of the inequality (6.110) was obtained by
M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, and J. Tidblom in
[HOHOLT08]. The Euclidean case of the subsequent Theorem 6.12.4 was obtained
by D. Lundholm [Lun15]. Theorem 6.12.2 and Theorem 6.12.4 were obtained in
[RSS18a] and our presentation here follows the arguments there.

Proof of Theorem 6.12.2. Let us define a mapping B1 by the formula

B1(x
′
i, x

′
j) :=

(xix
−1
j )′

r2ij
, 1 ≤ i < j ≤ n.

In the subsequent arguments we denote by divGi the horizontal divergence on Gi.
Applying inequality (6.109) to the mapping B1 we have∫

Ω

|(∇Hi −∇Hj )u|2dx ≥ 1

4

(∫
Ω

(
(divHi − divHj )B1

) |u|2dx)2∫
Ω
|B1|2|u|2dx

=
1

4

(∫
Ω

2(N−2)

|(xix
−1
j )′|2 |u|2dx

)2

∫
Ω

|u|2
|(xix

−1
j )′|2 dx

= (N − 2)2
∫
Ω

|u|2
r2ij

dx. (6.111)

Also, we define another mapping B2 by

B2(x) :=

∑n
j=1 x

′
j∣∣∣∑n

j=1 x
′
j

∣∣∣2 .
We can calculate

∇Hi · B2 =

N∑
k=1

Xik

( ∑n
j=1 x

′
jk

|∑n
j=1 x

′
j |2
)

=
Nn|∑n

j=1 x
′
j |2 − 2n

(
(
∑n

j=1 x
′
j1)

2 + · · ·+ (
∑n

j=1 x
′
jN )2

)
|∑n

j=1 x
′
j |4

=
Nn− 2n

|∑n
j=1 x

′
j |2

.
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Applying inequality (6.109) to the mapping B2 we obtain

∫
Ω

∣∣∣∣∣
n∑

i=1

∇Hiu

∣∣∣∣∣
2

dx ≥ 1

4

(∫
Ω(
∑n

i=1 divHiB2)|u|2dx
)2∫

Ω
|B2|2|u|2dx

=
1

4

(∫
Ω

∑n
i=1

Nn−2n
|∑n

j=1 x′
j |2 |u|

2dx
)2

∫
Ω

|u|2
|∑n

j=1 x′
j|2 dx

=
(N − 2)2n4

4

∫
Ω

|u|2∣∣∣∑n
j=1 x

′
j

∣∣∣2 dx. (6.112)

Adding inequalities (6.111) and (6.112) and using the identity

n

n∑
i=1

|∇Hiu|2 =
∑

1≤i<j≤n

∣∣∇Hiu−∇Hju
∣∣2 + ∣∣∣∣∣

n∑
i=1

∇Hiu

∣∣∣∣∣
2

,

we arrive at

n∑
i=1

∫
Ω

|∇Hiu|2dx ≥ (N − 2)2

n

∫
Ω

∑
i<j

|u|2
r2ij

dx+
(N − 2)2n3

4

∫
Ω

|u|2∣∣∣∑n
j=1 x

′
j

∣∣∣2 dx.
Because the last term on right-hand side is positive, we get

n∑
i=1

∫
Ω

|∇Hiu|2dx ≥ (N − 2)2

n

∫
Ω

∑
i<j

|u|2
r2ij

dx.

Also we have
∑n

i=1 |∇Hiu|2 = |∇Hnu|2. Putting everything together, the proof of
Theorem 6.12.2 is complete. �

The following theorem deals with the total separation of n ≥ 2 particles.

Theorem 6.12.4 (Total separation of many-particles). Let G be a stratified group
with N being the dimension of its first stratum, and let Ω ⊂ Gn be an open set.
Let ρ2 :=

∑
i<j |(xix

−1
j )′|2 =

∑
i<j |x′

i − x′
j |2 with x′

i �= x′
j . Then we have

∫
Ω

|∇Hu|2dx = n

(
(n− 1)

2
N − 1

)2 ∫
Ω

|u|2
ρ2

dx+

∫
Ω

|∇Hρ−2αu|2ρ4αdx (6.113)

for all u ∈ C∞
0 (Ω) with α = 2−(n−1)N

4 .

The proof of Theorem 6.12.4 will rely on the following identity.



6.12. Horizontal many-particle Hardy inequality 327

Proposition 6.12.5. Let G be a stratified group with N being the dimension of
its first stratum, and let Ω ⊂ Gn be an open set. Let f : Ω → (0,∞) be twice
differentiable. Then for any function u ∈ C∞

0 (Ω) and α ∈ R, we have∫
Ω

|∇Hu|2dx =

∫
Ω

(
α(1 − α)

|∇Hf |2
f2

− α
Lf
f

)
|u|2dx+

∫
Ω

|∇Hv|2f2αdx,

where v := f−αu.

Proof of Proposition 6.12.5. Let us first observe that for u = fαv, we have

∇Hu = αfα−1(∇Hf)v + fα∇Hv.

By squaring the above expression we get

|∇Hu|2 = α2f2(α−1)|∇Hf |2|v|2 +Re(2αvf2α−1(∇Hf) · (∇Hv)) + f2α|∇Hv|2
= α2f2(α−1)|∇Hf |2|v|2 + αf2α−1(∇Hf) · ∇H |v|2 + f2α|∇Hv|2.

By integrating this expression over Ω, we obtain∫
Ω

|∇Hu|2dx =

∫
Ω

α2f2(α−1)|∇Hf |2|v|2dx

+

∫
Ω

Re(αf2α−1(∇Hf) · ∇H |v|2)dx+

∫
Ω

f2α|∇Hv|2dx

=

∫
Ω

α2f2(α−1)|∇Hf |2|v|2dx

− α

∫
Ω

∇H · (f2α−1∇Hf)|v|2dx+

∫
Ω

f2α|∇Hv|2dx.

We have used integration by parts to the middle term on the right-hand side. Since

∇H · (f2α−1∇Hf) = (2α− 1)f2α−2|∇Hf |2 + f2α−1Lf,
we get∫

Ω

|∇Hu|2dx =

∫
Ω

α2f2(α−1)|∇Hf |2|v|2dx−
∫
Ω

αf2α−1Lf |v|2dx

−
∫
Ω

α(2α− 1)f2α−2|∇Hf |2|v|2dx+

∫
Ω

f2α|∇Hv|2dx.

Putting back v = f−αu and collecting the terms we arrive at the equality of
Proposition 6.12.5. �

Proof of Theorem 6.12.4. With ∇Hk
= (Xk1, . . . , XkN ), using the definition of ρ

we have

∇Hk
ρ2 = (Xk1ρ

2, . . . , XkNρ2) = 2

n∑
k 	=j

(xkx
−1
j )′.
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Hence

Lρ2 = 2

n∑
k=1

n∑
k 	=j

∇Hk
· (xkx

−1
j )′ = 2n(n− 1)N, (6.114)

|∇Hρ2|2 = 8
∑

1≤i<j≤n

|(xkx
−1
j )′|2

(6.115)

+ 8

n∑
k=1

∑
1≤i<j≤n

(xkx
−1
i )′ · (xkx

−1
j )′ = 4nρ2,

where in the last step we used the identity

n∑
k=1

∑
1≤i<j≤n

(xkx
−1
i )′ · (xkx

−1
j )′ =

n− 2

2

∑
1≤i<j≤n

|(xix
−1
j )′|2.

By putting (6.114) and (6.115) in the identity of Proposition 6.12.5 with f = ρ2,
we obtain∫

Ω

|∇Hu|2dx = 4nα

(
2− (n− 1)N

2
− α

)∫
Ω

|u|2
ρ2

dx+

∫
Ω

|∇Hρ−2αu|2ρ4αdx.

To optimize we differentiate the integral

4nα

(
2− (n− 1)N

2
− α

)∫
Ω

|u|2
ρ2

dx

with respect to α, then we have

2− (n− 1)N

2
− 2α = 0 and α =

2− (n− 1)N

4
,

which completes the proof of Theorem 6.12.4. �

6.13 Hardy inequality with exponential weights

In this section, we discuss a horizontal Hardy inequality with exponential weights.
In the Euclidean case such a type of inequalities is sometimes called two parabolic
type Hardy inequalities, see Zhang [Zha17]. The following statement was obtained
in [RSS18a].

Theorem 6.13.1 (Hardy inequality with exponential horizontal weights). Let G

be a stratified group with N ≥ 3 being the dimension of its first stratum, and let
Ω ⊂ G be an open set. Let x0 ∈ Ω. Then we have∫

Ω

e−
|(xx

−1
0

)′|2
4λ

(
(N − 2)2

4|x′|2 − N

4α
+

|(xx−1
0 )′|2

16λ2

)
|u|2dx ≤

∫
Ω

e−
|(xx

−1
0

)′|2
4λ |∇Hu|2dx

for all u ∈ C1(Ω) and for all λ > 0.
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Proof of Theorem 6.13.1. We will use the horizontal Hardy inequality

(N − 2)2

4

∫
Ω

|v|2
|x′|2 dx ≤

∫
Ω

|∇Hv|2dx, (6.116)

see (6.6), valid for all v ∈ C1(Ω), with the choice of v = e−
|(xx

−1
0 )′|2
8λ u. We note

that

∇Hv = e−
|(xx

−1
0 )′|2
8λ ∇Hu− (xx−1

0 )′

4λ
e−

|(xx
−1
0 )′|2
8λ u,

for all v ∈ C1(Ω). Then by inequality (6.116) we have

(N − 2)2

4

∫
Ω

e−
|(xx

−1
0

)′|2
4λ

|u|2
|x′|2 dx

≤
∫
Ω

e−
|(xx

−1
0

)′|2
4λ |∇Hu|2 + |(xx−1

0 )′|2
16λ2

e−
|(xx

−1
0

)′|2
4λ |u|2dx

− 1

2λ
Re

∫
Ω

(xx−1
0 )′ · (∇Hu)ue−

|(xx
−1
0 )′|2
4λ dx. (6.117)

Integration by parts in the last term of the right-hand side of this inequality yields

Re

∫
Ω

(xx−1
0 )′ · (∇Hu)ue−

|(xx
−1
0

)′|2
4λ dx

= −1

2

∫
Ω

(
N − |(xx−1

0 )′|2
2λ

)
e−

|(xx
−1
0

)′|2
4λ |u|2dx.

By using this in (6.117) and rearranging the terms, we complete the proof of
Theorem 6.13.1. �

Open Access. This chapter is licensed under the terms of the Creative Commons At-
tribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chap-
ter’s Creative Commons license, unless indicated otherwise in a credit line to the material.
If material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Chapter 6: Horizontal Inequalities on Stratified Groups
	Horizontal Lp-Caffarelli–Kohn–Nirenberg inequalities
	Badiale–Tarantello conjecture
	Horizontal higher-order versions

	Horizontal Hardy and Rellich inequalities
	Critical horizontal Hardy type inequality
	Two-parameter Hardy–Rellich inequalities by factorization
	Hardy–Rellich type inequalities and embedding results
	Horizontal Sobolev type inequalities
	Horizontal extended Caffarelli–Kohn–Nirenberg inequalities
	Horizontal Hardy–Rellich type inequalities for p-sub-Laplacians
	Inequalities for weighted p-sub-Laplacians

	Horizontal Rellich inequalities for sub-Laplacians with drift
	Horizontal anisotropic Hardy and Rellich inequalities
	Horizontal Picone identities
	Horizontal anisotropic Hardy type inequality
	Horizontal anisotropic Rellich type inequality

	Horizontal Hardy inequalities with multiple singularities
	Horizontal many-particle Hardy inequality
	Hardy inequality with exponential weights




