
Chapter 2

Hardy Inequalities on Homogeneous Groups

This chapter is devoted to Hardy inequalities and the analysis of their remainders
in different forms. Moreover, we discuss several related inequalities such as Rellich
inequalities and uncertainty principles.

In this chapter we will use all the notations given in Chapter 1 concerning
homogeneous groups and the operators defined on it. In particular, G is always a
homogeneous group of homogeneous dimension Q ≥ 1. Some statements will hold
for Q ≥ 2 or for Q ≥ 3 but we will be specifying this explicitly in formulations
when needed.

2.1 Hardy inequalities and sharp remainders

In this section we analyse the anisotropic version of the classical Lp-Hardy in-
equality ∥∥∥∥ f

|x|E

∥∥∥∥
Lp(Rn)

≤ p

n− p
‖∇f‖Lp(Rn) , n ≥ 2, 1 ≤ p < n, (2.1)

where ∇ is the standard gradient in R
n, |x|E =

√
x2
1 + · · ·+ x2

n is the Euclidean
norm, f ∈ C∞

0 (Rn), and the constant p
n−p is known to be sharp. We also discuss

in detail its critical cases and remainder estimates. As consequences, we derive
Rellich type inequalities and the corresponding uncertainty principles.

2.1.1 Hardy inequality and uncertainty principle

First we establish the Lp-Hardy inequality and derive a formula for the remainder
on a homogeneous group G of homogeneous dimension Q ≥ 2. The radial operator
R from (1.30) is entering the appearing expressions.

Theorem 2.1.1 (Hardy inequalities on homogeneous groups). Let | · | be any ho-
mogeneous quasi-norm on G.
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(i) Let f ∈ C∞
0 (G\{0}) be a complex-valued function. Then we have∥∥∥∥ f

|x|
∥∥∥∥
Lp(G)

≤ p

Q − p
‖Rf‖Lp(G) , 1 < p < Q, (2.2)

where the constant p
Q−p is sharp. Moreover, the equality in (2.2) is attained

if and only if f = 0.

(ii) For a real-valued function f ∈ C∞
0 (G\{0}) and with the notations

u := u(x) = − p

Q− p
Rf(x),

v := v(x) =
f(x)

|x| ,

we have

‖u‖pLp(G) − ‖v‖pLp(G) = p

∫
G

Ip(v, u)|v − u|2dx, (2.3)

where

Ip(h, g) = (p− 1)

∫ 1

0

|ξh+ (1− ξ)g|p−2ξdξ. (2.4)

(iii) For Q ≥ 3, for a complex-valued function f ∈ C∞
0 (G\{0}) we have

‖Rf‖2L2(G) =

(
Q− 2

2

)2 ∥∥∥∥ f

|x|
∥∥∥∥2
L2(G)

+

∥∥∥∥Rf +
Q− 2

2

f

|x|
∥∥∥∥2
L2(G)

, (2.5)

that is, when p = 2, (2.3) holds for complex-valued functions as well.

Remark 2.1.2.

1. In the case of G = Rn and |x| = |x|E =
√
x2
1 + · · ·+ x2

n the Euclidean norm,
we haveQ = n andR = ∂r is the usual radial derivative, and (2.2) implies the
classical Hardy inequality (2.1). Indeed, in this case for 1 < p < n inequality
(2.2) yields∥∥∥∥ f

|x|E

∥∥∥∥
Lp(Rn)

≤ p

n− p
‖Rf‖Lp(Rn) =

p

n− p
‖∂rf‖Lp(Rn)

=
p

n− p

∥∥∥∥ x

|x|E · ∇f

∥∥∥∥
Lp(Rn)

≤ p

n− p
‖∇f‖Lp(Rn) ,

(2.6)

in view of the Cauchy–Schwarz inequality for the Euclidean norm.

An interesting feature of the Hardy inequality in Part (i) is that the
constant in (2.2) is sharp for any homogeneous quasi-norm | · |.

2. In the setting of Part 1 above the remainder formula (2.3) for the Euclidean
norm | · |E in R

n was analysed by Ioku, Ishiwata and Ozawa [IIO17].
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3. In Theorem 2.1.1, Part (ii) implies Part (i). To show it one can notice that
the right-hand side of (2.3) is non-negative, which implies that∥∥∥∥ f

|x|
∥∥∥∥
Lp(G)

≤ p

Q− p
‖Rf‖Lp(G) , 1 < p < Q, (2.7)

for any real-valued f ∈ C∞
0 (G\{0}).Moreover, by using the following identity

we obtain the same inequality for all complex-valued functions: for all z ∈ C

we have

|z|p =

(∫ π

−π

| cos θ|pdθ
)−1 ∫ π

−π

|Re(z) cos θ + Im(z) sin θ|p dθ, (2.8)

which is a consequence of the decomposition of a complex number z =
r(cos φ+ i sinφ).

That is, we obtain inequality (2.2), and also that the constant p
Q−p is

sharp, in view of the remainder formula. Now let us show that this constant
is attained only for f = 0. Identity (2.8) says that it is sufficient to look only
for real-valued functions f . If the right-hand side of (2.3) vanishes, then we
must have u = v, that is,

− p

Q− p
Rf(x) =

f(x)

|x| .

This also means that Ef = −Q−p
p f . Lemma 1.3.1 implies that f is positively

homogeneous of order −Q−p
p , i.e., there exists a function h : ℘ → C such that

f(x) = |x|−Q−p
p h

(
x

|x|
)
, (2.9)

where ℘ is the unit sphere for the quasi-norm | · |. It confirms that f cannot
be compactly supported unless it is identically zero.

4. The identity (2.8) has been often used in similar estimates for passing from
real-valued to complex-valued functions, see, e.g., Davies [Dav80, p. 176].

5. Let us denote by H1
R(G) the functional space of the functions f ∈ L2(G) with

Rf ∈ L2(G). Then Theorem 2.1.1 can be extended for functions in H1
R(G),

that is, the proof of (2.2) given above works in this case. As for the sharpness

and the equality in (2.2), having (2.9) also implies that f(x)
|x| = |x|−Q

p h
(

x
|x|
)

is not in Lp(G) unless h = 0 and f = 0.

Remark 2.1.2, Part 2, shows that (2.3) implies Part (i) of Theorem 2.1.1, that
is, we only need to prove Parts (ii) and (iii). However, we now give an independent
proof of (2.2) for complex-valued functions without relying on the formula (2.8).
We see that this argument will be also useful in the proof of Part (ii).
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Proof of Theorem 2.1.1. Proof of Part (i). Using the polar decomposition from
Proposition 1.2.10, a direct calculation shows that∫

G

|f(x)|p
|x|p dx =

∫ ∞

0

∫
℘

|f(ry)|p
rp

rQ−1dσ(y)dr

= − p

Q− p

∫ ∞

0

rQ−p Re

∫
℘

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr

= − p

Q− p
Re

∫
G

|f(x)|p−2f(x)

|x|p−1

df(x)

d|x| dx. (2.10)

Now by the Hölder inequality with 1
p + 1

q = 1 we obtain∫
G

|f(x)|p
|x|p dx = − p

Q− p
Re

∫
G

|f(x)|p−2f(x)

|x|p−1

df(x)

d|x| dx

≤ p

Q− p

(∫
G

∣∣∣∣ |f(x)|p−2f(x)

|x|p−1

∣∣∣∣q dx)
1
q
(∫

G

∣∣∣∣df(x)d|x|
∣∣∣∣p dx)

1
p

=
p

Q− p

(∫
G

|f(x)|p
|x|p dx

)1− 1
p
∥∥∥∥df(x)d|x|

∥∥∥∥
Lp(G)

.

This proves inequality (2.2) in Part (i).

Proof of Part (ii). Since

u := u(x) = − p

Q− p
Rf, and v := v(x) =

f(x)

|x| ,

the formula (2.10) can be restated as

‖v‖pLp(G) = Re

∫
G

|v|p−2vudx. (2.11)

For a real-valued f the formula (2.10) becomes∫
G

|f(x)|p
|x|p dx = − p

Q− p

∫
G

|f(x)|p−2f(x)

|x|p−1

df(x)

d|x| dx

and (2.11) becomes

‖v‖pLp(G) =

∫
G

|v|p−2vudx. (2.12)

Moreover, for any Lp-integrable real-valued functions u and v, we have

‖u‖pLp(G) − ‖v‖pLp(G) + p

∫
G

(|v|p − |v|p−2vu)dx

=

∫
G

(|u|p + (p− 1)|v|p − p|v|p−2vu)dx = p

∫
G

Ip(v, u)|v − u|2dx,
(2.13)
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where

Ip(v, u) = (p− 1)

∫ 1

0

|ξv + (1− ξ)u|p−2ξdξ.

To show the last equality in (2.13), we observe the identity, for real numbers u �= v,

1

p
|u|p +

(
1− 1

p

)
|v|p − |v|p−2vu

=

(
1− 1

p

)
(|v|p − |u|p)− u(|v|p−2v − |u|p−2u)

= (p− 1)

∫ 1

0

|ξv + (1 − ξ)u|p−2(ξv + (1− ξ)u)dξ (v − u)

− (p− 1)

∫ 1

0

|ξv + (1− ξ)u|p−2dξ u(v − u)

= (p− 1)

∫ 1

0

|ξv + (1 − ξ)u|p−2ξdξ (v − u)2,

using the integral expression for the remainder in the Taylor expansion formula.

Combining (2.13) with (2.12) we arrive at

‖u‖pLp(G) − ‖v‖pLp(G) = p

∫
G

Ip(v, u)|v − u|2dx.

It completes the proof of Part (ii).

Proof of Part (iii). When p = 2, the equality (2.11) for complex-valued func-
tions reduces to

‖v‖2L2(G) = Re

∫
G

vudx.

Then we have

‖u‖2L2(G) − ‖v‖2L2(G) = ‖u‖2L2(G) − ‖v‖2L2(G) + 2

∫
G

(|v|2 − Re vu)dx

=

∫
G

(|u|2 + |v|2 − 2Re vu)dx =

∫
G

|u− v|2dx,

that is, (2.5) is proved. �

As a direct consequence of the inequality (2.2) we obtain the corresponding
uncertainty principle:

Corollary 2.1.3 (Uncertainty principle on homogeneous groups). For every com-
plex-valued function f ∈ C∞

0 (G\{0}) we have(∫
G

∣∣∣∣df(x)d|x|
∣∣∣∣p dx) 1/p(∫

G

|x|q |f |qdx
) 1/q

≥ Q− p

p

∫
G

|f |2dx. (2.14)

Here Q ≥ 2, | · | is an arbitrary homogeneous quasi-norm on G, 1 < p < Q and
1
p + 1

q = 1.
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Proof. The inequality (2.7) and the Hölder inequality imply that

(∫
G

∣∣∣∣df(x)d|x|
∣∣∣∣p dx)

1
p
(∫

G

|x|q|f |qdx
) 1

q

≥ Q− p

p

(∫
G

|f |p
|x|p dx

) 1
p
(∫

G

|x|q|f |qdx
) 1

q

≥ Q− p

p

∫
G

|f |2dx,

This shows (2.14). �

Remark 2.1.4. In the Abelian case G = (Rn,+) with the standard Euclidean
distance |x|E , we have Q = n, so that (2.14) with p = q = 2 and n ≥ 3 implies the
uncertainty principle∫

Rn

∣∣∣∣ x

|x|E · ∇u(x)

∣∣∣∣2 dx∫
Rn

|x|2E |u(x)|2dx ≥
(
n− 2

2

)2(∫
Rn

|u(x)|2dx
)2

, (2.15)

which in turn implies the classical uncertainty principle for G ≡ Rn:∫
Rn

|∇u(x)|2dx
∫
Rn

|x|2E |u(x)|2dx ≥
(
n− 2

2

)2(∫
Rn

|u(x)|2dx
)2

, n ≥ 3.

2.1.2 Weighted Hardy inequalities

In this section G is a homogeneous group of homogeneous dimension Q ≥ 3. Let
| · | be an arbitrary homogeneous quasi-norm on G. Here, we are going to discuss
weighted Hardy inequalities on G which are the consequences of exact equalities.

Theorem 2.1.5 (Weighted Hardy identity in L2(G)). Let G be a homogeneous group
of homogeneous dimension Q ≥ 3 and let | · | be a homogeneous quasi-norm on G.
Then for every complex-valued function f ∈ C∞

0 (G\{0}) and for any α ∈ R we
have the equality∥∥∥∥ 1

|x|αRf

∥∥∥∥2
L2(G)

=

(
Q− 2

2
− α

)2 ∥∥∥∥ f

|x|α+1

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αRf +
Q − 2− 2α

2|x|α+1
f

∥∥∥∥2
L2(G)

.

(2.16)

The equality (2.16) implies many different inequalities. For instance, by tak-
ing α = 1 and simplifying its coefficient, for any Q ≥ 3 we obtain the identity∥∥∥∥ 1

|x|Rf

∥∥∥∥2
L2(G)

=

(
Q− 4

2

)2 ∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|Rf +
Q− 4

2|x|2 f

∥∥∥∥2
L2(G)

. (2.17)

By dropping the last term in (2.16) which is non-negative we obtain:
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Corollary 2.1.6 (Weighted Hardy inequality in L2(G)). Let Q ≥ 3 and let α ∈ R be
such that Q− 2− 2α �= 0. Then for all complex-valued functions f ∈ C∞

0 (G\{0})
we have ∥∥∥∥ f

|x|α+1

∥∥∥∥
L2(G)

≤ 2

|Q− 2− 2α|
∥∥∥∥ 1

|x|αRf

∥∥∥∥
L2(G)

. (2.18)

Here the constant 2
|Q−2−2α| is sharp and it is attained if and only if f = 0.

Remark 2.1.7.

1. It is interesting to note that the constant 2
|Q−2−2α| in (2.18) is sharp for any

homogeneous quasi-norm | · | on G.

2. When α = 1, (2.17) or (2.18) also imply that∥∥∥∥ f

|x|2
∥∥∥∥
L2(G)

≤ 2

Q− 4

∥∥∥∥ 1

|x|Rf

∥∥∥∥
L2(G)

, Q ≥ 5, (2.19)

again with 2
Q−4 being the sharp constant.

3. If α = 0, the identity (2.16) recovers Part (iii) of Theorem 2.1.1. However,
we will use Part (iii) of Theorem 2.1.1 in the proof of Theorem 2.1.5.

4. In the Abelian case G = (Rn,+), n ≥ 3, we have Q = n, so for any homoge-
neous quasi-norm | · | on R

n identity (2.16) implies the following inequality
with the optimal constant:

|n− 2− 2α|
2

∥∥∥∥ f

|x|α+1

∥∥∥∥
L2(Rn)

≤
∥∥∥∥ 1

|x|α
x

|x| · ∇f

∥∥∥∥
L2(Rn)

for all α ∈ R.

In the case of the Euclidean distance |x|E =
√
x2
1 + · · ·+ x2

n, by the Cauchy–
Schwarz inequality we obtain the following estimate:

|n− 2− 2α|
2

∥∥∥∥ f

|x|α+1
E

∥∥∥∥
L2(Rn)

≤
∥∥∥∥ 1

|x|αE
∇f

∥∥∥∥
L2(Rn)

(2.20)

for all α ∈ R and for any f ∈ C∞
0 (Rn\{0}). The sharpness of the constant

|n−2−2α|
2 in the Euclidean case of Rn with the Euclidean norm, (2.20) was

shown in [CW01, Theorem 1.1. (ii)].

5. Hardy inequalities with homogeneous weights have been also considered by
Hoffmann-Ostenhof and Laptev [HOL15]. There are also further many-part-
icle versions of such inequalities, see [HOHOLT08] and many further refer-
ences therein. We will discuss some of such inequalities in Section 6.11 and
Section 6.12.

6. Theorem 2.1.5 was established in [RS17b]. Its extension from L2 to Lp spaces
presented in Theorem 2.1.8 was made in [Ngu17].
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Proof of Theorem 2.1.5. We first observe the equality

1

|x|αRf = R f

|x|α + α
f

|x|α+1
(2.21)

for any α ∈ R, which follows from

R f

|x|α =
1

|x|αRf + fR 1

|x|α

and hence, by using (1.30), we have

R 1

|x|α =
d

dr

1

rα
= −α

1

rα+1
= −α

1

|x|α+1
, r = |x|.

Then using (2.21) we can write∥∥∥∥ 1

|x|αRf

∥∥∥∥2
L2(G)

=

∥∥∥∥R f

|x|α +
αf

|x|α+1

∥∥∥∥2
L2(G)

=

∥∥∥∥R f

|x|α
∥∥∥∥2
L2(G)

+ 2αRe

∫
G

R
(

f

|x|α
)

f

|x|α+1
dx+

∥∥∥∥ αf

|x|α+1

∥∥∥∥2
L2(G)

.

By applying (2.5) to the function f
|x|α and using (2.21) we have that∥∥∥∥R f

|x|α
∥∥∥∥2
L2(G)

=

(
Q− 2

2

)2 ∥∥∥∥ f

|x|1+α

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αRf +
Q− 2− 2α

2|x|α+1
f

∥∥∥∥2
L2(G)

.

In addition, a direct calculation using the polar decomposition in Proposition
1.2.10 shows that

2αRe

∫
G

R
(

f

|x|α
)

f

|x|α+1
dx = 2αRe

∫ ∞

0

rQ−2

∫
℘

d

dr

(
f(ry)

rα

)
f(ry)

rα
dσ(y)dr

= α

∫ ∞

0

rQ−2

∫
℘

d

dr

( |f(ry)|2
r2α

)
dσ(y)dr = −α(Q− 2)

∥∥∥∥ f

|x|α+1

∥∥∥∥2
L2(G)

.

In conclusion, combining these identities we arrive at∥∥∥∥ 1

|x|αRf

∥∥∥∥2
L2(G)

=

(
Q− 2

2
− α

)2 ∥∥∥∥ f

|x|α+1

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αRf +
Q− 2− 2α

2|x|α+1
f

∥∥∥∥2
L2(G)

,

yielding (2.16). �

To present a weighted Lp-Hardy inequality on G we will use the following
function Rp in analogy to Ip in (2.4). For ξ, η ∈ C we denote

Rp(ξ, η) :=
1

p
|η|p + p− 1

p
|ξ|p − Re(|ξ|p−2ξη). (2.22)
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By the convexity of the function z 
→ |z|p we see that Rp(ξ, η) ≥ 0 is non-negative
and Rp(ξ, η) = 0 and if and only if ξ = η. If ξ, η ∈ R, we then have

Rp(ξ, η) = (p− 1)

∫ 1

0

|tξ + (1 − t)η|p−2tdt |ξ − η|2,

analogous to Ip in (2.4).

Theorem 2.1.8 (Weighted Hardy identity in Lp(G)). Let G be a homogeneous group
of homogeneous dimension Q. Let 1 < p < Q and α ∈ R. Then for any homoge-
neous quasi-norm | · | on G and for all complex-valued functions f ∈ C∞

0 (G\{0})
we have∥∥∥∥Rf

|x|α
∥∥∥∥p
Lp(G)

=

∣∣∣∣Q− p(1 + α)

p

∣∣∣∣p ∫
G

|f |p
|x|p(1+α)

dx

+ p

∫
G

1

|x|pαRp

(
−Q− p(1 + α)

p

f

|x| ,Rf

)
dx.

(2.23)

By dropping the last term in (2.23) which is non-negative we obtain:

Corollary 2.1.9 (Weighted Hardy inequality in Lp(G)). Let 1 < p < Q and let
α ∈ R. Then for all complex-valued functions f ∈ C∞

0 (G\{0}) we have

|Q− p(1 + α)|
p

∥∥∥∥ f

|x|1+α

∥∥∥∥
Lp(G)

≤
∥∥∥∥Rf

|x|α
∥∥∥∥
Lp(G)

. (2.24)

If Q − p(1 + α) �= 0, then the constant |Q−p(1+α)|
p in (2.24) is sharp and it is

attained if and only if f = 0.

Proof of Theorem 2.1.8. We can assume that Q− p(1 +α) �= 0, otherwise there is
nothing to prove. A direct calculation gives∫

G

|f(x)|p
|x|p(1+α)

dx =

∫ ∞

0

rQ−p(1+α)−1

∫
℘

|f(ry)|pdσ(y)dr

=
1

Q− p(1 + α)

∫ ∞

0

(rQ−p(1+α))′
∫
℘

|f(ry)|pdσ(y)dr

= − 1

Q− p(1 + α)
Re

∫ ∞

0

rQ−p(1+α)

∫
℘

|f(ry)|p−2f(ry)Rf(ry)dσ(y)dr

= − 1

Q− p(1 + α)
Re

∫
G

|f(x)|p−2f(x)

|x|(p−1)(1+α)

Rf(x)

|x|α dx

=
p− 1

p

∫
G

|f |p
|x|p(1+α)

dx +
1

p

(
p

|Q− p(1 + α)|
)p ∫

G

|Rf |p
|x|pα dx

−
∫
G

Rp

(
f

|x|1+α
,− p

Q− p(1 + α)

Rf

|x|α
)
dx,

which implies the identity (2.23). �



80 Chapter 2. Hardy Inequalities on Homogeneous Groups

Proof of Corollary 2.1.9. The equality (2.23) implies inequality (2.24) since the
last term in (2.23) is non-negative. Let us now show the sharpness of the constant.
For this we approximate the function r−(Q−p(1+α))/p by smooth compactly sup-
ported functions, for details of such an argument see also the proof of Theorem
3.1.4. Using (2.23) it follows that the equality in (2.24) holds if and only if

Rp

(
−Q− p(1 + α)

p

f

|x| ,Rf

)
= 0,

or, equivalently,

Rf = −Q− p(1 + α)

p

f

|x| .
In turn, this is equivalent to

Ef = −Q− p(1 + α)

p
f.

By Proposition 1.3.1 it follows that f is positively homogeneous of order −(Q −
p(1 + α))/p. Since |f |/|x|1+α is in Lp(G), it follows that f = 0. �

2.1.3 Hardy inequalities with super weights

In this section we discuss sharp Lp-Hardy type inequalities with super weights,
i.e., with weights of the form

(a+ b|x|α)β
p

|x|m . (2.25)

Such weights are sometimes called the super weights because of the arbitrariness of
the choice of any homogeneous quasi-norm as well as a wide range of parameters.
However, all the inequalities can be obtained with best constants.

Theorem 2.1.10 (Hardy inequalities with super weights). Let G be a homogeneous
group of homogeneous dimension Q ≥ 1. Let a, b > 0 and 1 < p < ∞. Then we
have the following inequalities:

(i) If αβ > 0 and pm ≤ Q− p, then for all f ∈ C∞
0 (G\{0}) we have

Q− pm− p

p

∥∥∥∥∥ (a+ b|x|α)β
p

|x|m+1
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)β

p

|x|m Rf

∥∥∥∥∥
Lp(G)

. (2.26)

If Q �= pm+ p then the constant Q−pm−p
p is sharp.

(ii) If αβ < 0 and pm− αβ ≤ Q− p, then for all f ∈ C∞
0 (G\{0}) we have

Q− pm+ αβ − p

p

∥∥∥∥∥ (a+ b|x|α)β
p

|x|m+1
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)β

p

|x|m Rf

∥∥∥∥∥
Lp(G)

. (2.27)

If Q �= pm+ p− αβ then the constant Q−pm+αβ−p
p is sharp.
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Proof of Theorem 2.1.10. Proof of Part (i). We can assume Q �= pm + p since in
the case Q = pm+ p there is nothing to prove. As usual with (r, y) = (|x|, x

|x|) ∈
(0,∞)× ℘ on G, where

℘ := {x ∈ G : |x| = 1},
using the polar decomposition in Proposition 1.2.10 and integrating by parts, we
obtain∫

G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx =

∫ ∞

0

∫
℘

(a+ brα)β

rpm+p
|f(ry)|prQ−1dσ(y)dr. (2.28)

Since a, b > 0, αβ > 0 and m < Q−p
p we obtain∫

G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx

≤
∫ ∞

0

∫
℘

(a+ brα)βrQ−1−pm−p

(
αβbrα

(a+ brα)(Q − pm− p)
+ 1

)
|f(ry)|pdσ(y)dr

=

∫ ∞

0

∫
℘

d

dr

(
(a+ brα)βrQ−pm−p

Q− pm− p

)
|f(ry)|pdσ(y)dr

= − p

Q− pm− p

∫ ∞

0

(a+ brα)βrQ−pm−p Re

∫
℘

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr

≤
∣∣∣∣ p

Q− pm− p

∣∣∣∣ ∫
G

(a+ b|x|α)β |Rf(x)||f(x)|p−1

|x|pm+p−1
dx

=
p

Q− pm− p

∫
G

(a+ b|x|α)β(p−1)
p |f(x)|p−1

|x|(m+1)(p−1)

(a+ b|x|α)β
p

|x|m |Rf(x)|dx.

Now by using Hölder’s inequality we arrive at the inequality∫
G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx

≤ p

Q− pm− p

(∫
G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx
)p−1

p
(∫

G

(a+ b|x|α)β
|x|pm |Rf(x)|pdx

)1
p

,

which gives (2.26).

We need to check the equality condition in the above Hölder inequality in
order to show the sharpness of the constant. Setting

g(x) = |x|C ,
where C ∈ R, C �= 0 and Q �= pm+ p a direct calculation shows∣∣∣∣ 1C

∣∣∣∣p
(
(a+ b|x|α)β

p |Rg(x)|
|x|m

)p

=

(
(a+ b|x|α)β(p−1)

p |g(x)|p−1

|x|(m+1)(p−1)

) p
p−1

,

which satisfies the equality condition of the Hölder inequality. This gives the sharp-
ness of the constant Q−pm−p

p in the inequality (2.26).
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Proof of Part (ii). Here we can assume that Q �= pm+ p− αβ since for Q =
pm+p−αβ there is nothing to prove. Using the polar decomposition in Proposition
1.2.10, as before we have the equality (2.28). Since αβ < 0 and pm− αβ < Q− p
we obtain∫

G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx

≤
∫ ∞

0

∫
℘

(a+ brα)βrQ−1−pm−p

×
(

brα

a+ brα
+

a

a+ brα
· Q− pm− p

Q− pm− p+ αβ

)
|f(ry)|pdσ(y)dr

=

∫ ∞

0

∫
℘

(a+ brα)βrQ−1−pm−p

Q− pm− p+ αβ

(
αβbrα

a+ brα
+Q − pm− p

)
|f(ry)|pdσ(y)dr

=

∫ ∞

0

∫
℘

d

dr

(
(a+ brα)βrQ−pm−p

Q− pm− p+ αβ

)
|f(ry)|pdσ(y)dr

= − p

Q− pm− p+ αβ

×
∫ ∞

0

(a+ brα)βrQ−pm−p Re

∫
℘

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr

≤
∣∣∣∣ p

Q− pm− p+ αβ

∣∣∣∣ ∫
G

(a+ b|x|α)β |Rf(x)||f(x)|p−1

|x|pm+p−1
dx

=
p

Q− pm− p+ αβ

∫
G

(a+ b|x|α)β(p−1)
p |f(x)|p−1

|x|(m+1)(p−1)

(a+ b|x|α)β
p

|x|m |Rf(x)|dx.

By Hölder’s inequality, it follows that∫
G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx ≤ p

Q− pm− p+ αβ

(∫
G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx
) (p−1)/p

×
(∫

G

(a+ b|x|α)β
|x|pm |Rf(x)|pdx

) 1/p

,

which gives (2.27).

To show the sharpness of the constant we will check the equality condition
in the above Hölder inequality. Thus, by taking

h(x) = |x|C ,
where C ∈ R, C �= 0 and Q �= pm+ p− αβ, we get∣∣∣∣ 1C

∣∣∣∣p
(
(a+ b|x|α)β

p |Rh(x)|
|x|m

)p

=

(
(a+ b|x|α)β(p−1)

p |h(x)|p−1

|x|(m+1)(p−1)

)p/(p−1)

,

which satisfies the equality condition in Hölder’s inequality. This gives the sharp-
ness of the constant Q−pm−p+αβ

p in (2.27). �
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2.1.4 Hardy inequalities of higher order with super weights

The iteration process gives the following higher-order Lp-Hardy type inequalities
with super weights. Here as before, G is a homogeneous group of homogeneous
dimension Q ≥ 1 and | · | is a homogeneous quasi-norm on G.

Theorem 2.1.11 (Higher-order Hardy inequalities with super weights). Let a, b > 0
and 1 < p < ∞, Q ≥ 1, k ∈ N. Then we have the following inequalities.

(i) If αβ > 0 and pm ≤ Q− p, then for all f ∈ C∞
0 (G\{0}) we have⎡⎣k−1∏

j=0

(
Q− p

p
− (m+ j)

)⎤⎦∥∥∥∥∥ (a+ b|x|α)β
p

|x|m+k
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)β

p

|x|m Rkf

∥∥∥∥∥
Lp(G)

.

(2.29)

(ii) If αβ < 0 and pm− αβ ≤ Q− p, then for all f ∈ C∞
0 (G\{0}) we have⎡⎣k−1∏

j=0

(
Q− p+ αβ

p
− (m+ j)

)⎤⎦∥∥∥∥∥ (a+ b|x|α)β
p

|x|m+k
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)β

p

|x|m Rkf

∥∥∥∥∥
Lp(G)

.

(2.30)

Remark 2.1.12. 1. In the case of k = 1, (2.29) gives inequality (2.26), and (2.30)
gives inequality (2.27).

2. In the Euclidean case G = R
n and | · | = | · |E the Euclidean norm, the super

weights in the form (2.25) have appeared in [GM08], together with some
applications to problems for differential equations. The case of homogeneous
groups, as well as the iterative higher order estimates as in Theorem 2.1.11
were analysed in [RSY17b, RSY18b].

Proof of Theorem 2.1.11. We can iterate (2.26). That is, we start with

Q− pm− p

p

∥∥∥∥∥ (a+ b|x|α)β
p

|x|m+1
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)β

p

|x|m Rf

∥∥∥∥∥
Lp(G)

. (2.31)

In (2.31) replacing f by Rf we obtain

Q− pm− p

p

∥∥∥∥∥ (a+ b|x|α)β
p

|x|m+1
Rf

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)β

p

|x|m R2f

∥∥∥∥∥
Lp(G)

. (2.32)
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On the other hand, replacing m by m+ 1, (2.31) gives

Q− p(m+ 1)− p

p

∥∥∥∥∥ (a+ b|x|α)β
p

|x|m+2
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)β

p

|x|m+1
Rf

∥∥∥∥∥
Lp(G)

.

Combining this with (2.32) we obtain(
Q− pm− p

p

)(
Q− p(m+ 1)− p

p

)∥∥∥∥∥ (a+ b|x|α)β
p

|x|m+2
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)β

p

|x|m R2f

∥∥∥∥∥
Lp(G)

.

This iteration process gives

k−1∏
j=0

(
Q− p

p
− (m+ j)

)∥∥∥∥∥ (a+ b|x|α)β
p

|x|m+k
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)β

p

|x|m Rkf

∥∥∥∥∥
Lp(G)

.

Similarly, we have for αβ < 0, pm− αβ ≤ Q− 2 and f ∈ C∞
0 (G\{0}) that

k−1∏
j=0

(
Q− p+ αβ

p
− (m+ j)

)∥∥∥∥∥ (a+ b|x|α)β
p

|x|m+k
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)β

p

|x|m Rkf

∥∥∥∥∥
Lp(G)

,

completing the proof. �

2.1.5 Two-weight Hardy inequalities

In this section, using the method of factorization of differential expressions, we
obtain Hardy type inequalities with two general weights φ(x) and ψ(x). The idea
of the factorization method can be best illustrated by the following example of an
estimate due to Gesztesy and Littlejohn [GL17].

Example 2.1.13 (Gesztesy and Littlejohn two-parameter inequality). Let α, β ∈ R,
x ∈ Rn\{0} and n ≥ 2. Let us define the operator

Tα,β := −Δ+ α|x|−2
E x · ∇+ β|x|−2

E .

One readily checks that its formal adjoint is given by

T+
α,β := −Δ− α|x|−2

E x · ∇+ (β − α(n− 2))|x|−2
E .
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Using the non-negativity of the operator T+
α,βTα,β on C∞

0 (Rn\{0}), for all f ∈
C∞

0 (Rn\{0}) we can deduce that∫
Rn

|(Δf)(x)|2dx ≥((n− 4)α− 2β)

∫
Rn

|x|−2
E |(∇f)(x)|2dx

− α(α − 4)

∫
Rn

|x|−4
E |x · (∇f)(x)|2dx

+ β((n− 4)(α− 2)− β)

∫
Rn

|x|−4
E |f(x)|2dx.

(2.33)

By choosing particular values of α and β it can be checked that this inequality
yields classical Rellich and Hardy–Rellich type inequalities as special cases, see
[GL17] for details.

On the other hand, using the non-negativity of the operator Tα,βT
+
α,β , it was

shown in [RY17] that for α, β ∈ R and n ≥ 2, and for all f ∈ C∞
0 (Rn\{0}) we can

deduce another two-parameter inequality∫
Rn

|(Δf)(x)|2dx (2.34)

≥ (nα− 2β)

∫
Rn

|x|−2
E |(∇f)(x)|2dx− α(α+ 4)

∫
Rn

|x|−4
E |x · (∇f)(x)|2dx

+ (2(n− 4)(α(n− 2)− β)− 2α2(n− 2) + αβn− β2)

∫
Rn

|x|−4
E |f(x)|2dx.

The following result is a two-weight inequality on general homogeneous
groups with general weights.

Theorem 2.1.14 (Two-weight Hardy inequality). Let G be a homogeneous group of
homogeneous dimension Q ≥ 3 and let | · | be a homogeneous quasi-norm on G. Let
φ, ψ ∈ L2

loc(G\{0}) be any real-valued functions such that Rφ,Rψ ∈ L2
loc(G\{0}).

Let α ∈ R. Then for all complex-valued functions f ∈ C∞
0 (G\{0}) we have in-

equalities∫
G

(φ(x))2|Rf(x)|2dx

≥ α

∫
G

(φ(x)Rψ(x) + ψ(x)Rφ(x)) |f(x)|2dx

+ α(Q− 1)

∫
G

φ(x)ψ(x)

|x| |f(x)|2dx− α2

∫
G

(ψ(x))2|f(x)|2dx

(2.35)

and ∫
G

(φ(x))2|Rf(x)|2dx

≥ α

∫
G

(ψ(x)Rφ(x) − φ(x)Rψ(x)) |f(x)|2dx
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+ α(Q − 1)

∫
G

φ(x)ψ(x)

|x| |f(x)|2dx− α2

∫
G

(ψ(x))2|f(x)|2dx

− (Q− 1)

∫
G

(φ(x))2

|x|2 |f(x)|2dx+ (Q − 1)

∫
G

φ(x)Rφ(x)

|x| |f(x)|2dx

+

∫
G

φ(x)R2φ(x)|f(x)|2dx. (2.36)

From Theorem 2.1.14 one can get different weighted Hardy inequalities. Let
us point out several examples.

Remark 2.1.15.

1. If we take φ(x) ≡ 1 in Theorem 2.1.14, we obtain for all α ∈ R and for all
f ∈ C∞

0 (G\{0}) families of inequalities∫
G

|Rf(x)|2dx ≥
∫
G

(
αRφ(x) + α(Q− 1)

ψ(x)

|x| − α2(ψ(x))2
)
|f(x)|2dx

and∫
G

|Rf(x)|2dx

≥
∫
G

(
−αRφ(x) + α(Q − 1)

ψ(x)

|x| − α2(ψ(x))2 − Q− 1

|x|2
)
|f(x)|2dx.

2. If we take φ(x) = |x|−a and ψ(x) = |x|−b for a, b ∈ R, then (2.35) implies
that∫

G

|Rf(x)|2
|x|2a dx ≥ α(Q − a− b − 1)

∫
G

|f(x)|2
|x|a+b+1

dx− α2

∫
G

|f(x)|2
|x|2b dx.

In the case when we take b = a+ 1, we get∫
G

|Rf(x)|2
|x|2a dx ≥ (α(Q − 2a− 2)− α2)

∫
G

|f(x)|2
|x|2a+2

dx.

Then, by maximizing the constant (α(Q − 2a − 2) − α2) with respect to α
we obtain the weighted Hardy inequality from Corollary 2.1.6, namely,∫

G

|Rf(x)|2
|x|2a dx ≥ (Q− 2a− 2)2

4

∫
G

|f(x)|2
|x|2a+2

dx, (2.37)

for which it is known that the constant in (2.37) is sharp.
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3. If we take φ(x) = |x|−a(log |x|)c and ψ(x) = |x|−b(log |x|)d for a, b, c, d ∈ R,
then we obtain from (2.35) the inequality∫

G

(log |x|)2c
|x|2a |Rf(x)|2dx

≥ α

∫
G

(
(c+ d)(log |x|)c+d−1 + (Q− 1− a− b)(log |x|)c+d

|x|a+b+1

)
|f(x)|2dx

− α2

∫
G

(log |x|)2d
|x|2b |f(x)|2dx.

If we take a = Q−2
2 , b = Q

2 , c = 1 and d = 0, it follows that∫
G

(log |x|)2
|x|Q−2

|Rf(x)|2dx ≥ (α− α2)

∫
G

|f(x)|2
|x|Q dx.

After maximizing the above constant with respect to α we obtain the critical
Hardy inequality∫

G

(log |x|)2
|x|Q−2

|Rf(x)|2dx ≥ 1

4

∫
G

|f(x)|2
|x|Q dx, (2.38)

recovering the critical inequality in Theorem 2.2.4. There, it is shown that
the constant 1

4 in (2.38) is sharp.

4. We can refer to [GL17] for a thorough discussion of the factorization method,
its history and different features. We also refer to [GP80] for obtaining the
Hardy inequality and to [Ges84] for logarithmic refinements by this factor-
ization method.

The inequalities in Theorem 2.1.14 were obtained in [RY17] which we
follow for the proof.

Proof of Theorem 2.1.14. Let us introduce the one-parameter differential expres-
sion

Tα := φ(x)R + αψ(x).

One can readily calculate for the formal adjoint operator of Tα on C∞
0 (G\{0}):∫

G

φ(x)Rf(x)g(x)dx+ α

∫
G

ψ(x)f(x)g(x)dx

=

∫ ∞

0

∫
℘

φ(ry)
d

dr
(f(ry))g(ry)rQ−1dσ(y)dr + α

∫
G

ψ(x)f(x)g(x)dx

= −
∫ ∞

0

∫
℘

φ(ry)f(ry)
d

dr
(g(ry))rQ−1dσ(y)dr

− (Q− 1)

∫ ∞

0

∫
℘

φ(ry)f(ry)g(ry)rQ−2dσ(y)dr + α

∫
G

ψ(x)f(x)g(x)dx



88 Chapter 2. Hardy Inequalities on Homogeneous Groups

=

∫
G

f(x)
(
−φ(x)Rg(x)

)
dx− (Q− 1)

∫
G

f(x)

(
φ(x)

|x| g(x)

)
dx

−
∫
G

f(x)
(
Rφ(x)g(x)

)
dx+ α

∫
G

f(x)
(
ψ(x)g(x)

)
dx.

Thus, the formal adjoint operator of Tα has the form

T+
α := −φ(x)R− Q− 1

|x| φ(x) −Rφ(x) + αψ(x),

where x �= 0. Then we have

(T+
α Tαf)(x) = − φ(x)R(φ(x)Rf(x)) − αφ(x)R(f(x)ψ(x)) − Q− 1

|x| (φ(x))2Rf(x)

− α(Q − 1)

|x| φ(x)ψ(x)f(x) − φ(x)Rφ(x)Rf(x) − αψ(x)f(x)Rφ(x)

+ αφ(x)ψ(x)Rf(x) + α2(ψ(x))2f(x).

By the non-negativity of T+
α Tα, introducing polar coordinates (r, y) = (|x|, x

|x|) ∈
(0,∞)× ℘ on G, where ℘ is the quasi-sphere as in (1.12), and using Proposition
1.2.10 one calculates

0 ≤
∫
G

|(Tαf)(x)|2dx =

∫
G

f(x)(T+
α Tαf)(x)dx

= Re

∫
G

f(x)(T+
α Tαf)(x)dx =: I1 + I2 + I3 + I4 + I5 + I6,

(2.39)

where we set

I1 = − Re

∫ ∞

0

∫
℘

f(ry)φ(ry)
d

dr

(
φ(ry)

d

dr
(f(ry))

)
rQ−1dσ(y)dr, (2.40)

I2 = − αRe

∫ ∞

0

∫
℘

f(ry)φ(ry)
d

dr
(f(ry)ψ(ry))rQ−1dσ(y)dr,

I3 = − (Q− 1)Re

∫ ∞

0

∫
℘

f(ry)
(φ(ry))2 d

dr (f(ry))

r
rQ−1dσ(y)dr,

I4 = − α(Q− 1)

∫
G

φ(x)ψ(x)

|x| |f(x)|2dx− α

∫
G

Rφ(x)ψ(x)|f(x)|2dx

+ α2

∫
G

(ψ(x))2|f(x)|2dx,

I5 = − Re

∫ ∞

0

∫
℘

f(ry)
d

dr
(φ(ry))φ(ry)

d

dr
(f(ry))rQ−1dσ(y)dr

and

I6 = αRe

∫ ∞

0

∫
℘

f(ry)φ(ry)ψ(ry)
d

dr
(f(ry))rQ−1dσ(y)dr.
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Now we simplify the sum of the terms I1, I2, I3, I5 and I6. By a direct calculation
we obtain

I1 = (Q− 1)Re

∫ ∞

0

∫
℘

(φ(ry))2f(ry)
d

dr
(f(ry))rQ−2dσ(y)dr

+Re

∫ ∞

0

∫
℘

(φ(ry))2
d

dr
(f(ry))

d

dr
(f(ry))rQ−1dσ(y)dr

+Re

∫ ∞

0

∫
℘

φ(ry)
d

dr
(φ(ry))

d

dr
f(ry)f(ry)rQ−1dσ(y)dr

=
Q− 1

2

∫ ∞

0

∫
℘

(φ(ry))2
d

dr
|f(ry)|2rQ−2dσ(y)dr

+

∫ ∞

0

∫
℘

(φ(ry))2
∣∣∣∣ ddr (f(ry))

∣∣∣∣2 rQ−1dσ(y)dr

+
1

2

∫ ∞

0

∫
℘

φ(ry)
d

dr
(φ(ry))

d

dr
|f(ry)|2rQ−1dσ(y)dr

=

∫ ∞

0

∫
℘

(φ(ry))2
∣∣∣∣ ddr (f(ry))

∣∣∣∣2 rQ−1dσ(y)dr

− (Q− 1)(Q − 2)

2

∫ ∞

0

∫
℘

(φ(ry))2|f(ry)|2rQ−3dσ(y)dr

− (Q − 1)

∫ ∞

0

∫
℘

φ(ry)
d

dr
(φ(ry))|f(ry)|2rQ−2dσ(y)dr

− 1

2

∫ ∞

0

∫
℘

(
d

dr
(φ(ry))

)2

|f(ry)|2rQ−1dσ(y)dr

− 1

2

∫ ∞

0

∫
℘

φ(ry)
d2

dr2
(φ(ry))|f(ry)|2rQ−1dσ(y)dr

− Q− 1

2

∫ ∞

0

∫
℘

φ(ry)
d

dr
(φ(ry))|f(ry)|2rQ−2dσ(y)dr

=

∫
G

(φ(x))2|Rf(x)|2dx− (Q− 1)(Q− 2)

2

∫
G

(φ(x))2

|x|2 |f(x)|2dx

− (Q − 1)

∫
G

φ(x)Rφ(x)

|x| |f(x)|2dx− 1

2

∫
G

(Rφ(x))2|f(x)|2dx

− 1

2

∫
G

R2φ(x)φ(x)|f(x)|2dx− Q− 1

2

∫
G

φ(x)Rφ(x)

|x| |f(x)|2dx.

Now we calculate I2 as follows,

I2 = − αRe

∫ ∞

0

∫
℘

φ(ry)ψ(ry)f(ry)
d

dr
(f(ry))rQ−1dσ(y)dr
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− α

∫ ∞

0

∫
℘

φ(ry)
d

dr
(ψ(ry))|f(ry)|2rQ−1dσ(y)dr

= − α

2

∫ ∞

0

∫
℘

φ(ry)ψ(ry)
d

dr
|f(ry)|2rQ−1dσ(y)dr

− α

∫ ∞

0

∫
℘

φ(ry)
d

dr
(ψ(ry))|f(ry)|2rQ−1dσ(y)dr

= − α

∫ ∞

0

∫
℘

φ(ry)
d

dr
(ψ(ry))|f(ry)|2rQ−1dσ(y)dr

+
α

2

∫ ∞

0

∫
℘

ψ(ry)
d

dr
(φ(ry))|f(ry)|2rQ−1dσ(y)dr

+
α

2

∫ ∞

0

∫
℘

φ(ry)
d

dr
(ψ(ry))|f(ry)|2rQ−1dσ(y)dr

+
α(Q − 1)

2

∫ ∞

0

∫
℘

φ(ry)ψ(ry)|f(ry)|2rQ−2dσ(y)dr

=
α

2

∫
G

ψ(x)Rφ(x)|f(x)|2dx+
α

2

∫
G

φ(x)Rψ(x)|f(x)|2dx

+
α(Q − 1)

2

∫
G

φ(x)ψ(x)

|x| |f(x)|2dx− α

∫
G

φ(x)Rψ(x)|f(x)|2dx.

For I3, one has

I3 = − (Q− 1)Re

∫ ∞

0

∫
℘

(φ(ry))2f(ry)
d

dr
(f(ry))rQ−2dσ(y)dr

= − Q− 1

2

∫ ∞

0

∫
℘

(φ(ry))2
d

dr
|f(ry)|2rQ−2dσ(y)dr

= (Q − 1)

∫ ∞

0

∫
℘

φ(ry)
d

dr
(φ(ry))|f(ry)|2rQ−2dσ(y)dr

+
(Q− 1)(Q− 2)

2

∫ ∞

0

∫
℘

(φ(ry))2|f(ry)|2rQ−3dσ(y)dr

= (Q − 1)

∫
G

φ(x)Rφ(x)

|x| |f(x)|2dx+
(Q− 1)(Q − 2)

2

∫
G

(φ(x))2

|x|2 |f(x)|2dx.

For I5, we have

I5 = − Re

∫ ∞

0

∫
℘

f(ry)
d

dr
(φ(ry))φ(ry)

d

dr
(f(ry))rQ−1dσ(y)dr

= − 1

2

∫ ∞

0

∫
℘

d

dr
(φ(ry))φ(ry)

d

dr
|f(ry)|2rQ−1dσ(y)dr

=
1

2

∫ ∞

0

∫
℘

φ(ry)
d2

dr2
(φ(ry))|f(ry)|2rQ−1dσ(y)dr
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+
1

2

∫ ∞

0

∫
℘

(
d

dr
(φ(ry))

)2

|f(ry)|2rQ−1dσ(y)dr

+
Q− 1

2

∫ ∞

0

∫
℘

φ(ry) d
dr (φ(ry))

r
|f(ry)|2rQ−1dσ(y)dr

=
1

2

∫
G

R2φ(x)φ(x)|f(x)|2dx +
1

2

∫
G

(Rφ(x))2 |f(x)|2dx

+
Q− 1

2

∫
G

Rφ(x)φ(x)

|x| |f(x)|2dx.

Finally, for I6 we obtain

I6 = αRe

∫ ∞

0

∫
℘

f(ry)φ(ry)ψ(ry)
d

dr
(f(ry))rQ−1dσ(y)dr (2.41)

=
α

2

∫ ∞

0

∫
℘

φ(ry)ψ(ry)
d

dr
|f(ry)|2rQ−1dσ(y)dr

= − α

2

∫ ∞

0

∫
℘

d

dr
(φ(ry))ψ(ry)|f(ry)|2rQ−1dσ(y)dr

− α

2

∫ ∞

0

∫
℘

d

dr
(ψ(ry))φ(ry)|f(ry)|2rQ−1dσ(y)dr

− α(Q − 1)

2

∫ ∞

0

∫
℘

φ(ry)ψ(ry)
|f(ry)|2

r
rQ−1dσ(y)dr

= − α

2

∫
G

Rφ(x)ψ(x)|f(x)|2dx− α

2

∫
G

φ(x)Rψ(x)|f(x)|2dx

− α(Q − 1)

2

∫
G

φ(x)ψ(x)

|x| |f(x)|2dx.

Putting (2.40)–(2.41) in (2.39), we obtain that∫
G

(φ(x))2|Rf(x)|2dx

− α

∫
G

(
φ(x)Rψ(x) + ψ(x)Rφ(x) + (Q − 1)

φ(x)ψ(x)

|x|
)
|f(x)|2dx

+ α2

∫
G

(ψ(x))2|f(x)|2dx ≥ 0,

which implies (2.35).

Thus, we have obtained (2.35) using the non-negativity of T+
α Tα. Now we can

obtain (2.36) using the non-negativity of TαT
+
α . Similar to the above we calculate

(TαT
+
α f)(x) = − φ(x)R(φ(x)Rf(x)) + αφ(x)R(f(x)ψ(x)) − Q− 1

|x| (φ(x))2Rf(x)
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− α(Q − 1)

|x| φ(x)ψ(x)f(x) − φ(x)Rφ(x)Rf(x) − αψ(x)f(x)Rφ(x)

− αφ(x)ψ(x)Rf(x) + α2(ψ(x))2f(x)

− (Q − 1)φ(x)f(x)R
(
φ(x)

|x|
)
− φ(x)f(x)R2φ(x).

Using the non-negativity of TαT
+
α we get

0 ≤
∫
G

|(Tαf)(x)|2dx =

∫
G

f(x)(TαT
+
α f)(x)dx

= Re

∫
G

f(x)(TαT
+
α f)(x)dx = Ĩ1 + Ĩ2 + Ĩ3 + Ĩ4 + Ĩ5 + Ĩ6,

where
Ĩ1 = I1, Ĩ2 = −I2, Ĩ3 = I3, Ĩ4 = I4 +A, Ĩ5 = I5, Ĩ6 = −I6

with

A = −(Q− 1)

∫
G

φ(x)|f(x)|2R
(
φ(x)

|x|
)
dx−

∫
G

φ(x)R2φ(x)|f(x)|2dx.

Taking into account these and (2.40)–(2.41), we obtain (2.36). �

To finish this section, we observe another version of weighted Hardy inequal-
ity with the radial derivative. Anticipating the material presented in later chapters,
the proof will be based on the integral Hardy inequality from Theorem 5.1.1.

Theorem 2.1.16 (Weighted Hardy inequality for radial functions). Let G be a
homogeneous group of homogeneous dimension Q. Let φ > 0, ψ > 0 be positive
weight functions on G and let 1 < p ≤ q < ∞. Then there exists a positive constant
C > 0 such that(∫

G

φ(x)|f(x)|qdx
) 1/q

≤ C

(∫
G

ψ(x)|Rf(x)|pdx
) 1/p

(2.42)

holds for all radial functions f with f(0) = 0 if and only if

sup
R>0

(∫
|x|≥R

φ(x)dx

) 1/q (∫ R

0

(∫
℘

rQ−1ψ(ry)dσ(y)

)1−p′

dr

)1/p′

< ∞. (2.43)

Remark 2.1.17. In the Abelian case G = (Rn,+) and Q = n, (2.42) was obtained
in [DHK97] and in [Saw84]. On homogeneous groups it was observed in [RY18a]
and we follow the proof there.

Proof of Theorem 2.1.16. For r = |x|, let us denote f̃(r) = f(x). We also denote

Φ(r) :=

∫
℘

rQ−1φ(ry)dσ(y), Ψ(r) :=

∫
℘

rQ−1ψ(ry)dσ(y).
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Consequently, using f̃(0) = 0, we have(∫
G

φ(x)|f(x)|qdx
) 1/q

=

(∫
℘

∫ ∞

0

rQ−1φ(ry)|f̃ (r)|qdrdσ(y)
) 1/q

=

(∫ ∞

0

Φ(r)|f̃ (r)|qdr
) 1/q

=

(∫ ∞

0

Φ(r)

∣∣∣∣∫ r

0

Rf̃(r)dr

∣∣∣∣q dr) 1/q

≤ C

(∫ ∞

0

Ψ(r)
∣∣∣Rf̃(r)

∣∣∣p dr) 1/p

= C

(∫
G

ψ(x)|Rf(x)|pdx
)1/p

if and only if the condition (2.43) holds by Theorem 5.1.1, namely by (5.2) and
(5.3). �

2.2 Critical Hardy inequalities

In this section we discuss critical Hardy inequalities. The critical behaviour may be
manifested with respect to different parameters. For example, one major critical
case arises when we have p = Q in (2.2). In this case, in the Euclidean case of Rn

with p = Q = n it is known that the Hardy inequality (2.1) fails for any constant,
see, e.g., [ET99] and [IIO16a], and references therein. In such critical cases it is
natural to expect the appearance of the logarithmic terms.

One version of such a critical case is the inequality

sup
R>0

∥∥∥∥∥ f − fR

|x|log R
|x|

∥∥∥∥∥
LQ(G)

≤ Q

Q− 1
‖Rf‖LQ(G) , Q ≥ 2, (2.44)

for all f ∈ C∞
0 (G\{0}), where we denote

fR(x) := f

(
R

x

|x|
)

for x ∈ G and R > 0.

In fact, this inequality is a special case (with p = Q) of the following more general
family of critical inequalities derived in Theorem 2.2.1, namely,

sup
R>0

∥∥∥∥∥∥ f − fR

|x|Qp log R
|x|

∥∥∥∥∥∥
Lp(G)

≤ p

p− 1

∥∥∥∥∥ 1

|x|Qp −1
Rf

∥∥∥∥∥
Lp(G)

, (2.45)

for all 1 < p < ∞. Here the constant p
p−1 in (2.45) is sharp but is in general

unattainable.
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The inequalities (2.45) are all critical with respect to their weight |x|−Q
p

in Lp-space because its pth power gives |x|−Q which is the critical order for the
integrability at zero and at infinity in Lp(G).

Moreover, we show another type of a critical Hardy inequality on general
homogeneous groups with the logarithm being on the right-hand side:∥∥∥∥ f

|x|
∥∥∥∥
LQ(G)

≤ Q‖(log |x|)Rf‖LQ(G). (2.46)

Furthermore, we also give improved versions of the Hardy inequality (2.1)
on quasi-balls of homogeneous (Lie) groups, the so-called Hardy–Sobolev type
inequalities.

2.2.1 Critical Hardy inequalities

First we discuss a family of generalized critical Hardy inequalities on the homoge-
neous group G mentioned in (2.45). In this section, G is a homogeneous group of
homogeneous dimension Q ≥ 2 and | · | is an arbitrary homogeneous quasi-norm
on G.

Theorem 2.2.1 (A family of critical Hardy inequalities). Let f ∈ C∞
0 (G\{0}) and

denote fR(x) := f(R x
|x|) for x ∈ G and R > 0. Then we have the inequalities

sup
R>0

∥∥∥∥∥∥ f − fR

|x|Qp log R
|x|

∥∥∥∥∥∥
Lp(G)

≤ p

p− 1

∥∥∥∥∥ 1

|x|Qp −1
Rf

∥∥∥∥∥
Lp(G)

, 1 < p < ∞, (2.47)

where the constant p
p−1 is sharp. Moreover, denoting

uR(x) :=
f(x)− fR(x)

|x|Qp log R
|x|

and v(x) :=
1

|x|Qp −1
Rf(x),

for each R > 0 we have the following expression for the remainder:∥∥∥∥∥∥ f − fR

|x|Qp log R
|x|

∥∥∥∥∥∥
p

Lp(G)

=

(
p

p− 1

)p
∥∥∥∥∥ 1

|x|Qp −1
Rf

∥∥∥∥∥
p

Lp(G)

− p

∫
G

I(uR,− p

p− 1
v)

∣∣∣∣ p

p− 1
v + uR

∣∣∣∣2 dx,
(2.48)

where I is defined by

I(u, g) :=

(
1

p
|g|p +

(
1− 1

p

)
|u|p − |u|p−2Re(ug)

)
|u− g|−2 ≥ 0, u �= g,

I(g, g) :=
p− 1

2
|g|p−2.
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Remark 2.2.2.

1. For p = Q the inequality (2.47) becomes

sup
R>0

∥∥∥∥∥ f − fR

|x|log R
|x|

∥∥∥∥∥
LQ(G)

≤ Q

Q − 1
‖Rf‖LQ(G) , Q ≥ 2, (2.49)

which gives the mentioned critical estimate (2.44).

2. In the Euclidean isotropic case G = Rn with the Euclidean norm | · |E , similar
to Remark 2.1.2, Part 1, inequalities (2.47) yields inequalities for the usual
gradient ∇ in Rn for all 1 < p < ∞:

sup
R>0

∥∥∥∥∥∥ f − fR

|x|
n
p

E log R
|x|E

∥∥∥∥∥∥
Lp(Rn)

≤ p

p− 1

∥∥∥∥∥ 1

|x|
n
p −1

E

∇f

∥∥∥∥∥
Lp(Rn)

, (2.50)

where fR(x) := f(R x
|x|E ) for x ∈ Rn and R > 0. The critical inequality (2.49)

becomes

sup
R>0

∥∥∥∥∥ f − fR

|x|E log R
|x|E

∥∥∥∥∥
Ln(Rn)

≤ n

n− 1
‖∇f‖Ln(Rn) , n ≥ 2. (2.51)

3. For the sharpness of the constant p
p−1 in (2.47) we refer to the Euclidean

case with the Euclidean norm where this constant is known to be sharp
but is in general unattainable. This was shown in [IIO16a]. In the case of
general homogeneous groups this follows from the expression (2.48) for the
remainder.

4. For p = 2, in the Euclidean case G = Rn with the Euclidean norm, the
estimate (2.50) was shown in [MOW17a]. In principle, this case can be also
obtained from [MOW15a, Theorem 1.1]. Inequality (2.51) in bounded do-
mains of Rn was analysed in [II15].

Proof of Theorem 2.2.1. Using the polar decomposition in Proposition 1.2.10, a
straightforward calculation shows∫
B(0,R)

|f(x)−fR(x)|p
|x|Q|log R

|x| |p
dx

=

∫ R

0

∫
℘

|f(ry)−f(Ry)|p
rQ
(
logR

r

)p rQ−1dσ(y)dr

=

∫ R

0

d

dr

(
1

p−1

1(
logR

r

)p−1

∫
℘

|f(ry)−f(Ry)|pdσ(y)
)
dr
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− p

p−1
Re

∫ R

0

(
1(

logR
r

)p−1

∫
℘

|f(ry)−f(Ry)|p−2(f(ry)−f(Ry))
df(ry)

dr
dσ(y)

)
dr

=− p

p−1
Re

∫ R

0

(
1(

logR
r

)p−1

∫
℘

|f(ry)−f(Ry)|p−2(f(ry)−f(Ry))
df(ry)

dr
dσ(y)

)
dr,

where σ is the Borel measure on ℘ and the contribution on the boundary at r = R
vanishes due to the inequalities

|f(ry)− f(Ry)| ≤ C(R − r),
R− r

R
≤ log

R

r
.

By using the formula (1.30) we obtain∫
B(0,R)

|f(x)− fR(x)|p
|x|Q|log R

|x| |p
dx

= − p

p− 1
Re

∫ R

0

1(
logR

r

)p−1

∫
℘

|f(ry)− f(Ry)|p−2(f(ry) − f(Ry))
df(ry)

dr
dσ(y)dr

= − p

p− 1
Re

∫
B(0,R)

∣∣∣∣∣∣f(x)− fR(x)

|x|Qp log R
|x|

∣∣∣∣∣∣
p−2

(f(x)− fR(x))

|x|Qp log R
|x|

1

|x|Qp −1

df(x)

d|x| dx.

Similarly, one has∫
Bc(0,R)

|f(x)−fR(x)|p
|x|Q|log R

|x| |p
dx=

∫ ∞

R

∫
℘

|f(ry)−f(Ry)|p
rQ
(
log r

R

)p rQ−1dσ(y)dr

=−
∫ ∞

R

d

dr

(
1

p−1

1(
log r

R

)p−1

∫
℘

|f(ry)−f(Ry)|pdσ(y)
)
dr

+
p

p−1
Re

∫ ∞

R

(
1(

log r
R

)p−1

∫
℘

|f(ry)−f(Ry)|p−2(f(ry)−f(Ry))
df(ry)

dr
dσ(y)

)
dr

=− p

p−1
Re

∫
Bc(0,R)

∣∣∣∣∣∣f(x)−fR(x)

|x|Qp log R
|x|

∣∣∣∣∣∣
p−2

(f(x)−fR(x))

|x|Qp log R
|x|

1

|x|Qp −1

df(x)

d|x| dx.

This implies that∫
G

|f(x)− fR(x)|p
|x|Q|log R

|x| |p
dx

= − p

p− 1
Re

∫
G

∣∣∣∣∣∣f(x)− fR(x)

|x|Qp log R
|x|

∣∣∣∣∣∣
p−2

(f(x)− fR(x))

|x|Qp log R
|x|

1

|x|Qp −1

df(x)

d|x| dx

=

(
p

p− 1

)p

‖v‖pLp(G) − p

∫
G

I(u,− p

p− 1
v)

∣∣∣∣ p

p− 1
v + u

∣∣∣∣2 dx,
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with

u =
f(x)− fR(x)

|x|Qp log R
|x|

, v =
1

|x|Qp −1

df(x)

d|x| ,

and I is defined by

I(f, g) :=

(
1

p
|g|p + 1

p′
|f |p − |f |p−2 Re(fg)

)
|f − g|−2 ≥ 0, f �= g,

1

p
+

1

p′
= 1,

I(g, g) :=
p− 1

2
|g|p−2.

Thus, we establish

‖u‖pLp(G) =

(
p

p− 1

)p

‖v‖pLp(G) − p

∫
G

I

(
u,− p

p− 1
v

) ∣∣∣∣ p

p− 1
v + u

∣∣∣∣2 dx.
This proves the equality (2.48) and the inequality (2.47) since the last term is
non-positive. �

We have the following consequence of Theorem 2.2.1:

Corollary 2.2.3 (Critical uncertainty type principles). Let 1 < p < ∞ and f ∈
C∞

0 (G\{0}). Then for any R > 0 and 1
p + 1

q = 1
2 with q > 1, we have∥∥∥∥∥ 1

|x|Qp −1
Rf

∥∥∥∥∥
Lp(G)

‖f‖Lq(G) ≥
p− 1

p

∥∥∥∥∥∥ f(f − fR)

|x|Qp log R
|x|

∥∥∥∥∥∥
L2(G)

(2.52)

and also∥∥∥∥∥ 1

|x|Qp −1
Rf

∥∥∥∥∥
Lp(G)

∥∥∥∥∥∥ f − fR

|x| Q

p′ log R
|x|

∥∥∥∥∥∥
Lp′(G)

≥ p− 1

p

∥∥∥∥∥∥ f − fR

|x|Q2 log R
|x|

∥∥∥∥∥∥
2

L2(G)

(2.53)

for 1
p + 1

p′ = 1.

Proof of Corollary 2.2.3. By Theorem 2.2.1 and Hölder’s inequality we have∥∥∥∥∥ 1

|x|Qp −1
Rf

∥∥∥∥∥
Lp(G)

‖f‖Lq(G) ≥
p− 1

p

∥∥∥∥∥∥ f − fR

|x|Qp log R
|x|

∥∥∥∥∥∥
Lp(G)

‖f‖Lq(G)

=
p− 1

p

⎛⎜⎝∫
G

∣∣∣∣∣∣ f − fR

|x|Qp log R
|x|

∣∣∣∣∣∣
2 p

2

dx

⎞⎟⎠
1
2

2
p (∫

G

|f |2 q
2 dx

) 1
2

2
q

≥ p− 1

p

⎛⎜⎝∫
G

∣∣∣∣∣∣ f(f − fR)

|x|Qp log R
|x|

∣∣∣∣∣∣
2

dx

⎞⎟⎠
1/2

=
p− 1

p

∥∥∥∥∥∥ f(f − fR)

|x|Qp log R
|x|

∥∥∥∥∥∥
L2(G)

.

The formula (2.52) is proved. The proof of (2.53) is similar so we can omit it. �
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2.2.2 Another type of critical Hardy inequality

In this section we analyse another type of a critical Hardy inequality when the log-
arithmic term appears on the other side of the inequality. This extends inequality
(2.38) that was obtained for p = 2 by a factorization method.

Theorem 2.2.4 (Critical Hardy inequality). Let G be a homogeneous group of ho-
mogeneous dimension Q ≥ 1 and let | · | be a homogeneous quasi-norm on G. Let
1 < p < ∞. Then for any complex-valued function f ∈ C∞

0 (G\{0}) we have∫
G

|f(x)|p
|x|Q dx ≤ pp

∫
G

| log |x||p
|x|Q−p

|Rf(x)|pdx, (2.54)

and the constant pp in this inequality is sharp.

Remark 2.2.5.

1. Inequality (2.54) was mentioned in (2.46) as another type of a critical Hardy
inequality in the critical case of p = Q, in which case we have∫

G

|f(x)|Q
|x|Q dx ≤ QQ

∫
G

|(log |x|)Rf(x)|Qdx. (2.55)

2. In the Euclidean case G = (Rn,+) we have Q = n, so for any quasi-norm
| · | on Rn the inequality (2.54) implies a new inequality with the optimal
constant: For each f ∈ C∞

0 (Rn\{0}), we have∥∥∥∥ f

|x|
∥∥∥∥
Ln(Rn)

≤ n

∥∥∥∥(log |x|) x

|x| · ∇f

∥∥∥∥
Ln(Rn)

. (2.56)

If we take now the standard Euclidean distance |x|E =
√
x2
1 + · · ·+ x2

n, it
follows that we have∥∥∥∥ f

|x|E

∥∥∥∥
Ln(Rn)

≤ n ‖(log |x|E)∇f‖Ln(Rn) , (2.57)

for all f ∈ C∞
0 (Rn\{0}), where ∇ is the standard gradient in Rn. The con-

stants in the above inequalities are sharp.

3. The inequality (2.57) and its consequence are analogous to the critical Hardy
inequality of Edmunds and Triebel [ET99] that they showed in Rn for the
Euclidean norm | · |E in bounded domains B ⊂ Rn:∥∥∥∥∥ f(x)

|x|E(1 + log 1
|x|E )

∥∥∥∥∥
Ln(B)

≤ n

n− 1
‖∇f‖Ln(B) , n ≥ 2, (2.58)

with sharp constant n
n−1 , which was also discussed in [AS06]. This inequality

was also shown to be equivalent to the critical case of the Sobolev–Lorentz
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inequality. However, a different feature of (2.57) compared to (2.58) is that
the logarithmic term enters the other side of the inequality. Inequalities of
this type have been investigated in [RS16a].

Proof of Theorem 2.2.4. Let R > 0 be such that suppf ⊂ B(0, R). A direct cal-
culation using the polar decomposition in Proposition 1.2.10 with integration by
parts yields∫

B(0,R)

|f(x)|p
|x|Q dx =

∫ R

0

∫
℘

|f(δr(y))|prQ−1−Qdσ(y)dr

= −p

∫ R

0

log rRe

∫
℘

|f(δr(y))|p−2f(δr(y))
df(δr(y))

dr
dσ(y)dr

≤ p

∫
B(0,R)

|Rf(x)||f(x)|p−1

|x|Q−1
| log |x||dx

= p

∫
B(0,R)

|Rf(x)|| log |x||
|x|Qp −1

|f(x)|p−1

|x|Q(p−1)
p

dx,

and by using the Hölder inequality, we obtain that

∫
B(0,R)

|f(x)|p
|x|Q dx ≤ p

(∫
B(0,R)

|Rf(x)|p| log |x||p
|x|Q−p

dx

) 1
p
(∫

B(0,R)

|f(x)|p
|x|Q dx

) p−1
p

,

which gives (2.54).

Now it remains to show the optimality of the constant, so we need to check
the equality condition in the above Hölder inequality. Let us consider the test
function

h(x) = log |x|.
Thus, we have (

|Rh(x)|| log |x||
|x|Qp −1

)p

=

(
|h(x)|p−1

|x|Q(p−1)
p

) p
p−1

,

which satisfies the equality condition in Hölder’s inequality. This gives the opti-
mality of the constant pp in (2.54). �

As usual, the Hardy inequality implies the corresponding uncertainty princi-
ple:

Corollary 2.2.6 (Another type of critical uncertainty principle). Let G be a ho-
mogeneous group of homogeneous dimension Q ≥ 2. Let | · | be a homogeneous
quasi-norm on G. Then for each f ∈ C∞

0 (G\{0}) we have(∫
G

|(log |x|)Rf |Q dx

) 1
Q
(∫

G

|x| Q
Q−1 |f | Q

Q−1 dx

)Q−1
Q

≥ 1

Q

∫
G

|f |2dx. (2.59)



100 Chapter 2. Hardy Inequalities on Homogeneous Groups

Proof. From the inequality (2.54) we get(∫
B(0,R)

|(log |x|)Rf |Q dx

) 1
Q
(∫

B(0,R)

|x| Q
Q−1 |f | Q

Q−1 dx

)Q−1
Q

≥ 1

Q

(∫
B(0,R)

|f |Q
|x|Q dx

) 1
Q
(∫

B(0,R)

|x| Q
Q−1 |f | Q

Q−1 dx

)Q−1
Q

≥ 1

Q

∫
B(0,R)

|f |2dx,

where we have used the Hölder inequality in the last line. This shows (2.59). �

2.2.3 Critical Hardy inequalities of logarithmic type

In this section we present yet another logarithmic type of critical Hardy inequalities
on the homogeneous group G of homogeneous dimension Q ≥ 1. As usual, let | · |
be a homogeneous quasi-norm on G.

Theorem 2.2.7 (Another family of logarithmic Hardy inequalities). Let 1 < γ <
∞ and max{1, γ − 1} < p < ∞. Then for all complex-valued functions f ∈
C∞

0 (G\{0}) and all R > 0 we have the inequality∥∥∥∥∥∥∥
f − fR

|x|Qp
(
log R

|x|
) γ

p

∥∥∥∥∥∥∥
Lp(G)

≤ p

γ − 1

∥∥∥∥∥|x| p−Q
p

(
log

R

|x|
) p−γ

p

Rf

∥∥∥∥∥
Lp(G)

, (2.60)

where fR(x) := f
(
R x

|x|
)
, and the constant p

γ−1 is sharp.

Proof of Theorem 2.2.7. For a quasi-ball B(0, R) we have using the polar decom-
position in Proposition 1.2.10 that∫

B(0,R)

|f(x)− fR(x)|p
|x|Q

∣∣∣log R
|x|
∣∣∣γ dx =

∫ R

0

∫
℘

|f(ry) − f(Ry)|p
rQ
(
log R

r

)γ rQ−1dσ(y)dr

=

∫ R

0

d

dr

(
1

(γ − 1)
(
log R

r

)γ−1

∫
℘

|f(ry)− f(Ry)|pdσ(y)
)
dr

− p

γ − 1
Re

∫ R

0

(
log

R

r

)−γ+1

×
∫
℘

|f(ry)− f(Ry)|p−2(f(ry)− f(Ry))
df(ry)

dr
dσ(y)dr

= − p

γ − 1
Re

∫ R

0

(
log

R

r

)−γ+1

×
∫
℘

|f(ry)− f(Ry)|p−2(f(ry)− f(Ry))
df(ry)

dr
dσ(y)dr,
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where p−γ+1 > 0, so that the boundary term at r = R vanishes due to inequalities

|f(ry)− f(Ry)| ≤ C(R − r), log
R

r
≥ R − r

R
.

Then by the Hölder inequality we get∫ R

0

∫
℘

|f(ry)− f(Ry)|p
r
(
log R

r

)γ dσ(y)dr

= − p

γ − 1
Re

∫ R

0

(
log

R

r

)−γ+1∫
℘

|f(ry)− f(Ry)|p−2(f(ry)− f(Ry))
df(ry)

dr
dσ(y)dr

≤ p

γ − 1

∫ R

0

(
log

R

r

)−γ+1 ∫
℘

|f(ry)− f(Ry)|p−1

∣∣∣∣df(ry)dr

∣∣∣∣ dσ(y)dr
≤ p

γ − 1

(∫ R

0

∫
℘

|f(ry)− f(Ry)|p
r
(
log R

r

)γ dσ(y)dr

) (p−1)/p

×
(∫ R

0

∫
℘

rp−1

(
log

R

r

)p−γ ∣∣∣∣df(ry)dr

∣∣∣∣p dσ(y)dr
) 1/p

.

Thus, we obtain⎛⎝∫
B(0,R)

|f(x) − fR(x)|p

|x|Q
∣∣∣log R

|x|
∣∣∣γ dx

⎞⎠ 1/p

≤ p

γ − 1

(∫
B(0,R)

|x|p−Q

∣∣∣∣log R

|x|
∣∣∣∣p−γ

|Rf(x)|p dx
) 1/p

.

(2.61)

Similarly, we have⎛⎝∫
Bc(0,R)

|f(x)− fR(x)|p

|x|Q
∣∣∣log R

|x|
∣∣∣γ dx

⎞⎠ 1/p

≤ p

γ − 1

(∫
Bc(0,R)

|x|p−Q

∣∣∣∣log R

|x|
∣∣∣∣p−γ

|Rf(x)|p dx
) 1/p

.

(2.62)

The inequalities (2.61) and (2.62) imply (2.60). Furthermore, the optimality of the
constant in (2.60) is proved exactly in the same way as in the Euclidean case (see
[MOW15b, Section 3]). �
Corollary 2.2.8 (Another family of logarithmic uncertainty type principles). Let
1 < p < ∞ and q > 1 be such that 1

p +
1
q = 1

2 . Let 1 < γ < ∞ and max{1, γ−1} <

p < ∞. Then for any R > 0 and f ∈ C∞
0 (G\{0}) we have∥∥∥∥∥|x| p−Q

p

(
log

R

|x|
) (p−γ)/p

Rf

∥∥∥∥∥
Lp(G)

‖f‖Lq(G) ≥ γ − 1

p

∥∥∥∥∥ f(f − fR)

|x|Qp (log(R/ |x|)) γ/p

∥∥∥∥∥
L2(G)

.
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Moreover,∥∥∥∥∥|x| p−Q
p

(
log

R

|x|
) p−γ

p

Rf

∥∥∥∥∥
Lp(G)

∥∥∥∥∥∥∥
f − fR

|x| Q

p′
(
log R

|x|
)2− γ

p

∥∥∥∥∥∥∥
Lp′(G)

≥ γ − 1

p

∥∥∥∥∥∥ f − fR

|x|Q2 log R
|x|

∥∥∥∥∥∥
2

L2(G)

(2.63)

holds for 1
p + 1

p′ = 1.

Proof of Corollary 2.2.8. By (2.60), we have

∥∥∥∥∥|x| p−Q
p

(
log

R

|x|
) p−γ

p

Rf

∥∥∥∥∥
Lp(G)

‖f‖Lq(G)≥ γ − 1

p

∥∥∥∥∥∥∥
f − fR

|x|Qp
(
log R

|x|
) γ

p

∥∥∥∥∥∥∥
Lp(G)

‖f‖Lq(G)

=
γ − 1

p

⎛⎜⎜⎝∫
G

∣∣∣∣∣∣∣
f(x)− fR(x)

|x|Qp
(
log R

|x|
) γ

p

∣∣∣∣∣∣∣
2 p

2

dx

⎞⎟⎟⎠
1
2

2
p (∫

G

|f(x)|2 q
2 dx

) 1
2

2
q

,

and using Hölder’s inequality, we obtain∥∥∥∥∥|x| p−Q
p

(
log

R

|x|
) p−γ

p

Rf

∥∥∥∥∥
Lp(G)

‖f‖Lq(G)

≥ γ − 1

p

⎛⎜⎝∫
G

∣∣∣∣∣∣∣
f(x)(f(x) − fR(x))

|x|Qp
(
log R

|x|
)γ/p

∣∣∣∣∣∣∣
2

dx

⎞⎟⎠
1/2

=
γ − 1

p

∥∥∥∥∥∥∥
f(f − fR)

|x|Qp
(
log R

|x|
)γ/p

∥∥∥∥∥∥∥
L2(G)

.

Similarly, one can prove (2.63). �
Remark 2.2.9. When γ = p, the statement in Theorem 2.2.7 appeared in [RS16a,
Theorem 3.1] in the form∥∥∥∥∥∥ f − fR

|x|Qp log R
|x|

∥∥∥∥∥∥
Lp(G)

≤ p

p− 1

∥∥∥|x| p−Q
p Rf

∥∥∥
Lp(G)

, 1 < p < ∞, (2.64)

for all R > 0. For general p and γ it was analysed in [RS16a]. In the Euclidean case
with the Euclidean distance such inequalities have been analysed in [MOW15b,
Section 3].
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2.3 Remainder estimates

In this section we analyse the remainder estimates for Lp-weighted Hardy in-
equalities with sharp constants on homogeneous groups. In addition, other refined
versions involving a distance and the critical case p = Q = 2 on the quasi-ball are
discussed.

The analysis of remainder terms in Hardy inequalities has a long history
initiated by Brézis and Nirenberg in [BN83], with subsequent works by Brézis and
Lieb [BL85] for Hardy–Sobolev inequalities, Brézis and Vázquez in [BV97, Section
4]. Nowadays there is a lot of literature on this subject and this section will contain
some further references on this subject.

2.3.1 Remainder estimates for Lp-weighted Hardy inequalities

Let G be a homogeneous group of homogeneous dimension Q ≥ 3 and let | · | be a
homogeneous quasi-norm on G. We now present a family of remainder estimates
for the weighted Lp-Hardy inequalities, with a freedom of choosing the parameter
b ∈ R.

Theorem 2.3.1 (Remainder estimates for Lp-weighted Hardy inequalities). Let

2 ≤ p < Q, −∞ < α <
Q− p

p
,

and let

δ1 = Q− p− αp− Q+ pb

p
,

δ2 = Q− p− αp− bp

p− 1
,

for b ∈ R. Then for all complex-valued functions f ∈ C∞
0 (G\{0}) we have∫

G

|Rf(x)|p
|x|αp dx −

(
Q− p− αp

p

)p ∫
G

|f(x)|p
|x|p(α+1)

dx

≥ Cp

(∫
G
|f(x)|p|x|δ1dx)p(∫

G
|f(x)|p|x|δ2dx)p−1 ,

(2.65)

where the constant Cp = cp

∣∣∣Q(p−1)−pb
p2

∣∣∣p is sharp, with

cp = min
0<t≤1/2

((1− t)p − tp + ptp−1). (2.66)

Due to the positivity of the last remainder term, Theorem 2.3.1 implies the
Lp-weighted Hardy inequalities with the radial derivative. In the case of the Eu-
clidean norm, they reduce to the usual Lp-weighted Hardy estimates:
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Remark 2.3.2 (Lp-weighted Hardy inequalities).

1. If we take b = Q(p−1)
p we have Cp = 0, and then inequality (2.65) gives the

Lp-weighted Hardy inequalities with sharp constant on G:∫
G

|Rf(x)|p
|x|αp dx ≥

(
Q− p− αp

p

)p ∫
G

|f(x)|p
|x|p(α+1)

dx,

−∞ < α <
Q− p

p
, 2 ≤ p < Q,

(2.67)

for all complex-valued functions f ∈ C∞
0 (G\{0}). Such inequalities on ho-

mogeneous groups have been investigated in [RS17b], and their remainders
have been analysed in [RSY18b].

2. If G = (Rn,+) with Q = n, the inequality (2.67) gives the Lp-weighted
Hardy inequalities with sharp constant for any quasi-norm on R

n: For any
complex-valued function f ∈ C∞

0 (Rn\{0}) we obtain∫
Rn

∣∣∣∣ x|x| · ∇f(x)

∣∣∣∣p |x|−αpdx ≥
(
n− p− αp

p

)p ∫
Rn

|f(x)|p
|x|p(α+1)

dx,

where −∞ < α < n−p
p and 2 ≤ p < n, and where ∇ is the standard gradient

in Rn. Now, if we take the Euclidean norm |x|E =
√
x2
1 + x2

2 + · · ·+ x2
n, by

using the Schwarz inequality we obtain the Euclidean form of the Lp-weighted
Hardy inequalities with sharp constants:∫

Rn

|∇f(x)|p
|x|αpE

dx ≥
(
n− p− αp

p

)p ∫
Rn

|f(x)|p
|x|p(α+1)

E

dx,

−∞ < α <
n− p

p
, 2 ≤ p < n,

(2.68)

for any complex-valued function f ∈ C∞
0 (Rn\{0}).

3. Moreover, for any function f ∈ C∞
0 (Rn\{0}) and for any b ∈ R, we have∫

Rn

∣∣∣∣ x|x| · ∇f(x)

∣∣∣∣p |x|−αpdx−
(
n− p− αp

p

)p ∫
Rn

|f(x)|p
|x|p(α+1)

dx

≥ Cp

(∫
Rn |f(x)|p|x|δ1dx)p(∫

Rn |f(x)|p|x|δ2dx)p−1 , 2 ≤ p < n, −∞ < α <
n− p

p
,

(2.69)

where ∇ is the standard gradient in R
n. As in Part 2 above, by the Schwarz

inequality with the usual Euclidean distance | · |E , we obtain∫
Rn

|∇f(x)|p
|x|αpE

dx −
(
n− p− αp

p

)p ∫
Rn

|f(x)|p
|x|p(α+1)

E

dx

≥ Cp

(∫
Rn |f(x)|p|x|δ1E dx

)p

(∫
Rn |f(x)|p|x|δ2E dx

)p−1 , 2 ≤ p < n, −∞ < α <
n− p

p
,

(2.70)
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for all complex-valued functions f ∈ C∞
0 (Rn\{0}) and for any b ∈ R, where

the constant Cp is sharp.

4. In Rn a variant of inequality (2.65) is known for radially symmetric functions.
Let n ≥ 3, 2 ≤ p < n and −∞ < α < n−p

p . Let N ∈ N, t ∈ (0, 1),

γ < min{1 − t, p−N
p } and δ = N − n + N

1−t−γ

(
γ + n−p−αp

p

)
. Then there

exists a constant C > 0 such that the inequality∫
Rn

|∇f |p
|x|αpE

dx−
(
n− p− αp

p

)p ∫
Rn

|f |p
|x|p(α+1)

E

dx

≥ C

(∫
Rn |f | N

1−t−γ |x|δEdx
) p(1−t−γ)

Nt

(∫
Rn |f |p|x|−αp

E dx
) 1−t

t

holds for all radially symmetric functions f ∈ W 1,p
0,α(R

n), f �= 0, where

W 1,p
0,α(R

n) is an appropriate Sobolev type space. For α = 0 this was shown
by Sano and Takahashi [ST17] and then extended in [ST18a] for any −∞ <
α < n−p

p .

5. The constant cp in (2.66) appears in view of the following result that will be
also of use in the determination of this constant:

Lemma 2.3.3 ([FS08]). Let p ≥ 2 and let a, b be real numbers. Then there
exists cp > 0 such that

|a− b|p ≥ |a|p − p|a|p−2ab+ cp|b|p

holds, where cp = min
0<t≤1/2

((1− t)p − tp + ptp−1) is sharp in this inequality.

6. Remainder estimates of different forms are possible. In general, it is known
from Ghoussoub and Moradifam [GM08] that there are no strictly positive
functions V ∈ C1(0,∞) such that the inequality∫

Rn

|∇f |2dx ≥
(
n− 2

2

)2 ∫
Rn

|f |2
|x|2E

dx+

∫
Rn

V (|x|E)|f |2dx

holds for all Sobolev space functions f ∈ W 1,2(Rn). At the same time, Cianchi
and Ferone showed in [CF08] that for all 1 < p < n there exists a constant
C = C(p, n) such that∫

Rn

|∇f |pdx ≥
(
n− p

p

)p ∫
Rn

|f |p
|x|pE

dx (1 + Cdp(f)
2p∗

)

holds for all real-valued weakly differentiable functions f in R
n such that f

and |∇f | ∈ Lp(Rn) go to zero at infinity, where

dp(f) = inf
c∈R

‖f − c|x|−
n−p
p

E ‖Lp∗,∞(Rn)

‖f‖Lp∗,p(Rn)
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with p∗ = np
n−p , and Lτ,σ(Rn) is the Lorentz space for 0 < τ ≤ ∞ and

1 ≤ σ ≤ ∞. In the case of a bounded domain Ω, Wang and Willem [WW03]
for p = 2 and Abdellaoui, Colorado and Peral [ACP05] for 1 < p < ∞
investigated other expressions of remainders, see also [ST17] and [ST18a] for
more details.

In the following proof we will rely on a useful feature that some estimates
involving radial derivatives of the Euler operator can be proved first for radial
functions, and then extended to non-radial ones by a more abstract argument, see
Section 1.3.3.

Proof of Theorem 2.3.1. Let f ∈ C∞
0 (G\{0}) be a radial function, then f can be

represented as f(x) = f̃(|x|). By using Brézis–Vázquez’ idea ([BV97]), we define

g̃(r) := r
Q−p−αp

p f̃(r). (2.71)

Since f̃ = f̃(r) ∈ C∞
0 (0,∞) and α < Q−p

p , we have g̃(0) = 0 and g̃(+∞) = 0. We
set

g(x) := g̃(|x|)
for x ∈ G. Introducing polar coordinates (r, y) = (|x|, x

|x|) ∈ (0,∞) × ℘ on G, by

Proposition 1.2.10 we have

J :=

∫
G

|Rf(x)|p
|x|αp dx−

(
Q− p− αp

p

)p ∫
G

|f(x)|p
|x|p(α+1)

dx

= |℘|
∫ ∞

0

∣∣∣∣ ddr f̃(r)
∣∣∣∣pr−αp+Q−1dr − |℘|

(
Q− p− αp

p

)p∫ ∞

0

|f̃(r)|pr−p(α+1)+Q−1dr

= |℘|
∫ ∞

0

∣∣∣∣(Q− p− αp

p

)
r−

Q−αp
p g̃(r)− r−

Q−p−αp
p

d

dr
g̃(r)

∣∣∣∣p rQ−1−αpdr

− |℘|
(
Q− p− αp

p

)p ∫ ∞

0

|g̃(r)|pr−1dr,

where |℘| is theQ−1-dimensional surface measure of the unit sphere. Here applying
Lemma 2.3.3 to the integrand of the first term in the last expression above, we get∣∣∣∣(Q − p− αp

p

)
r−

Q−αp
p g̃(r)− r−

Q−p−αp
p

d

dr
g̃(r)

∣∣∣∣p rQ−1−αp

≥
((

Q− p− αp

p

)p

r−Q+αp|g̃(r)|p
)
rQ−1−αp

− p

(
Q− p− αp

p

)p−1

|g̃(r)|p−2 g̃(r)
d

dr
g̃(r)r−(Q−αp

p )(p−1)r−(Q−p−αp
p )rQ−1−αp

+ cp

∣∣∣∣ ddr g̃(r)
∣∣∣∣p r−Q+p+αprQ−1−αp
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=

(
Q− p− αp

p

)p

r−1|g̃(r)|p − p

(
Q− p− αp

p

)p−1

|g̃(r)|p−2 g̃(r)
d

dr
g̃(r)

+ cp

∣∣∣∣ ddr g̃(r)
∣∣∣∣p rp−1.

Since g̃(0) = g̃(+∞) = 0 and p ≥ 2, we note that

p

∫ ∞

0

|g̃(r)|p−2g̃(r)
d

dr
g̃(r)dr =

∫ ∞

0

d

dr
(|g̃(r)|p)dr = 0.

This gives a so-called ground state representation of the Hardy difference J :

J ≥ cp|℘|
∫ ∞

0

∣∣∣∣ ddr g̃(r)
∣∣∣∣p rp−1dr = cp

∫
G

|Rg(x)|p|x|p−Qdx. (2.72)

Putting a = Q−p
p in Lemma 2.3.3, we obtain for any b ∈ R that∣∣∣∣Q(p− 1)− pb

p2

∣∣∣∣ ∫
G

|g|p|x|−Q+pb
p dx

≤
(∫

G

|Rg|p|x|p−Qdx

) 1
p
(∫

G

|g|p|x|− bp
p−1 dx

) p−1
p

.

It gives the estimate

J ≥ cp

∫
G

|Rg(x)|p|x|p−Qdx

≥ cp

∣∣∣∣Q(p− 1)− pb

p2

∣∣∣∣p
(∫

G
|g|p|x|−Q+pb

p dx
)p

(∫
G
|g|p|x|− bp

p−1 dx
)p−1 .

(2.73)

Taking into account that g(x) = g̃(|x|), x ∈ G, and (2.71), one calculates∫
G

|x|−Q+pb
p |g(x)|pdx = |℘|

∫ ∞

0

rQ−p−αp|f̃(r)|pr−Q+pb
p rQ−1dr

=

∫
G

|f(x)|p|x|Q−p−αp−Q+pb
p dx =

∫
G

|f(x)|p|x|δ1dx.

On the other hand,∫
G

|x|− bp
p−1 |g(x)|pdx = |℘|

∫ ∞

0

rQ−p−αp|f̃(r)|pr− bp
p−1 rQ−1dr

=

∫
G

|f(x)|p|x|Q−p−αp− bp
p−1 dx =

∫
G

|f(x)|p|x|δ2dx.
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Putting these equalities into (2.73), we obtain

J ≥ cp

∣∣∣∣Q(p− 1)− pb

p2

∣∣∣∣p
(∫

G
|f(x)|p|x|δ1dx)p(∫

G
|f(x)|p|x|δ2dx)p−1 .

Now let us prove the statement for non-radial functions. For a non-radial function
f we consider the radial one obtained as its spherical average with respect to the
homogeneous quasi-norm | · |:

U(r) :=

(
1

|℘|
∫
℘

|f(ry)|pdσ(y)
) 1

p

. (2.74)

Using Hölder’s inequality, we calculate

d

dr
U(r) =

1

p

(
1

|℘|
∫
℘

|f(ry)|pdσ(y)
) 1

p−1
1

|℘|
∫
℘

p|f(ry)|p−2f(ry)
d

dr
f(ry)dσ(y)

≤
(

1

|℘|
∫
℘

|f(ry)|pdσ(y)
) 1

p−1
1

|℘|
∫
℘

|f(ry)|p−1

∣∣∣∣ ddr f(ry)
∣∣∣∣ dσ(y)

≤
(

1

|℘|
∫
℘

|f(ry)|pdσ(y)
) 1

p−1
1

|℘|
(∫

℘

∣∣∣∣ ddr f(ry)
∣∣∣∣p dσ(y))

1
p
(∫

℘

|f(ry)|pdσ(y)
)p−1

p

=

(
1

|℘|
∫
℘

∣∣∣∣ ddr f(ry)
∣∣∣∣p dσ(y))

1
p

.

Here we note that since there exists the function h(x) = e−|x| which satisfies the
equality ∣∣∣∣ ddrh(x)

∣∣∣∣p = (|h(x)|p−1)
p

p−1 ,

the equality condition in the above Hölder inequality holds. Thus, we have

d

dr
U(r) ≤

(
1

|℘|
∫
℘

∣∣∣∣ ddr f(ry)
∣∣∣∣p dσ(y))

1
p

.

It follows that

|℘|
∫ ∞

0

∣∣∣∣ ddrU(r)

∣∣∣∣p rQ−1−αpdr ≤ |℘|
∫ ∞

0

1

|℘|
∫
℘

∣∣∣∣ ddr f(ry)
∣∣∣∣p rQ−1−αpdσ(y)dr

=

∫
G

|Rf |p |x|−αpdx,

that is, ∫
G

|RU |p |x|−αpdx ≤
∫
G

|Rf |p |x|−αpdx. (2.75)
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In view of (2.74), we obtain the equality∫
G

|U(|x|)|p|x|θdx = |℘|
∫ ∞

0

|U(r)|prθ+Q−1dr (2.76)

= |℘|
∫ ∞

0

1

|℘|
∫
℘

|f(ry)|pdσ(y)rθ+Q−1dr =

∫
G

|f(x)|p|x|θdx,

for any θ ∈ R. Then, it is easy to see that (2.75) and (2.76) imply that (2.65) holds
also for all non-radial functions. �

2.3.2 Critical and subcritical Hardy inequalities

Here we discuss the relation between the critical and the subcritical Hardy in-
equalities on homogeneous groups. We formulate this relation for functions that
are radially symmetric with respect to a homogeneous quasi-norm | · | on G.

Proposition 2.3.4 (Critical and subcritical Hardy inequalities). Let G be a homoge-

neous group of homogeneous dimension Q ≥ 3 and let G̃ be a homogeneous group
of homogeneous dimension m ≥ 2, and assume that Q ≥ m + 1. Let | · | denote
homogeneous quasi-norms on G and on G̃. Then for any non-negative radially
symmetric function g ∈ C1

0 (B
m(0, R)\{0}), there exists a non-negative radially

symmetric function f ∈ C1
0 (B

Q(0, 1)\{0}) such that∫
BQ(0,1)

|Rf(x)|mdx−
(
Q−m

m

)m ∫
BQ(0,1)

|f(x)|m
|x|m dx

=
|℘|
|℘̃|

(
Q−m

m− 1

)m−1

(2.77)

×
⎛⎝∫

Bm(0,R)

|Rg|mdz −
(
m− 1

m

)m ∫
Bm(0,R)

|g|m
|z|m

(
log Re

|z|
)m dz

⎞⎠
holds true, where |℘| and |℘̃| are Q− 1- and m− 1-dimensional surface measures
of the unit sphere, respectively.

Proof of Proposition 2.3.4. Let r = |x|, x ∈ G and s = |z|, z ∈ G̃, where G̃ is a
homogeneous group of homogeneous dimension m. Let us define a radial function
f = f(x) ∈ C1

0 (B
Q(0, 1)\{0}) for a non-negative radial function g = g(z) ∈

C1
0 (B

m(0, R)\{0}):
f(r) = g(s(r)),

where s(r) = R exp(1− r−
Q−m
m−1 ), that is,

r−
Q−m
m−1 = log

Re

s
, s′(r) =

Q−m

m− 1
r−

Q−m
m−1 −1s(r).

Here we see that s′(r) > 0 for r ∈ [0, 1] and s(0) = 0, s(1) = R. Since g(s) ≡ 0
near s = R, we also note that f ≡ 0 near r = 1.
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Then a direct calculation shows∫
BQ(0,1)

|Rf |mdx−
(
Q−m

m

)m ∫
BQ(0,1)

|f |m
|x|m dx

= |℘|
∫ 1

0

|f ′(r)|mrQ−1dr −
(
Q−m

m

)m

|℘|
∫ 1

0

fm(r)rQ−m−1dr

= |℘|
∫ R

0

|g′(s)s′(r(s))|mrQ−1(s)
ds

s′(r(s))

−
(
Q−m

m

)m

|℘|
∫ R

0

gm(s)rQ−m−1(s)
ds

s′(r(s))

= |℘|
(
Q−m

m− 1

)m−1 ∫ R

0

|g′(s)|msm−1ds

−
(
Q−m

m

)m
m− 1

Q−m
|℘|

∫ R

0

gm(s)

s
(
log Re

s

)m ds

=
|℘|
|℘̃|

(
Q−m

m− 1

)m−1

×
⎛⎝∫

Bm(0,R)

|Rg|mdz −
(
m− 1

m

)m ∫
Bm(0,R)

|g|m
|z|m

(
log Re

|z|
)m dz

⎞⎠ ,

yielding (2.77). �

2.3.3 A family of Hardy–Sobolev type inequalities on quasi-balls

Let G be a homogeneous group of homogeneous dimension Q ≥ 3. It will be
convenient to denote the dilations by δr(x) = rx in the following formulations. Here
we discuss another type of Hardy–Sobolev inequalities for functions supported in
balls of radius R. As usual, we denote by B(0, R) a quasi-ball of radius R around
0 with respect to the quasi-norm | · |.
Theorem 2.3.5 (Another type of Hardy inequalities for Q ≥ 3). For each f ∈
C∞

0 (B(0, R)\{0}) and any homogeneous quasi-norm | · | on G we have(∫
B(0,R)

1

|x|2
∣∣∣∣f(x) − f

(
δR(x)

|x|
)∣∣∣∣2 dx

) 1/2

≤ 2

Q− 2

(∫
B(0,R)

|Rf |2dx
) 1/2

,

(2.78)

and(∫
B(0,R)

1

|x|2 |f(x)|2 dx
) 1

2

≤
(

Q

Q− 2

) 1
2 1

R

(∫
B(0,R)

|f(x)|2 dx
) 1

2

(2.79)

+
2

Q− 2

(
1 +

(
Q

Q − 2

) 1
2

)(∫
B(0,R)

|Rf |2dx
) 1

2

.
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Remark 2.3.6.

1. Theorem 2.3.5 could have been formulated for functions f ∈ C∞
0 (G\{0})

choosing R > 0 such that suppf ⊂ B(0, R). The introduction of R into the

notation is essential here since the dilated function f
(

δR(x)
|x|

)
appears in the

inequality (2.78).

2. In the Euclidean setting with the Euclidean norm inequalities in Theorem
2.3.5 have been studied in [MOW13b].

In the case Q = 2 we have the following inequalities:

Theorem 2.3.7 (Another type of critical Hardy inequality for Q = 2). Let G

be a homogeneous group of homogeneous dimension Q = 2. Then for each f ∈
C∞

0 (B(0, R)\{0}) and any homogeneous quasi-norm | · | on G we have⎛⎜⎝∫
B(0,R)

1

|x|2
∣∣∣log R

|x|
∣∣∣2
∣∣∣∣f(x)− f

(
δR(x)

|x|
)∣∣∣∣2 dx

⎞⎟⎠
1/2

≤ 2

(∫
B(0,R)

|Rf |2dx
) 1/2

,

(2.80)
and⎛⎜⎜⎜⎝

∫
B(0,R)

|f(x)|2

|x|2
(
1 +

∣∣∣log R
|x|
∣∣∣2)2 dx

⎞⎟⎟⎟⎠
1/2

≤
√
2

R

(∫
B(0,R)

|f(x)|2 dx
) 1/2

+ 2
(
1 +

√
2
)(∫

B(0,R)

|Rf |2dx
) 1/2

.

(2.81)

Proof of Theorem 2.3.5. By the polar decomposition from Proposition 1.2.10, we
write (r, y) = (|x|, x

|x|) ∈ (0,∞)×℘ on G, where ℘ is the unit quasi-sphere, so that∫
B(0,R)

1

|x|2
∣∣∣∣f(x)− f

(
δR(x)

|x|
)∣∣∣∣2 dx

=

∫ R

0

∫
℘

|f(δr(y))− f(δR(y))|2rQ−3dσ(y)dr

=
1

Q− 2
rQ−2

∫
℘

|f(δr(y))− f(δR(y))|2dσ(y)
∣∣∣∣∣
r=R

r=0

− 1

Q − 2

∫ R

0

rQ−2

(
d

dr

∫
℘

|f(δr(y))− f(δR(y))|2dσ(y)
)
dr

= − 2

Q− 2

∫ R

0

rQ−2Re

∫
℘

(f(δr(y))− f(δR(y)))
df(δr(y))

dr
dσ(y)dr.
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Now using Schwarz’ inequality, we obtain∫
B(0,R)

1

|x|2
∣∣∣∣f(x)− f

(
δR(x)

|x|
)∣∣∣∣2 dx

≤ 2

Q− 2

(∫ R

0

∫
℘

|f(δr(y))− f(δR(y))|2rQ−3dσ(y)dr

) 1/2

×
(∫ R

0

∫
℘

∣∣∣∣df(δr(y))dr

∣∣∣∣2 rQ−1dσ(y)dr

) 1/2

=
2

Q− 2

(∫
B(0,R)

1

|x|2
∣∣∣∣f(x)− f

(
δR(x)

|x|
)∣∣∣∣2 dx

) 1/2(∫
B(0,R)

|Rf |2dx
) 1/2

.

This implies that(∫
B(0,R)

1

|x|2
∣∣∣∣f(x) − f

(
δR(x)

|x|
)∣∣∣∣2 dx

) 1/2

≤ 2

Q− 2

(∫
B(0,R)

|Rf |2dx
) 1/2

,

that is, the inequality (2.78) is proved. The triangle inequality gives(∫
B(0,R)

1

|x|2 |f |
2dx

)1
2

=

(∫
B(0,R)

1

|x|2
∣∣∣∣f(x)− f

(
δR(x)

|x|
)
+ f

(
δR(x)

|x|
)∣∣∣∣2 dx

)1
2

≤
(∫

B(0,R)

1

|x|2
∣∣∣∣f(x)− f

(
δR(x)

|x|
)∣∣∣∣2 dx

)1
2

+

(∫
B(0,R)

1

|x|2
∣∣∣∣f (δR(x)

|x|
)∣∣∣∣2 dx

)1
2

.

(2.82)

Moreover, we have(∫
B(0,R)

1

|x|2
∣∣∣∣f (δR(x)

|x|
)∣∣∣∣2 dx

) 1
2

=

(∫ R

0

∫
℘

|f(δR(y))|2rQ−3dσ(y)dr

) 1
2

=

(
RQ−2

Q− 2

∫
℘

|f(δR(y))|2dσ(y)
) 1

2

=

(
RQ−2

Q− 2

Q

RQ

∫ R

0

∫
℘

|f(δR(y))|2rQ−1dσ(y)dr

) 1
2

=

(
Q

Q− 2

) 1
2 1

R

(∫
B(0,R)

∣∣∣∣f (δR(x)

|x|
)∣∣∣∣2 dx

) 1
2

≤
(

Q

Q− 2

)1
2 1

R

⎛⎝(∫
B(0,R)

∣∣∣∣f (δR(x)

|x|
)
− f(x)

∣∣∣∣2 dx
)1

2

+

(∫
B(0,R)

|f |2dx
)1

2

⎞⎠
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≤
(

Q

Q− 2

) 1
2

(∫
B(0,R)

1

|x|2
∣∣∣∣f (δR(x)

|x|
)
− f(x)

∣∣∣∣2 dx
) 1

2

+

(
Q

Q− 2

) 1
2 1

R

(∫
B(0,R)

|f |2dx
) 1

2

,

thus, (∫
B(0,R)

1

|x|2
∣∣∣∣f (δR(x)

|x|
)∣∣∣∣2 dx

) 1/2

≤
(

Q

Q− 2

) 1
2

(∫
B(0,R)

1

|x|2
∣∣∣∣f (δR(x)

|x|
)
− f(x)

∣∣∣∣2 dx
) 1/2

+

(
Q

Q− 2

) 1
2 1

R

(∫
B(0,R)

|f |2dx
) 1/2

.

(2.83)

Combining (2.83) with (2.82) we arrive at(∫
B(0,R)

1

|x|2 |f |
2dx

) 1/2

≤
(
1 +

(
Q

Q− 2

)1/2
)(∫

B(0,R)

1

|x|2
∣∣∣∣f(x)− f

(
δR(x)

|x|
)∣∣∣∣2 dx

) 1/2

+

(
Q

Q− 2

)1/2
1

R

(∫
B(0,R)

|f |2dx
) 1/2

.

Now by using (2.78) we arrive at (2.79). �

Proof of Theorem 2.3.7. By using polar coordinates (r, y) = (|x|, x
|x|) ∈ (0,∞)×℘

on G, where ℘ is the unit quasi-sphere, one calculates∫
B(0,R)

1

|x|2|log(R/|x|)|2
∣∣∣∣f(x)− f

(
δR(x)

|x|
)∣∣∣∣2 dx

=

∫ R

0

∫
℘

|f(δr(y))− f(δR(y))|2 1

r (log(R/r))2
dσ(y)dr

=
1

log(R/r)

∫
℘

|f(δr(y))− f(δR(y))|2dσ(y)
∣∣∣∣∣
r=R

r=0

−
∫ R

0

1

log(R/r)

(
d

dr

∫
℘

|f(δr(y))− f(δR(y))|2dσ(y)
)
dr
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= −2

∫ R

0

1

log(R/r)
Re

∫
℘

(f(δr(y))− f(δR(y)))
df(δr(y))

dr
dσ(y)dr.

Here we have used the fact that

log(R/r) = log

(
1 +

(
R

r
− 1

))
≥ R

r
− 1 =

R − r

r
,

and that

|f(δr(y))− f(δR(y))|2 ≤ C|R− r|2.
Using Schwarz’s inequality we obtain∫

B(0,R)

1

|x|2|log(R/|x|)|2
∣∣∣∣f(x)− f

(
δR(x)

|x|
)∣∣∣∣2 dx

≤ 2

(∫ R

0

∫
℘

1

r (log(R/r))
2 |f(δr(y))− f(δR(y))|2dσ(y)dr

) 1
2

×
(∫ R

0

∫
℘

∣∣∣∣df(δr(y))dr

∣∣∣∣2 rdσ(y)dr
) 1

2

= 2

(∫
B(0,R)

1

|x|2|log(R/|x|)|2
∣∣∣∣f(x)− f

(
δR(x)

|x|
)∣∣∣∣2 dx

)1
2
(∫

B(0,R)

|Rf |2dx
)1

2

.

It completes the proof of (2.80). To show (2.81) we calculate(∫
B(0,R)

1

|x|2 (1 + |log(R/|x|)|)2 |f(x)|
2dx

) 1/2

≤
(∫

B(0,R)

1

|x|2 (1 + |log(R/|x|)|)2
∣∣∣∣f(x)− f

(
δR(x)

|x|
)∣∣∣∣2 dx

) 1/2

+

(∫
B(0,R)

1

|x|2 (1 + |log(R/|x|)|)2
∣∣∣∣f (δR(x)

|x|
)∣∣∣∣2 dx

) 1/2

.

(2.84)

Moreover, we have(∫
B(0,R)

1

|x|2 (1 + |log(R/|x|)|)2
∣∣∣∣f (δR(x)

|x|
)∣∣∣∣2 dx

) 1
2

=

(∫ R

0

∫
℘

1

r (1 + |log(R/r)|)2 |f(δR(y))|
2dσ(y)dr

) 1
2
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=

(∫ R

0

1

r (1 + |log(R/r)|)2 dr
∫
℘

|f(δR(y))|2dσ(y)
) 1

2

=

⎛⎝ 1

1 + |log(R/r)|

∣∣∣∣∣
R

0

∫
℘

|f(δR(y))|2dσ(y)
⎞⎠

1
2

=

(∫
℘

|f(δR(y))|2dσ(y)
) 1

2

=

(
2

R2

∫ R

0

∫
℘

|f(δR(y))|2rdσ(y)dr
) 1

2

=

(
2

R2

) 1
2

(∫
B(0,R)

∣∣∣∣f (δR(x)

|x|
)∣∣∣∣2 dx

) 1
2

≤
√
2

R

⎛⎝(∫
B(0,R)

∣∣∣∣f (δR(x)

|x|
)
− f(x)

∣∣∣∣2 dx
) 1

2

+

(∫
B(0,R)

|f(x)|2dx
) 1

2

⎞⎠
≤ √

2

(∫
B(0,R)

1

|x|2 (1 + |log(R/|x|)|)2
∣∣∣∣f (δR(x)

|x|
)
− f(x)

∣∣∣∣2 dx
) 1

2

+

√
2

R

(∫
B(0,R)

|f(x)|2dx
) 1

2

,

where we use the simple inequality

1

R2
≤ 1

r2(1 + log(R/r))2
, r ∈ (0, R).

Therefore, we obtain(∫
B(0,R)

1

|x|2 (1 + |log(R/|x|)|)2
∣∣∣∣f (δR(x)

|x|
)∣∣∣∣2 dx

) 1
2

(2.85)

≤
√
2

(∫
B(0,R)

1

|x|2 (1 + |log(R/|x|)|)2
∣∣∣∣f (δR(x)

|x|
)
− f(x)

∣∣∣∣2 dx
) 1

2

+

√
2

R

(∫
B(0,R)

|f(x)|2dx
) 1

2

.

Combining (2.85) with (2.84) we arrive at(∫
B(0,R)

1

|x|2 (1 + |log(R/|x|)|)2 |f(x)|
2dx

) 1
2
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≤ (1 +
√
2)

(∫
B(0,R)

1

|x|2 (1 + |log(R/|x|)|)2
∣∣∣∣f(x)− f

(
δR(x)

|x|
)∣∣∣∣2 dx

) 1
2

+

√
2

R

(∫
B(0,R)

|f(x)|2dx
) 1

2

.

Finally, using (2.80) we obtain (2.81). �

2.3.4 Improved Hardy inequalities on quasi-balls

For p = Q = 2 and any homogeneous quasi-norm | · | on G we have the following
refinement of Theorem 2.3.7 with an estimate for a remainder.

Theorem 2.3.8 (Remainder estimate in critical Hardy inequality for Q = 2). We
have∫

B2(0,R)

|Rf |2dx− 1

4

∫
B2(0,R)

|f(|x|)|2

|x|2
(
log R

|x|
)2 dx (2.86)

≥ 4

R2|σ̂| supν>0
ν−4

∣∣∣∣∣∣∣
∫
B2(0,R)

f(|x|)
ν − log R

|x|

|x|
(
log R

|x|
) 1

2

(
R

|x|
)1− 1

ν

dx

∣∣∣∣∣∣∣
2

, ∀ν > 0,

for all real-valued radial functions f ∈ C∞
0 (B2(0, R)\{0}), where B2(0, R) and |σ̂|

are 2-dimensional quasi-ball with radius R and 1-dimensional surface measure of
the unit sphere, respectively.

Proof of Theorem 2.3.8. Let us define the new function g = g(x) on B2(0, R) as

g(r) :=

(
log

R

r

)− 1
2

f(r), r = |x|, x ∈ B2(0, R).

One calculates

I1 :=

∫
B2(0,R)

|Rf |2dx − 1

4

∫
B2(0,R)

|f |2

|x|2
(
log R

|x|
)2 dx

= |σ̂|
∫ R

0

(f ′(r))2rdr − |σ̂|
4

∫ R

0

|f(r)|2
r2
(
log R

r

)2 rdr
= |σ̂|

∫ R

0

(
−1

2

(
log

R

r

)− 1
2 g(r)

r
+

(
log

R

r

) 1
2

g′(r)

)2

rdr − |σ̂|
4

∫ R

0

|g(r)|2
r log R

r

dr

= − |σ̂|
∫ R

0

g(r)g′(r)dr + |σ̂|
∫ R

0

|g′(r)|2r log R

r
dr
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= − |σ̂|
2

∫ R

0

(g2(r))′dr +
R2|σ̂|
4

(∫ R

0

|g′(r)|2 4

R2
r log

R

r
dr

)
,

and applying g(0) = g(R) = 0, we obtain

I1 =
R2|σ̂|
4

(∫ R

0

|g′(r)|2 4

R2
r log

R

r
dr

)
.

Taking into account that 4
R2

∫ R

0 r log R
r dr = 1 and using Hölder’s inequality, we

get(∫ R

0

|g′(r)|2 4

R2
r log

R

r
dr

)1
2

=

(∫ R

0

|g′(r)|2 4

R2
r log

R

r
dr

)1
2
(

4

R2

∫ R

0

r log
R

r
dr

)1
2

≥
∫ R

0

|g′(r)| 4

R2
r log

R

r
dr.

It follows that

I1 ≥ R2|σ̂|
4

(∫ R

0

|g′(r)| 4

R2
r log

R

r
dr

)2

≥ 4|σ̂|
R2

∣∣∣∣∣
∫ R

0

g′(r)r log
R

r
dr

∣∣∣∣∣
2

. (2.87)

Using g(0) = g(R) = 0, we have∫ R

0

g′(r)r log
R

r
dr = −

∫ R

0

g(r)

(
log

R

r
− 1

)
dr =

∫ R

0

f(r)
1 − log R

r(
log R

r

) 1
2

dr

=
1

|σ̂|
∫
B2(0,R)

f(x)
1− log R

|x|

|x|
(
log R

|x|
) 1

2

dx.

Putting this in (2.87), we arrive at

I1 ≥ 4

R2|σ̂|

∣∣∣∣∣∣∣
∫
B2(0,R)

f(x)
1− log R

|x|

|x|
(
log R

|x|
) 1

2

dx

∣∣∣∣∣∣∣
2

.

Now we note that I1 is invariant under the scaling f 
−→ fν(r) = ν−
1
2 f(R1−νrν).

Then setting

I2(f) :=

∫
B2(0,R)

f(x)
1− log R

|x|

|x|
(
log R

|x|
) 1

2

dx = |σ̂|
∫ R

0

f(r)
1 − log R

r(
log R

r

) 1
2

dr,
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one obtains

I1 ≥ 4

R2|σ̂| |I2(fν)|
2 (2.88)

for any ν > 0. On the other hand, we have

I2(fν) = |σ̂|
∫ R

0

fν(r)
1 − log R

r(
log R

r

) 1
2

dr = |σ̂|ν− 1
2

∫ R

0

f(rνR1−ν)
1− log R

r(
log R

r

) 1
2

dr.

Using a change of variable s = rνR1−ν , dr = 1
ν

(
R
s

) ν−1
ν ds, one calculates

I2(fν) ≥ |σ̂|ν− 1
2

∫ R

0

f(s)
1− log

(
R
s

) 1
ν(

log
(
R
s

) 1
ν

) 1
2

1

ν

(
R

s

)1− 1
ν

ds

= |σ̂|ν−2

∫ R

0

f(s)
ν − log R

s(
log R

s

) 1
2

(
R

s

)1− 1
ν

ds

= ν−2

∫
B2(0,R)

f(x)
ν − log R

|x|

|x|
(
log R

|x|
) 1

2

(
R

|x|
)1− 1

ν

dx. (2.89)

The estimates (2.88) and (2.89) imply (2.86). �
Theorem 2.3.9 (Remainder estimate in critical Hardy inequality). Let G be a ho-
mogeneous group of homogeneous dimension Q ≥ 2. Let | · | be a homogeneous
quasi-norm on G. Let q > 0 be such that

α = α(q, L) :=
Q− 1

Q
q + L+ 2 ≤ Q,

for −1 < L < Q − 2. Then for all real-valued positive non-increasing radial func-
tions u ∈ C∞

0 (B(0, R)) we have∫
B(0,R)

|Ru|Qdx−
(
Q − 1

Q

)Q ∫
B(0,R)

|u(x)|Q

|x|Q
(
log Re

|x|
)Q dx

≥ |℘|1−Q
q C

Q
q

⎛⎝∫
B(0,R)

|u(x)|q
|x|Q

(
log Re

|x|
)α dx

⎞⎠
Q
q

,

(2.90)

where |℘| is the measure of the unit quasi-sphere in G and

C−1 = C(L,Q, q)−1 :=

∫ 1

0

sL
(
log

1

s

)Q−1
Q q

ds

= (L+ 1)−(
Q−1
Q q+1)Γ

(
Q− 1

Q
q + 1

)
,

where Γ(·) is the Gamma function.
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Proof of Theorem 2.3.9. As in previous proofs we set

v(s) =

(
log

Re

r

)−Q−1
Q

u(r), where r = |x|, s = s(r) =

(
log

Re

r

)−1

,

s′(r) =
s(r)

r log Re
r

≥ 0.

We have v(0) = v(1) = 0 since u(R) = 0 and, moreover,

u′(r) = −
(
Q− 1

Q

)(
log

Re

r

)− 1
Q v(s(r))

r
+

(
log

Re

r

)Q−1
Q

v′(s(r))s′(r) ≤ 0.

It is straightforward to calculate that

I :=

∫
B(0,R)

|Ru|Qdx−
(
Q− 1

Q

)Q ∫
B(0,R)

|u|Q

|x|Q
(
log Re

|x|
)Q dx

= |℘|
∫ R

0

|u′(r)|QrQ−1dr −
(
Q− 1

Q

)Q

|℘|
∫ R

0

|u(r)|Q
r
(
log Re

r

)Q dr

= |℘|
∫ R

0

(
Q − 1

Q

(
log

Re

r

)− 1
Q v(s(r))

r
−
(
log

Re

r

)Q−1
Q

v′(s(r))s′(r)

)Q

rQ−1dr

−
(
Q− 1

Q

)Q

|℘|
∫ R

0

|u(r)|Q
r
(
log Re

r

)Q dr.

By applying the third relation in Lemma 2.4.2 with

a =
Q− 1

Q

(
log

Re

r

)− 1
Q v(s(r))

r
and b =

(
log

Re

r

)Q−1
Q

v′(s(r))s′(r),

and dropping aQ ≥ 0 as well as using the boundary conditions v(0) = v(1) = 0,
we get

I ≥ − |℘|Q
(
Q− 1

Q

)Q−1 ∫ R

0

v(s(r))Q−1v′(s(r))s′(r)dr (2.91)

+ |℘|
∫ R

0

|v′(s(r))|Q(s′(r))Q
(
r log

Re

r

)Q−1

dr

= − |℘|Q
(
Q− 1

Q

)Q−1 ∫ R

0

v(s(r))Q−1v′(s(r))s′(r)dr

+ |℘|
∫ R

0

|v′(s(r))|Q 1

rQ
(
log Re

r

)2Q (
r log

Re

r

)Q−1

dr
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= − |℘|Q
(
Q− 1

Q

)Q−1 ∫ R

0

v(s(r))Q−1v′(s(r))s′(r)dr

+ |℘|
∫ R

0

|v′(s(r))|Qs(r)Q−1s′(r)dr

= − |℘|Q
(
Q− 1

Q

)Q−1 ∫ 1

0

v(s)Q−1v′(s)ds+ |℘|
∫ 1

0

|v′(s)|QsQ−1ds

= |℘|
∫ 1

0

|v′(s)|QsQ−1ds.

Moreover, by using the inequality

|v(s)| =
∣∣∣∣∫ 1

s

v′(t)dt
∣∣∣∣ = ∣∣∣∣∫ 1

s

v′(t)t
Q−1
Q −Q−1

Q dt

∣∣∣∣
≤
(∫ 1

0

|v′(t)|QtQ−1dt

) 1
Q
(
log

1

s

)Q−1
Q

,

we obtain∫ 1

0

|v(s)|qsLds ≤
(∫ 1

0

|v′(s)|QsQ−1ds

) q
Q
∫ 1

0

sL
(
log

1

s

)Q−1
Q q

ds

for −1 < L < Q− 2. Thus, we have

∫ 1

0

|v′(s)|QsQ−1ds ≥ C
q
Q

(∫ 1

0

|v(s)|qsLds
)Q

q

. (2.92)

Now it follows from (2.91) and (2.92) that

I ≥ |℘|C Q
q

(∫ 1

0

|v(s)|qsLds
)Q

q

= |℘|C Q
q

(∫ R

0

|u(r)|q
r
(
log Re

r

)α dr
)Q

q

= |℘|1−Q
q C

Q
q

⎛⎝∫ R

0

|u(x)|q
|x|Q

(
log Re

|x|
)α dx

⎞⎠
Q
q

,

where α = α(q, L) = Q−1
Q q + L+ 2. The proof is complete. �
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2.4 Stability of Hardy inequalities

Expressions for the remainder in an estimate in terms of the distance function to
the set of extremisers are sometimes called the stability estimates in the literature.
The purpose of this section is to discuss such estimates for the Hardy inequalities.
Several results of such a type have been established in the Euclidean space Rn in
[San18, ST17, ST18a, ST15, ST16]. In the following section our presentation on
homogeneous groups follows [RS18].

2.4.1 Stability of Hardy inequalities for radial functions

Let G be a homogeneous group of homogeneous dimension Q ≥ 3 and let | · | be
a homogeneous quasi-norm on G. We note that although sharp constants in the
Hardy inequalities are not achieved the formal extremisers of such inequalities are
given by homogeneous functions. To this end let us denote

fα(x) := |x|−Q−p−αp
p (2.93)

for −∞ < α < Q−p
p , and

dR(f, g) :=

⎛⎝∫
G

|f(x)− g(x)|p∣∣∣log R
|x|
∣∣∣p |x|p(α+1)

dx

⎞⎠
1
p

(2.94)

for functions f , g for which the integral in (2.94) is finite. We start with the case
of radially symmetric functions.

Theorem 2.4.1 (Stability of Hardy inequalities for radially symmetric functions).
Let G be a homogeneous group of homogeneous dimension Q and let | · | be a
homogeneous quasi-norm on G. Let

2 ≤ p < Q and −∞ < α <
Q− p

p
.

Then for all radial complex-valued functions f ∈ C∞
0 (G\{0}) we have∫

G

|Rf(x)|p
|x|αp dx −

(
Q− p− αp

p

)p ∫
G

|f(x)|p
|x|p(α+1)

dx

≥ cp

(
p− 1

p

)p

sup
R>0

dR(f, cf (R)fα)
p,

(2.95)

where cf (R) := R
Q−p−αp

p f̃(R) with f(x) = f̃(r), |x| = r, R := d
d|x| is the radial

derivative, cp is defined in Lemma 2.3.3, i.e.,

cp = min
0<t≤1/2

((1− t)p − tp + ptp−1),

and fα and dR(·, ·) are defined in (2.93) and (2.94), respectively.
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Proof of Theorem 2.4.1. Since p ≥ 2, as in (2.72) in the proof of Theorem 2.3.1,
we have

J(f) =

∫
G

|Rf |p
|x|αp dx−

(
Q− p− αp

p

)p ∫
G

|f |p
|x|p(α+1)

dx

≥ cp|℘|
∫ ∞

0

∣∣∣∣ ddr g̃
∣∣∣∣p rp−1dr = cp

∫
G

∣∣∣∣ ddr g
∣∣∣∣p |x|p−Qdx.

By Corollary 2.2.8 with γ = p, we obtain

J(f) ≥ cp

∫
G

|Rg|p|x|p−Qdx ≥ cp

(
p− 1

p

)p ∫
G

∣∣∣g(x)− g(Rx
|x| )

∣∣∣p∣∣∣log R
|x|
∣∣∣p |x|Q dx

= cp

(
p− 1

p

)p ∫
G

∣∣∣|x|Q−p−αp
p f(x) −R

Q−p−αp
p f(Rx

|x| )
∣∣∣p∣∣∣log R

|x|
∣∣∣p |x|Q dx

for any R > 0. Here using f(x) = f̃(r), r = |x|, we can estimate

J(f) ≥ cp

(
p− 1

p

)p ∫
G

∣∣∣f(x)−R
Q−p−αp

p f̃(R)|x|−Q−p−αp
p

∣∣∣p∣∣∣log R
|x|
∣∣∣p |x|p(α+1)

dx

= cp

(
p− 1

p

)p ∫
G

∣∣∣f(x)− cf (R)|x|−Q−p−αp
p

∣∣∣p∣∣∣log R
|x|
∣∣∣p |x|p(α+1)

dx,

yielding (2.95). �

2.4.2 Stability of Hardy inequalities for general functions

Here we discuss the stability of Lp-Hardy inequalities for functions which do not
have to be radially symmetric. Before discussing the stability estimates for non-
radial functions let us recall the following relations.

Lemma 2.4.2. Let a, b ∈ R. Then

(i) We have
|a− b|p − |a|p ≥ −p|a|p−2ab, p ≥ 1.

(ii) There exists a constant C = C(p) > 0 such that

|a− b|p − |a|p ≥ −p|a|p−2ab+ C|b|p, p ≥ 2.

(iii) If a ≥ 0 and a− b ≥ 0, then

(a− b)p + pap−1b− ap ≥ |b|p, p ≥ 2.
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Proof of Lemma 2.4.2. One has (see, e.g., [Lin90]) the inequality

|d|p ≥ |c|p + p|c|p−2c(d− c), p ≥ 1,

which is the condition for the convexity of the function |x|p. Now, taking a = c
and d = a− b we get the first relation. Furthermore, consider the function

g(s) := |1− s|p − |s|p + p|s|p−2s, s ∈ R.

To show (ii), it is sufficient to prove that g(s) ≥ C > 0, and then take s = a
b . Let

s ≥ 1. Then for p ≥ 2 we have

g′(s) = p((t− 1)p−1 − tp−1) + p(p− 1)sp−2 = p(p− 1)(sp−2 − tp−2) ≥ 0,

by the mean value theorem for the function xp−2, x ≥ 0. Thus, we have

g(s) ≥ g(1) = p− 1

for all s ≥ 1. Similarly, we get g(s) ≥ g(0) = 1 for all s ≤ 1. Let now 0 ≤ s ≤ 1.
Setting

Cp := min
0≤t≤1

f(t),

we assume that Cp = f(s0) for some 0 ≤ s0 ≤ 1. The first relation implies that
Cp ≥ 0. If Cp = 0, then we have f(s0) = 0 and s0−1

p f ′(s0) = 0 which implies

s0 = 0, contradicting that f(0) = 1. Therefore, we have g(s) ≥ Cp > 0. This
proves (ii). The Taylor formula yields that

(a− b)p + pap−1b− ap ≥ |b|p = p(p− 1)b2
∫ 1

0

(1− t)(a− τb)p−2dτ.

Thus, if b ≤ 0, then a − τb ≥ τ |b|, which implies (iii) in this case. On the other
hand, if 0 ≤ b, then a− τb ≥ (1− τ)|b| which implies (iii) in this case as well. �

To formulate the following result, for R > 0, let us set

dH(u;R) :=

⎛⎝∫
G

∣∣∣u(x)−R
Q−p

p u
(
R x

|x|
)
|x|−Q−p

p

∣∣∣p
|x|p| log R

|x| |p
dx

⎞⎠
1
p

.

Then we have the following stability property.

Theorem 2.4.3 (Stability of Hardy inequalities for general real-valued functions).
Let G be a homogeneous group of homogeneous dimension Q and let | · | be a
homogeneous quasi-norm on G. Let 2 ≤ p < Q. Then there exists a constant
C > 0 such that for all real-valued functions u ∈ C∞

0 (G) we have∫
G

|Ru|p dx−
(
Q− p

p

)p ∫
G

|u|p
|x|p dx ≥ Cp sup

R>0
dpH(u;R). (2.96)



124 Chapter 2. Hardy Inequalities on Homogeneous Groups

Proof of Theorem 2.4.3. Let x = (r, y) = (|x|, x
|x|) ∈ (0,∞) × ℘ on G, where ℘ is

the unit quasi-sphere ℘ := {x ∈ G : |x| = 1}, and

v(ry) := r
Q−p

p u(ry),

where u ∈ C∞
0 (G). It follows that v(0) = 0 and that lim

r→∞v(ry) = 0 for y ∈ ℘ since

u is compactly supported. Using the polar decomposition from Proposition 1.2.10
and integrating by parts, we get

D : =

∫
G

|Ru|p dx−
(
Q− p

p

)p ∫
G

|u|p
|x|p dx

=

∫
℘

∫ ∞

0

∣∣∣∣− ∂

∂r
u(ry)

∣∣∣∣p rQ−1 −
(
Q− p

p

)p

|u(ry)|prQ−p−1drdy

=

∫
℘

∫ ∞

0

∣∣∣∣Q− p

p
r−

Q
p v(ry) − r−

Q−p
p

∂

∂r
v(ry)

∣∣∣∣p rQ−1

−
(
Q− p

p

)p

|v(ry)|pr−1drdy.

Now using relation (ii) in Lemma 2.4.2 with the choice a = Q−p
p r−

Q
p v(ry) and

b = r−
Q−p

p ∂
∂r v(ry), and using the fact that

∫∞
0

|v|p−2v
(

∂
∂r v

)
dr = 0, we obtain

D ≥
∫
℘

∫ ∞

0

−p

(
Q− p

p

)p−1

|v(ry)|p−2v(ry)
∂

∂r
v(ry) (2.97)

+ C

∣∣∣∣ ∂∂rv(ry)
∣∣∣∣p rp−1drdy

= C

∫
G

|x|p−Q |Rv|p dx.

Finally, combining (2.97) and Remark 2.2.9, we arrive at

D ≥ Cp

∫
G

|v(x) − v(R x
|x|)|p

|x|Q| log R
|x| |p

dx = C

∫
℘

∫ ∞

0

|v(ry) − v(Ry)|p
r
∣∣log R

r

∣∣p drdy

= Cp

∫
℘

∫ ∞

0

|u(ry)−R
Q−p

p u(Ry)r−
Q−p

p |p
r1+p−Q| log R

r |p
drdy,

for any R > 0. This proves the desired result. �

2.4.3 Stability of critical Hardy inequality

Here we discuss the stability of the critical Hardy inequality, i.e., the Lp-Hardy
inequality in the case p = Q. For this, let us denote

fT,R(x) := T
Q−1
Q u

(
Re−

1
T

x

|x|
)(

log
R

|x|
)Q−1

Q

.
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We also introduce the following ‘distance’ function:

dcH(u;T,R) :=

⎛⎜⎝∫
B(0,R)

|u(x)− fT,R(x)|Q

|x|Q
∣∣∣log R

|x|
∣∣∣Q ∣∣∣T log R

|x|
∣∣∣Q dx

⎞⎟⎠
1
Q

, (2.98)

for some parameter T > 0, functions u and fT,R for which the integral in (2.98) is
finite.

Theorem 2.4.4 (Stability of critical Hardy inequality). Let G be a homogeneous
group of homogeneous dimension Q and let | · | be a homogeneous quasi-norm
on G. Then there exists a constant C > 0 such that for all real-valued functions
u ∈ C∞

0 (B(0, R)) we have∫
B(0,R)

|Ru(x)|Q dx−
(
Q− 1

Q

)Q ∫
B(0,R)

|u(x)|Q
|x|Q(log R

|x|)
Q
dx

≥ Cp sup
T>0

dQcH(u;T,R).

(2.99)

Proof of Theorem 2.4.4. With polar coordinates (r, y) = (|x|, x
|x|) ∈ (0,∞)× ℘ on

G, where ℘ is the sphere as in (1.12), we have u(x) = u(ry) ∈ C∞
0 (B(0, R)). In

addition, let us set

v(sy) :=

(
log

R

r

)−Q−1
Q

u(ry), y ∈ ℘,

where

s = s(r) :=

(
log

R

r

)−1

.

Since u ∈ C∞
0 (B(0, R)) we have v(0) = 0 and v has a compact support. Moreover,

it is straightforward that

∂

∂r
u(ry) = −

(
Q − 1

Q

)(
log

R

r

)− 1
Q v(sy)

r
+

(
log

R

r

)Q−1
Q ∂

∂s
v(sy)s′(r).

A direct calculation using the polar decomposition in Proposition 1.2.10 gives

S :=

∫
B(0,R)

|Ru|Q dx−
(
Q− 1

Q

)Q ∫
B(0,R)

|u|Q

|x|Q
(
log R

|x|
)Q dx

=

∫
℘

(∫ R

0

∣∣∣∣ ∂∂ru(ry)
∣∣∣∣Q rQ−1 −

(
Q− 1

Q

)Q |u(ry)|Q
r
(
log R

r

)Q dr

)
dy
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=

∫
℘

∫ R

0

( ∣∣∣∣∣
(
Q− 1

Q

)(
r log

R

r

)− 1
Q

v(sy) +

(
r log

R

r

)Q−1
Q ∂

∂s
v(sy)s′(r)

∣∣∣∣∣
Q

−
(
Q− 1

Q

)Q |v(sy)|Q
r log R

r

)
drdy.

Now by applying relation (ii) from Lemma 2.4.2 with the choice

a =
Q− 1

Q

(
r log

R

r

)− 1
Q

v(sy) and b =

(
r log

R

r

)Q−1
Q ∂

∂s
v(sy)s′(r),

and by using the properties that v(0) = 0 and lim
r→∞v(ry) = 0, we obtain

S ≥
∫
℘

∫ R

0

(
−Q

(
Q− 1

Q

)Q−1

|v(sy)|Q−2v(sy)
∂

∂s
v(sy)s′(r)

+ C

∣∣∣∣ ∂∂sv(sy)
∣∣∣∣Q (s′(r))Q

(
r log

R

r

)Q−1 )
drdy

=

∫
℘

∫ R

0

(
−Q

(
Q− 1

Q

)Q−1

|v(sy)|Q−2v(sy)
∂

∂s
v(sy)s′(r)

+ C

∣∣∣∣ ∂∂sv(sy)
∣∣∣∣Q 1

rQ
(
log R

r

)2Q (
r log

R

r

)Q−1)
drdy

=

∫
℘

∫ R

0

(
−Q

(
Q− 1

Q

)Q−1

|v(sy)|Q−2v(sy)
∂

∂s
v(sy)s′(r)

+ C

∣∣∣∣ ∂∂sv(sy)
∣∣∣∣Q 1(

log R
r

)Q−1
s′(r)

)
drdy

=

∫
℘

∫ R

0

(
−Q

(
Q− 1

Q

)Q−1

|v(sy)|Q−2v(sy)
∂

∂s
v(s)

+ C

∣∣∣∣ ∂∂sv(sy)
∣∣∣∣Q sQ−1

)
dsdy

= C

∫
G

|Rv|Q dx,

that is,

S ≥ C

∫
G

|Rv|Q dx. (2.100)

According to Remark 2.2.9 for v ∈ C∞
0 (G\{0}) with p = Q and (2.100), it

follows that

S ≥ Cp

∫
G

|v(x) − v(T x
|x|)|Q

|x|Q| log T
|x| |Q

dx = Cp

∫
℘

∫ ∞

0

|v(sy)− v(Ty)|Q
s| log T

s |Q
dsdy
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= Cp

∫
℘

∫ R

0

∣∣∣∣(log R
r

)−Q−1
Q u(ry)− T

Q−1
Q u(Re−

1
T y)

∣∣∣∣Q
r(log R

r )| log(T log R
r )|Q

drdy

= Cp

∫
℘

∫ R

0

∣∣∣u(ry)− T
Q−1
Q u(Re−

1
T y)(log R

r )
Q−1
Q

∣∣∣Q
r(log R

r )
Q| log(T log R

r )|Q
drdy.

Thus, we arrive at

S ≥ Cp

∫
B(0,R)

∣∣∣∣u(x)− T
Q−1
Q u

(
Re−

1
T

x
|x|
)(

log R
|x|
)Q−1

Q

∣∣∣∣Q
|x|Q

∣∣∣log R
|x|
∣∣∣Q ∣∣∣log(T log R

|x|
)∣∣∣Q dx

for all T > 0. This completes the proof of Theorem 2.4.4. �
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