
Chapter 12

Hardy and Rellich Inequalities for

Sums of Squares of Vector Fields

In this chapter, we demonstrate how some ideas originating in the analysis on
groups can be applied in related settings without the group structure. In particular,
in Chapter 7 we showed a number of Hardy and Rellich inequalities with weights
expressed in terms of the so-called L-gauge. There, the L-gauge is a homogeneous
quasi-norm on a stratified group which is obtained from the fundamental solution
to the sub-Laplacian. At the same time, in Chapter 11 we used the fundamental
solutions of the sub-Laplacian for the advancement of the potential theory on
stratified groups, and in Section 7.3 fundamental solutions for the p-sub-Laplacian
and their properties were used on polarizable Carnot groups for the derivation of
further Hardy estimates in that setting.

The aim of this chapter is to show that given the existence of a fundamental
solution one can use the ideas from the analysis on groups to establish a number
of Hardy inequalities on spaces without group structure.

Thus, let M be a smooth manifold of dimension n with a volume form dν.
Let {Xk}Nk=1 be a family of real vector fields on M , and denote by L the sum of
their squares:

L :=
N∑

k=1

X2
k . (12.1)

Identifying each vector field X with the derivative in its direction, second-order
differential operators in the form (12.1) have been widely studied in the literature.
For instance, by the well-known Hörmander sums of the squares theorem from
[Hör67], the operator L is locally hypoelliptic if the iterated commutators of the
vector fields {Xk}Nk=1 generate the tangent space at each point. Such operators
have been also investigated under weaker conditions or without the hypoellipticity
property. There are many geometric considerations related to such operators, see,
e.g., the seminal papers of Rothschild and Stein [RS76] and of Nagel, Stein and
Wainger [NSW85].
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In this chapter our main assumption on the operator L in (12.1) will be
that it has a local fundamental solution. In particular, this is the case when M
is a stratified or a graded group, but the group assumption is, in principle, not
necessary. In what follows we will give other examples of naturally appearing
operators in other contexts having local or global fundamental solutions. The
presentation of this chapters is based on the results obtained in [RS17d].

12.1 Assumptions

We start by formulating assumptions for the presentation in this chapter. Then
we discuss several settings where these assumptions are satisfied. This will include
stratified Lie groups and operators on Rn satisfying the Hörmander commutator
condition.

Let M be a smooth manifold of dimension n with a volume form dν, and let
L be an operator as in (12.1). At a point y ∈ M we will be making the following
assumption that we call (Ay), asking for the existence of a local fundamental
solution at y:

(Ay) For y ∈ M , assume that there is an open set Ty ⊂ M containing y such
that the operator −L has a fundamental solution in Ty, that is, there exists
a function Γy ∈ C2(Ty \ {y}) such that

− LΓy = δy in Ty, (12.2)

where δy is the Dirac δ-distribution at y.

When the point y is fixed, we will often use the notation Γ(x, y) = Γy(x)
or simply Γ(x). Here C2 stands for the space of functions with continuous sec-
ond derivatives with respect to {Xk}Nk=1. We note that among other things the
existence of a fundamental solution implies that L is hypoelliptic.

Sometimes we will strengthen Assumption (Ay) to the following assumption
that we call (A+

y ) asking for the local positivity of the fundamental solution:

(A+
y ) For y ∈ M , assume that (Ay) holds and, moreover, we have

Γy(x) > 0 in Ty \ {y}, and
1

Γy
(y) = 0.

The second part of the assumption is usually naturally satisfied since for a
fundamental solution Γy, the quotient 1

Γy
is usually well-defined and is equal to 0

at y since Γy normally blows up at y.

As before, we will be using the notation 〈Xk, dν〉 for the duality product
of the vector field Xk with the volume form dν, that is, since dν is an n-form,
〈Xk, dν〉 is an (n− 1)-form on M .

It will be convenient to use the following notion of admissible domains in
this chapter. We note that this notion here differs from the one in Definition 1.4.4.
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However, there should be no confusion since the following definition will be used
in this chapter only.

Definition 12.1.1 (Admissible domains). We will say (in this chapter) that an
open bounded set Ω ⊂ M is an admissible domain if its boundary ∂Ω has no
self-intersections, and if the vector fields {Xk}Nk=1 satisfy the equality

N∑
k=1

∫
Ω

Xkfkdν =

N∑
k=1

∫
∂Ω

fk〈Xk, dν〉, (12.3)

for all fk ∈ C1(Ω)
⋂

C(Ω), k = 1, . . . , N .

We will also say that an admissible domain Ω is strongly admissible with
y ∈ M if assumption (Ay) is satisfied, Ω ⊂ Ty, and (12.3) holds for fk = vXkΓy

for all v ∈ C1(Ω)
⋂
C(Ω).

Although there are several conditions incorporated in the notion of a strongly
admissible domain the examples below will actually show that in a number of
natural settings, any open bounded set with a piecewise smooth boundary without
self-intersections is strongly admissible, see Proposition 12.2.1. The condition that
the boundary ∂Ω has no self-intersections implies that ∂Ω is orientable. For brevity,
we will say that such boundaries are simple.

12.1.1 Examples

Let us now describe several rather general settings when bounded domains with
simple boundaries are strongly admissible in the sense of Definition 12.1.1. More-
over, we discuss also the validity of assumptions (Ay) and (A+

y ).

For the examples (E2) and (E3) below we will need the following definition.

Definition 12.1.2 (Control distance and Hölder spaces). The control distance
dc(x, y) associated to the vector fields Xk is defined as the infimum of T > 0
such that there is a piecewise continuous integral curve γ of X1, . . . , XN such that
γ(0) = x and γ(T ) = y.

The Hölder space Cα(Ω) with respect to the control distance is then defined
for 0 < α ≤ 1 as the space of all functions u for which there is C > 0 such that

|u(x)− u(y)| ≤ Cdαc (x, y)

holds for all x, y ∈ Ω. Then, u ∈ C1,α if Xku ∈ Cα for all k = 1, . . . , N , and the
spaces Cr,α are defined inductively.

Example 12.1.3 (Examples of strongly admissible domains). Let us give several
examples.

(E1) Let M be a stratified Lie group, n ≥ 3, and let {Xk}Nk=1 be left invariant
vector fields giving the first stratum of M . Then for any y ∈ M the assump-
tion (A+

y ) is satisfied with Ty = M . Moreover, any open bounded set Ω ⊂ M
with a piecewise smooth simple boundary is strongly admissible.
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(E2) Let M = Rn, n ≥ 3, and let the vector fields Xk, k = 1, . . . , N , N ≤ n, be of
the form

Xk =
∂

∂xk
+

n∑
m=N+1

ak,m(x)
∂

∂xm
, (12.4)

where ak,m(x) are locally C1,α-regular for some 0 < α ≤ 1, where C1,α stands
for the space of functions with Xk-derivatives in the Hölder space Cα with
respect to the control distance defined by these vector fields. Assume also

∂

∂xk
=

∑
1≤i<j≤N

λi,j
k (x)[Xi, Xj] (12.5)

for all k = N + 1, . . . , n, with λi,j
k ∈ L∞

loc(M). Then for any y ∈ M the
assumption (A+

y ) is satisfied. Moreover, any open bounded set Ω ⊂ M with
a piecewise smooth simple boundary is strongly admissible.

(E3) More generally, letM = Rn, n ≥ 3, and let the vector fieldsXk, k = 1, . . . , N ,
N ≤ n, satisfy the Hörmander commutator condition of step r ≥ 2. Assume
that all Xk, k = 1, . . . , N , belong to Cr,α(U) for some 0 < α ≤ 1 and U ⊂ M ,
and if r = 2 we assume α = 1. Then for any y ∈ M the assumption (A+

y )
is satisfied. Moreover, if Xk’s are in the form (12.4), then any open bounded
set Ω ⊂ M with a piecewise smooth simple boundary is strongly admissible.

Some remarks are in order.

Remark 12.1.4.

1. In Example (E1), the validity of Assumption (A+
y ) for any y follows from

(1.74) and (1.75). The equality of (12.3) for (E1) and the strong admissibility
for any domain with piecewise smooth simple boundary follows from Theorem
1.4.5.

2. In Example (E2), the existence of a local fundamental solution, that is (Ay)
for any y ∈ M was shown by Manfredini [Man12]. While the positivity of
Γy does not seem to be explicitly stated there, see Sánchez-Calle [SC84], or
Fefferman and Sánchez-Calle [FSC86] for the positivity, thus assuring that
Assumption (A+

y ) holds. The validity of (12.3) and the strong admissibility
for any domain with piecewise smooth simple boundary will follow from
Theorem 12.2.1.

3. Condition (12.5) implies that the collection of vector fields {Xk}Nk=1 satisfies
Hörmander’s commutator condition of step two.

4. The condition (12.4) on the vector fields in (E2) and (E3) is not restrictive.
In fact, by a change of variables one can show that any collection of linearly
independent vector fields which are locally Cr,α-regular (r ∈ N) can be trans-
formed to a collection of the same regularity which satisfies condition (12.4),
see Manfredini [Man12, page 975].
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5. In Example (E3), the validity of condition (A+
y ) was studied by Bramanti,

Brandolini, Manfredini and Pedroni [BBMP17, Theorem 4.8 and Theorem
5.9]. The validity of (12.3) and the strong admissibility for any domain with
piecewise smooth simple boundary will follow from Theorem 12.2.1.

6. Assumptions (Ay) or (A
+
y ) hold also in some other settings. The subject of the

existence of local and global fundamental solutions for L is well studied when
L is a hypoelliptic operator, see, e.g., [Man12, BLU04, FSC86, SC84, OR73]
for more general and detailed discussions.

7. For both Examples (E2) and (E3) let us give the following explicit example:
In R3 let N = 2 and let

X1 =
∂

∂x1
+ a(x)

∂

∂x3
,

X2 =
∂

∂x2
+ b(x)

∂

∂x3
,

be vector fields with coefficients

a(x) = x2(1 + |x2|), b(x) = −x1(1 + |x1|).
Clearly, these coefficients are not smooth. Then

[X1, X2] = −2(1 + |x1|+ |x2|) ∂

∂x3
.

The vector fields X1, X2 are C1,1 and satisfy Hörmander’s commutator con-
dition of step two, so that assumptions of Example (E2) hold. Replacing |x1|,
|x2| with x1|x1|, x2|x2| we get C2,1 vector fields, satisfying assumptions of
Example (E3).

These examples and the corresponding sub-Laplacian L = X2
1 + X2

2

were studied in [BBMP17, Section 6]. Other explicit examples can be built
from the so-called Δλ-Laplacians, see, e.g., [KS16].

12.2 Divergence formula

For this, there is no need to make any assumptions on the step to which Hörman-
der’s commutator condition is satisfied, whether it is satisfied or not, or on the
existence of fundamental solutions as in (Ay). Thus, let us formulate this property
as a general statement which shall be of interest on its own. The assumption for
smoothness on Xk can be reduced here, e.g., to ak,m ∈ C1.

Theorem 12.2.1 (Divergence formula). Let Ω ⊂ Rn be an open bounded domain
with a piecewise smooth boundary that has no self-intersections. Let Xk, k =
1, . . . , N , be C1 vector fields in the form

Xk =
∂

∂xk
+

n∑
m=N+1

ak,m(x)
∂

∂xm
. (12.6)
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Let fk ∈ C1(Ω)
⋂

C(Ω), k = 1, . . . , N . Then for each k = 1, . . . , N, we have∫
Ω

Xkfkdν =

∫
∂Ω

fk〈Xk, dν〉. (12.7)

Consequently, we also have the divergence type formula∫
Ω

N∑
k=1

Xkfkdν =

∫
∂Ω

N∑
k=1

fk〈Xk, dν〉. (12.8)

If y ∈ Rn is such that (Ay) is satisfied, then we can also take fk = vXkΓy in
formulae above, for all v ∈ C1(Ω)

⋂
C(Ω).

Formula (12.8) is exactly the one needed for the admissibility of a domain
in Definition 12.1.1. For a discussion of other related versions of the divergence
formula in the literature see Remark 1.4.7. The proof of Theorem 12.2.1 is similar
to that of Theorem 1.4.5.

Proof of Theorem 12.2.1. For any function f we calculate the following differenti-
ation formula

df =

N∑
k=1

∂f

∂xk
dxk +

n∑
m=N+1

∂f

∂xm
dxm

=

N∑
k=1

Xkfdxk −
N∑

k=1

n∑
m=N+1

ak,m(x)
∂f

∂xm
dxk +

n∑
m=N+1

∂f

∂xm
dxm

=

N∑
k=1

Xkfdxk +

n∑
m=N+1

∂f

∂xm
(−

N∑
k=1

ak,m(x)dxk + dxm)

=
N∑

k=1

Xkfdxk +
n∑

m=N+1

∂f

∂xm
θm,

where we denote

θm := −
N∑

k=1

ak,m(x)dxk + dxm, m = N + 1, . . . , n. (12.9)

That is, we have

df =

N∑
k=1

Xkfdxk +

n∑
m=N+1

∂f

∂xm
θm. (12.10)

It is simple to see that

〈Xs, dxj〉 = ∂

∂xs
dxj = δsj , 1 ≤ s ≤ N, 1 ≤ j ≤ n,
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where δsj is the Kronecker delta. Moreover, we have

〈Xs, θm〉 =
〈

∂

∂xs
+

n∑
g=N+1

as,g(x)
∂

∂xg
,−

N∑
k=1

ak,m(x)dxk + dxm

〉

= −
N∑

k=1

(
∂

∂xs
ak,m(x)

)
dxk −

N∑
k=1

ak,m(x)
∂

∂xs
dxk +

∂

∂xs
dxm

−
N∑

k=1

n∑
g=N+1

as,g(x)

(
∂

∂xg
ak,m(x)

)
dxk −

N∑
k=1

n∑
g=N+1

as,g(x)ak,m(x)
∂

∂xg
dxk

+

n∑
g=N+1

as,g(x)
∂

∂xg
dxm

= −
N∑

k=1

(
∂

∂xs
ak,m(x)

)
dxk −

N∑
k=1

ak,m(x)δsk

−
N∑

k=1

n∑
g=N+1

as,g(x)

(
∂

∂xg
ak,m(x)

)
dxk +

n∑
g=N+1

as,g(x)δgm

= −
N∑

k=1

n∑
g=N+1

as,g(x)

(
∂

∂xg
ak,m(x)

)
dxk −

N∑
k=1

(
∂

∂xs
ak,m(x)

)
dxk

= −
N∑

k=1

[ n∑
g=N+1

as,g(x)

(
∂

∂xg
ak,m(x)

)
+

∂

∂xs
ak,m(x)

]
dxk.

That is, we have

〈Xs, dxj〉 = δsj ,

for s = 1, . . . , N, j = 1, . . . , n, and

〈Xs, θm〉 =
N∑

k=1

Ck(s,m)dxk,

for s = 1, . . . , N, m = N + 1, . . . , n, where we denote

Ck(s,m) := −
n∑

g=N+1

as,g(x)
∂

∂xg
ak,m(x) − ∂

∂xs
ak,m(x).

We have

dν := dν(x) =

N∧
j=1

dxj =

N∧
j=1

dxj

n∧
m=N+1

dxm =

N∧
j=1

dxj

n∧
m=N+1

θm,
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so that

〈Xk, dν(x)〉 =
N∧

j=1,j 	=k

dxj

n∧
m=N+1

θm. (12.11)

Therefore, by using formula (12.10) we get

d(fs〈Xs, dν(x)〉)
= dfs ∧ 〈Xs, dν(x)〉

=

N∑
k=1

Xkfsdxk ∧ 〈Xs, dν(x)〉 +
n∑

m=N+1

∂fs
∂xm

θm ∧ 〈Xs, dν(x)〉

=
N∑

k=1

Xkfsdxk ∧
N∧

j=1,
j 	=k

dxj

n∧
m=N+1

θm +
n∑

m=N+1

∂fs
∂xm

θm ∧
N∧

j=1,
j 	=k

dxj

n∧
m=N+1

θm.

The first term in the last line is equal to Xsfsdν(x) and the second term is zero
by the wedge product rules. Therefore, we obtain

d(〈fsXs, dν(x)〉) = Xsfsdν(x), s = 1, . . . , N. (12.12)

Now using the Stokes theorem (see, e.g., [DFN84, Theorem 26.3.1]) we obtain
(12.7). Taking a sum over k we also obtain (12.8) for all fk ∈ C1(Ω)

⋂
C(Ω).

As in the classical case, the formula (12.7) is still valid for the fundamental
solution of L since Γ can be estimated by a distance function associated to {Xk}
(see, e.g., [Man12, Proposition 4.8]), or [FSC86, SC84] for such estimates in a more
general setting. �

12.3 Green’s identities for sums of squares

Similar to Theorem 1.4.6 the divergence formula in Theorem 12.2.1 implies the
corresponding Green identities.

Theorem 12.3.1 (Green’s identities). Let M be a smooth manifold of dimension n
with a volume form dν and let L be an operator as in (12.1). Let Ω ⊂ M be an
admissible domain.

1. Green’s first identity: If v ∈ C1(Ω)
⋂
C(Ω) and u ∈ C2(Ω)

⋂
C1(Ω) then we

have ∫
Ω

(
(∇̃v)u+ vLu

)
dν =

∫
∂Ω

v〈∇̃u, dν〉, (12.13)

where

∇̃u =
N∑

k=1

(Xku)Xk. (12.14)
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2. Green’s second identity: If u, v ∈ C2(Ω)
⋂
C1(Ω) then we have∫

Ω

(uLv − vLu)dν =

∫
∂Ω

(u〈∇̃v, dν〉 − v〈∇̃u, dν〉). (12.15)

Moreover, if Ω is strongly admissible, we can put u = Γ in (12.13), and u = Γ or
v = Γ in (12.15).

As in Remark 1.4.7, Part 1, the notation (12.14) implies that for functions u
and v we have(

∇̃v
)
u = ∇̃vu =

N∑
k=1

(Xkv) (Xku) =
N∑

k=1

XkvXku =
(
∇̃u

)
v (12.16)

is a scalar.

Proof of Theorem 12.3.1. Taking fk = vXku, we get

N∑
k=1

Xkfk = (∇̃v)u + vLu.

Since Ω is admissible we can use (12.3), so that we obtain∫
Ω

(
∇̃vu+ vLu

)
dν =

∫
Ω

N∑
k=1

Xkfkdν

=

∫
∂Ω

N∑
k=1

〈fkXk, dν〉

=

∫
∂Ω

N∑
k=1

〈vXkuXk, dν〉

=

∫
∂Ω

v〈∇̃u, dν〉.

This proves (12.13). Then by rewriting (12.13) for interchanged functions u and v
we have ∫

Ω

(
(∇̃u)v + uLv

)
dν =

∫
∂Ω

u〈∇̃v, dν〉,∫
Ω

(
(∇̃v)u + vLu

)
dν =

∫
∂Ω

v〈∇̃u, dν〉.

By subtracting the second identity from the first one and using (∇̃u)v = (∇̃v)u
in view of (12.16), we obtain (12.15).

If Ω is strongly admissible, we can put Γ for u or v as stated since (12.3)
holds in these cases as well. �
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Remark 12.3.2. It is crucial that Green’s identities are valid for the fundamental
solution Γ. In the classical (Euclidean) case Green’s identities are valid for the
fundamental solution of the Laplacian and this fact is of fundamental importance
in the classical theory as well.

12.3.1 Consequences of Green’s identities

Let us now record several useful consequences of Theorem 12.3.1. Setting v = 1
we obtain the following analogue of Gauss’ mean value type formulae:

Corollary 12.3.3 (Gauss’ mean value formulae). Let Ω ⊂ M be an admissible
domain. Then we have

Lu ≥ 0 in Ω =⇒
∫
∂Ω

〈∇̃u, dν〉 ≥ 0

and

Lu ≤ 0 in Ω =⇒
∫
∂Ω

〈∇̃u, dν〉 ≤ 0.

Consequently, we also have

Lu = 0 in Ω =⇒
∫
∂Ω

〈∇̃u, dν〉 = 0.

Also, for a fixed x ∈ Ω, taking v = 1 and u(y) = Γ(x, y) in (12.13) we obtain:

Corollary 12.3.4. Let Ω ⊂ M be a strongly admissible domain such that Ω ⊂ Ty

for all y ∈ Ω, and let x ∈ Ω. Then we have∫
∂Ω

〈∇̃Γ(x, y), dν(y)〉 = −1,

where ∇̃Γ(x, y) = ∇̃yΓ(x, y) refers to the notation (12.14) with derivatives taken
with respect to the variable y.

The assumption of Ω ⊂ Ty for all y ∈ Ω in Corollary 12.3.4 just assures that
the family of Γy is defined over y ∈ Ω.

Corollary 12.3.5 (Representation formulae). Let us assume the conditions of Corol-
lary 12.3.4. Taking v in (12.15) to be the fundamental solution Γ we obtain the
following representation formulae.

1. Let u ∈ C2(Ω)
⋂

C1(Ω). Then for all x ∈ Ω we have

u(x) = −
∫
Ω

Γ(x, y)Lu(y)dν(y)

−
∫
∂Ω

u(y)〈∇̃Γ(x, y), dν(y)〉 +
∫
∂Ω

Γ(x, y)〈∇̃u(y), dν(y)〉.
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2. Let u ∈ C2(Ω)
⋂

C1(Ω) and Lu = 0 on Ω. Then for all x ∈ Ω we have

u(x) = −
∫
∂Ω

u(y)〈∇̃Γ(x, y), dν(y)〉 +
∫
∂Ω

Γ(x, y)〈∇̃u(y), dν(y)〉.

3. Let u ∈ C2(Ω)
⋂

C1(Ω) and

u(x) = 0, x ∈ ∂Ω.

Then for all x ∈ Ω we have

u(x) = −
∫
Ω

Γ(x, y)Lu(y)dν(y) +
∫
∂Ω

Γ(x, y)〈∇̃u(y), dν(y)〉.

4. Let u ∈ C2(Ω)
⋂

C1(Ω) and

N∑
j=1

Xju〈Xj , dν〉 = 0 on ∂Ω.

Then for all x ∈ Ω we have

u(x) = −
∫
Ω

Γ(x, y)Lu(y)dν(y) −
∫
∂Ω

u(y)〈∇̃Γ(x, y), dν(y)〉.

12.3.2 Differential forms, perimeter and surface measures

In this section we briefly describe the relation between the forms 〈Xj , dν〉, perime-
ter measure, and the surface measure on the boundary ∂Ω. In this we follow [RS17c]
where this topic was discussed in the setting of stratified groups, and we would
like to thank Nicola Garofalo and Valentino Magnani for discussions.

Definition 12.3.6 (Perimeter measure). Let Ω ⊂ M be an open set with a piecewise
smooth boundary. The perimeter measure on ∂Ω is defined by

σH(∂Ω) = sup

{
N∑
i=1

∫
∂Ω

ψi〈Xi, dν〉 : ψ = (ψ1, . . . , ψN1), |ψ| ≤ 1, ψ ∈ C1

}
.

Then we have the following simple proof of the divergence formula in Theorem
12.2.1.

Proposition 12.3.7 (Divergence formula). Let X be a vector field and let 〈X, dν〉
be the contraction of the volume form dν = dx1 ∧ · · · ∧ dxn by X. Then we have∫

Ω

Xϕdν =

∫
∂Ω

ϕ〈X, dν〉. (12.17)
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Proof of Proposition 12.3.7. Let LX denote the Lie derivative with respect to the
vector field X . The Cartan formula for LX gives

LX = d ıX + ıX d, where ıXdν = 〈X, dν〉.

Then we have∫
Ω

Xϕdν =

∫
Ω

div (ϕX)dν =

∫
Ω

LϕXdν =

∫
Ω

d(ıϕXdν) =

∫
∂Ω

ϕ〈X, dν〉,

showing (12.17). �
Proposition 12.3.8 (Relation between forms, perimeter and surface measures). Let
〈·, ·〉E denote the Euclidean scalar product. Then the perimeter measure dσH and
the surface measure dS on ∂Ω are related by∫

∂Ω

ϕ〈v,Xj〉EdS =

∫
∂Ω

ϕ
〈v,Xj〉E(∑N

j=1〈v,Xj〉2E
) 1

2

dσH =

∫
∂Ω

ϕ〈Xj , dν〉, (12.18)

for all outer unit vectors v and all ϕ ∈ C∞(∂Ω).

Moreover, if g denotes the vector space spanned by {Xj}Nj=1 and Xj are
orthonormal on g, then for any fj ∈ C∞(∂Ω) we have∫

∂Ω

N∑
j=1

fj〈Xj , dν〉 =
∫
∂Ω

〈X, vH〉g dσH , (12.19)

where X =
∑N

j=1 fjXj and vH =
∑N

j=1〈v,Xj〉EXj .

Proof of Proposition 12.3.8. For an outer unit vector v on ∂Ω let us write

|vH | :=
⎛⎝ N∑

j=1

〈v,Xj〉2E

⎞⎠1/2

and |vH |j := 〈v,Xj〉E
|vH | .

If dS is the surface measure on ∂Ω, we have

dσH = |vH |dS,

and all these relations are well defined because the perimeter measure of the set
of characteristic points of a smooth domain Ω is zero. We can now calculate∫

Ω

Xjϕdν =

∫
Ω

div(ϕXj)dν =

∫
∂Ω

ϕ ıXj (dν) =

∫
∂Ω

ϕ〈v,Xj〉EdS

=

∫
∂Ω

ϕ
〈v,Xj〉E
|vH | |vH |dS =

∫
∂Ω

ϕ|vH |j dσH ,
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giving one equality in (12.18). Combining this with (12.17) we obtain∫
∂Ω

ϕ〈Xj , dν〉 =
∫
∂Ω

ϕ|vH |j dσH , (12.20)

the other equality in (12.18). Let us now assume that Xj are orthonormal on g,
and let

X =

N∑
j=1

fjXj .

We write

vH =

N∑
j=1

〈v,Xj〉EXj

for a vector v with |vH | = 1. Then we have

〈X, vH〉g =

N∑
j=1

fj |vH |j .

Now, applying (12.20) with ϕ = fj and summing over j, we get∫
∂Ω

N∑
j=1

fj〈Xj , dν〉 =
∫
∂Ω

〈X, vH〉g dσH , X =
N∑
j=1

fjXj ,

which gives (12.19). �

12.4 Local Hardy inequalities

In this section we describe local versions of the Hardy inequality including bound-
ary terms. The weights are formulated in terms of the fundamental solution and
the proof relies on Green’s first formula from Theorem 12.3.1. As usual, we denote

∇X = (X1, . . . , XN).

Theorem 12.4.1 (Local Hardy inequality with boundary terms). Let y ∈ M be
such that (A+

y ) holds with the fundamental solution Γ = Γy in Ty. Let Ω ⊂ Ty be
a strongly admissible domain such that y �∈ ∂Ω. Let α ∈ R, α > 2 − β, β > 2 and

R ≥ e supΩΓ
1

2−β . Then for all u ∈ C1(Ω)
⋂

C(Ω) we have∫
Ω

Γ
α

2−β |∇Xu|2 dν ≥
(
β + α− 2

2

)2 ∫
Ω

Γ
α−2
2−β |∇XΓ

1
2−β |2|u|2 dν

+
β + α− 2

2(β − 2)

∫
∂Ω

Γ
α

2−β−1|u|2〈∇̃Γ, dν〉,
(12.21)
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as well as its further refinement∫
Ω

Γ
α

2−β |∇Xu|2 dν ≥
(
β + α− 2

2

)2 ∫
Ω

Γ
α−2
2−β |∇XΓ

1
2−β |2|u|2 dν

+
1

4

∫
Ω

Γ
α−2
2−β |∇XΓ

1
2−β |2

(
ln

R

Γ
1

2−β

)−2

|u|2dν

+
1

2(β − 2)

∫
∂Ω

Γ
α

2−β−1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉

+
β + α− 2

2(β − 2)

∫
∂Ω

Γ
α

2−β−1|u|2〈∇̃Γ, dν〉.

(12.22)

Remark 12.4.2.

1. If u = 0 on the boundary ∂Ω, for example when suppu ⊂ Ω, then (12.21) can
be regarded as a usual Hardy inequality (without boundary term). Inequality
(12.22) can be regarded as a further refinement of (12.21) since it includes
further positive interior terms as well as further boundary terms.

2. Even if y ∈ ∂Ω, the estimates (12.21) and (12.22) of Theorem 12.4.1 remain
true if y �∈ ∂Ω ∩ suppu.

3. In (12.21) the boundary term can be positive, see Remark 11.4.2, Part 2, i.e.,
we sometimes have

β + α− 2

2(β − 2)

∫
∂Ω

Γ
α

2−β−1|u|2〈∇̃Γ, dν〉 ≥ 0, (12.23)

for some u.

4. In the setting of Example (E1), i.e., when M is a stratified group, and Xj ’s
are the vectors from the first stratum, then (12.21) is equivalent to (11.73) in
Theorem 11.4.1, where this inequality was expressed in terms of the L-gauge
d, taking β = Q ≥ 3, and d(x) = Γ(x, 0)

1
2−Q , where Q is the homogeneous

dimension of the group. For example, with α = 0 we get∫
Ω

|∇Xu|2 dν ≥
(
Q− 2

2

)2 ∫
Ω

|∇Xd|2
d2

|u|2 dν

+
1

2

∫
∂Ω

dQ−2|u|2〈∇̃d2−Q, dν〉,
(12.24)

with the sharp constant
(

Q−2
2

)2

.

Proof of Theorem 12.4.1. In the proof and in the subsequent analysis we follow
[RS17d].
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First, let us prove (12.21). By an argument of Remark 2.1.2, Part 3, we can
assume that u is real-valued. In this case, recalling that

(∇̃u)u =
N∑

k=1

(Xku)Xku = |∇Xu|2,

inequality (12.21) reduces to∫
Ω

Γ
α

2−β (∇̃u)u dν ≥
(
β + α− 2

2

)2 ∫
Ω

Γ
α−2
2−β (∇̃Γ

1
2−β )Γ

1
2−β u2 dν

+
β + α− 2

2(β − 2)

∫
∂Ω

Γ
α

2−β−1u2〈∇̃Γ, dν〉,
(12.25)

which we will now prove. Setting

u = dγq (12.26)

for some real-valued functions d > 0, q, and a constant γ �= 0 to be chosen later,
we have

(∇̃u)u = (∇̃dγq)dγq

=

N∑
k=1

Xk(d
γq)Xk(d

γq)

= γ2d2γ−2
N∑

k=1

(Xkd)
2q2 + 2γd2γ−1q

N∑
k=1

XkdXkq + d2γ
N∑

k=1

(Xkq)
2

= γ2d2γ−2((∇̃d)d)q2 + 2γd2γ−1q(∇̃d)q + d2γ(∇̃q)q.

Multiplying both sides of this equality by dα and applying Green’s first formula
from Theorem 12.3.1 to the second term in the last line we observe that

2γ

∫
Ω

dα+2γ−1q(∇̃d)qdν =
γ

α+ 2γ

∫
Ω

(∇̃dα+2γ)q2dν =
γ

α+ 2γ

∫
Ω

(∇̃q2)dα+2γdν

= − γ

α+ 2γ

∫
Ω

q2Ldα+2γdν +
γ

α+ 2γ

∫
∂Ω

q2〈∇̃dα+2γ , dν〉,

where we note that later on we will choose γ so that dα+2γ = Γ, and hence
Theorem 12.3.1 is applicable. Consequently, we get∫

Ω

dα(∇̃u)udν = γ2

∫
Ω

dα+2γ−2((∇̃d)d) q2dν +
γ

α+ 2γ

∫
Ω

(∇̃dα+2γ)q2dν

+

∫
Ω

dα+2γ(∇̃q)qdν

= γ2

∫
Ω

dα+2γ−2((∇̃d)d) q2dν +
γ

α+ 2γ

∫
∂Ω

q2〈∇̃dα+2γ , dν〉

− γ

α+ 2γ

∫
Ω

q2Ldα+2γdν +

∫
Ω

dα+2γ(∇̃q)qdν
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≥ γ2

∫
Ω

dα+2γ−2((∇̃d)d) q2dν +
γ

α+ 2γ

∫
∂Ω

q2〈∇̃dα+2γ , dν〉

− γ

α+ 2γ

∫
Ω

q2Ldα+2γdν, (12.27)

since d > 0 and (∇̃q)q = |∇Xq|2 ≥ 0. On the other hand, it can be readily checked
that for a vector field X we have

γ

α+ 2γ
X2(dα+2γ) = γX(dα+2γ−1Xd) =

γ

2− β
X(dα+2γ+β−2X(d2−β))

=
γ

2− β
(α+ 2γ + β − 2)dα+2γ+β−3(Xd)X(d2−β) +

γ

2− β
dα+2γ+β−2X2(d2−β)

= γ(α+ 2γ + β − 2)dα+2γ−2(Xd)2 +
γ

2− β
dα+2γ+β−2X2(d2−β).

Consequently, we get the equality

− γ

α+ 2γ
Ldα+2γ = −γ(α+ 2γ + β − 2)dα+2γ−2(∇̃d)d− γ

2− β
dα+2γ+β−2Ld2−β .

(12.28)
Since q2 = d−2γu2 in view of (12.26), substituting (12.28) into (12.27) we obtain∫

Ω

dα(∇̃u)udν ≥ (−γ2 − γ(α+ β − 2))

∫
Ω

dα−2((∇̃d)d)u2dν

− γ

2− β

∫
Ω

(Ld2−β)dα+β−2u2dx +
γ

α+ 2γ

∫
∂Ω

d−2γu2〈∇̃dα+2γ , dν〉.

Taking d = Γ
1

2−β , β > 2, concerning the second term we observe that for α > 2−β
and β > 2 we have ∫

Ω

(LΓ)Γα+β−2
2−β u2dx = 0, (12.29)

since Γ = Γy is the fundamental solution to L. Indeed, the above equality is clear
when y is outside of Ω. If y belongs to Ω we have∫

Ω

(LΓ)Γα+β−2
2−β u2dx = Γ

α+β−2
2−β (y)u2(y) = 0,

since conditions α > 2 − β and β > 2 imply that α+β−2
2−β < 0, and since 1

Γ (y) = 0

by (A+
y ). Thus, with d = Γ

1
2−β , β > 2, we get∫

Ω

Γ
α

2−β (∇̃u)u dν ≥ (−γ2 − γ(α+ β − 2))

∫
Ω

Γ
α−2
2−β (∇̃Γ

1
2−β )Γ

1
2−β u2 dν

+
γ

α+ 2γ

∫
∂Ω

Γ− 2γ
2−β u2〈∇̃Γ

α+2γ
2−β , dν〉.

Taking γ = 2−β−α
2 , we obtain (12.25). Finally, we note that with this γ, we have

dα+2γ = Γ, so that the use of Theorem 12.3.1 is justified.
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Let us now prove (12.22), with the proof similar to the above proof of (12.21).
Recalling that

(∇̃u)u =

N∑
k=1

(Xku)Xku = |∇Xu|2,

inequality (12.22) reduces to∫
Ω

Γ
α

2−β (∇̃u)u dν ≥
(
β + α− 2

2

)2 ∫
Ω

Γ
α−2
2−β (∇̃Γ

1
2−β )Γ

1
2−β u2 dν

+
1

4

∫
Ω

Γ
α−2
2−β (∇̃Γ

1
2−β )Γ

1
2−β

(
ln

R

Γ
1

2−β

)−2

u2dν

+
1

2(β − 2)

∫
∂Ω

Γ
α

2−β −1

(
ln

R

Γ
1

2−β

)−1

u2〈∇̃Γ, dν〉

+
β + α− 2

2(β − 2)

∫
∂Ω

Γ
α

2−β−1u2〈∇̃Γ, dν〉,

(12.30)

which we will now prove. Let us recall the first part of (12.27) as∫
Ω

dα(∇̃u)udν

= γ2

∫
Ω

dα+2γ−2((∇̃d)d) q2dν +
γ

α+ 2γ

∫
Ω

(∇̃dα+2γ)q2dν +

∫
Ω

dα+2γ(∇̃q)qdν

= γ2

∫
Ω

dα+2γ−2((∇̃d)d) q2dν +
γ

α+ 2γ

∫
∂Ω

q2〈∇̃dα+2γ , dν〉

− γ

α+ 2γ

∫
Ω

q2Ldα+2γdν +

∫
Ω

dα+2γ(∇̃q)qdν. (12.31)

Since q2 = d−2γu2, substituting (12.28) into (12.31) we obtain∫
Ω

dα(∇̃u)udν = (− γ2 − γ(α+ β − 2))

∫
Ω

dα−2((∇̃d)d)u2dν

− γ

2− β

∫
Ω

(Ld2−β)dα+β−2u2dx

+
γ

α+ 2γ

∫
∂Ω

d−2γu2〈∇̃dα+2γ , dν〉 +
∫
Ω

dα+2γ(∇̃q)qdν.

Using (12.29), with d = Γ
1

2−β , β > 2, we obtain∫
Ω

Γ
α

2−β (∇̃u)u dν = (−γ2 − γ(α+ β − 2))

∫
Ω

Γ
α−2
2−β (∇̃Γ

1
2−β )Γ

1
2−β u2 dν

+
γ

α+ 2γ

∫
∂Ω

Γ− 2γ
2−β u2〈∇̃Γ

α+2γ
2−β , dν〉+

∫
Ω

dα+2γ(∇̃q)qdν.
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Taking γ = 2−β−α
2 we obtain∫

Ω

Γ
α

2−β (∇̃u)u dν =

(
β + α− 2

2

)2 ∫
Ω

Γ
α−2
2−β (∇̃Γ

1
2−β )Γ

1
2−β u2 dν (12.32)

+
β + α− 2

2(β − 2)

∫
∂Ω

Γ
α

2−β −1u2〈∇̃Γ, dν〉+
∫
Ω

Γ(∇̃q)qdν.

Let us now take

q =

(
ln

R

Γ
1

2−β

)1/2

ϕ,

that is,

ϕ =

(
ln

R

Γ
1

2−β

)− 1
2

Γ− 2−β−α
2(2−β) u.

A straightforward computation shows that

∫
Ω

Γ(∇̃q)qdν =

N∑
j=1

∫
Ω

Γ

(
Xj

(
ln

R

Γ
1

2−β

) 1
2

ϕ+

(
ln

R

Γ
1

2−β

) 1
2

Xjϕ

)2

dν

=
1

4

∫
Ω

Γ
−β
2−β (∇̃Γ

1
2−β )Γ

1
2−β

(
ln

R

Γ
1

2−β

)−1

ϕ2dν

−
∫
Ω

Γ1− 1
2−β ϕ(∇̃Γ

1
2−β )ϕdν +

∫
Ω

Γ ln
R

Γ
1

2−β

(∇̃ϕ)ϕdν

=
1

4

∫
Ω

Γ
−β
2−β (∇̃Γ

1
2−β )Γ

1
2−β

(
ln

R

Γ
1

2−β

)−1

ϕ2dν

+
1

2(β − 2)

∫
Ω

(∇̃Γ)ϕ2dν +

∫
Ω

Γ ln
R

Γ
1

2−β

(∇̃ϕ)ϕdν

=
1

4

∫
Ω

Γ
−β
2−β (∇̃Γ

1
2−β )Γ

1
2−β

(
ln

R

Γ
1

2−β

)−1

ϕ2dν

+
1

2(β − 2)

∫
Ω

LΓϕ2dν +
1

2(β − 2)

∫
∂Ω

ϕ2〈∇̃Γ, dν〉

+

∫
Ω

Γ ln
R

Γ
1

2−β

(∇̃ϕ)ϕdν. (12.33)

Since the second integral term of the right-hand side vanishes and the last integral
term is positive from (12.33) we obtain that∫

Ω

Γ(∇̃q)qdν ≥ 1

4

∫
Ω

Γ
−β
2−β (∇̃Γ

1
2−β )Γ

1
2−β

(
ln

R

Γ
1

2−β

)−1

ϕ2dν

+
1

2(β − 2)

∫
∂Ω

ϕ2〈∇̃Γ, dν〉
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=
1

4

∫
Ω

Γ
α−2
2−β (∇̃Γ

1
2−β )Γ

1
2−β

(
ln

R

Γ
1

2−β

)−2

u2dν

+
1

2(β − 2)

∫
∂Ω

Γ
α

2−β −1

(
ln

R

Γ
1

2−β

)−1

u2〈∇̃Γ, dν〉. (12.34)

Finally, (12.32) and (12.34) imply (12.30). �

12.5 Anisotropic Hardy inequalities via

Picone identities

In this section we discuss the anisotropic versions of local Hardy inequalities for
general (real-valued) vector fields as in the previous sections. As in the most of this
chapter, such weighted anisotropic Hardy type inequalities will also include the
boundary terms, which of course disappear if one works with functions supported
in the interior of the considered domain. The analysis is based on the anisotropic
Picone type identities, analogous to those described in Section 6.10.1. As con-
sequences, we also recover some of the Hardy type inequalities of the Euclidean
space described earlier in the setting of the stratified groups. The presentation of
this section is based on [RSS18c].

Throughout this and further sections, let M be a smooth manifold of dimen-
sion n equipped with a volume form dν, and let {Xk}Nk=1, N ≤ n, be a family of
real vector fields.

We start with the following weighted anisotropic Hardy type inequalities in
admissible domains in the sense of Definition 12.1.1.

Theorem 12.5.1 (Weighted anisotropic Hardy type inequality). Let Ω ⊂ M be an
admissible domain. Let Wi(x), Hi(x) be non-negative functions for i = 1, . . . , N ,
such that for v ∈ C1(Ω)

⋂
C(Ω) satisfying v > 0 a.e. in Ω, we have

−Xi(Wi(x)|Xiv|pi−2Xiv) ≥ Hi(x)v
pi−1, i = 1, . . . , N. (12.35)

Then, for all non-negative functions u ∈ C2(Ω)
⋂
C1(Ω) and the positive function

v ∈ C1(Ω)
⋂
C(Ω) satisfying (12.35), we have

N∑
i=1

∫
Ω

Wi(x)|Xiu|pidν ≥
N∑
i=1

∫
Ω

Hi(x)|u|pidν (12.36)

+

N∑
i=1

∫
∂Ω

upi

vpi−1
〈∇̃i

(
Wi(x)|Xiv|pi−2Xiv

)
, dν〉,

where ∇̃if = XifXi and pi > 1, for i = 1, . . . , N .

Before proving this inequality let us formulate several of its consequences,
recovering and extending a number of known results, see Remark 12.5.3. In these
examples of the weighted anisotropic Hardy type inequalities on M we express the
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weights in terms of the fundamental solution Γ = Γy(x) in the assumption Ay. For
brevity, we can just denote it by Γ, if we fix some y ∈ M and the corresponding
Ty and Γy.

Corollary 12.5.2 (Anisotropic Hardy inequalities and fundamental solutions). Let
Ω ⊂ M be an admissible domain. Then we have the following estimates.

(1) Let α ∈ R, 1 < pi < β + α, i = 1, . . . , N, and γ > −1, β > 2. Then for all
u ∈ C∞

0 (Ω\{0}) we have

N∑
i=1

∫
Ω

Γ
α

2−β |XiΓ
1

2−β |γ |Xiu|pidν

≥
N∑
i=1

(
β + α− pi

pi

)pi
∫
Ω

Γ
α−pi
2−β |XiΓ

1
2−β |pi+γ |u|pidν.

(12.37)

(2) Let α, γ ∈ R and α �= 0, β > 2. Then for any u ∈ C1
0 (Ω) we have

N∑
i=1

∫
Ω

Γ
γ+pi
2−β |Xiu|pidν

≥
N∑
i=1

Ci(α, γ, pi)
pi

∫
Ω

Γ
γ

2−β |XiΓ
1

2−β |pi |u|pidν,

(12.38)

where Ci(α, γ, pi) :=
(α−1)(pi−1)−γ−1

pi
, pi > 1, and i = 1, . . . , N .

(3) Let α ∈ R, β > 2, 1 < pi < β + α for i = 1, . . . , N . Then for all u ∈ C∞
0 (Ω)

we have
N∑
i=1

∫
Ω

Γ
α

2−β |Xiu|pidν

≥
N∑
i=1

Ci(β, α, pi)

∫
Ω

Γ
α

2−β
|XiΓ

1
2−β |pi(

1 + Γ
pi

(pi−1)(2−β)

)pi
|u|pidν,

(12.39)

where Ci(β, α, pi) :=
(

β+α−pi

pi−1

)pi−1

(β + α).

(4) Let α ∈ R, β > 2, 1 < pi < β + α for i = 1, . . . , N . Then for all u ∈ C∞
0 (Ω)

we have
N∑
i=1

∫
Ω

(
1 + Γ

pi
(pi−1)(2−β)

)α(pi−1)

|Xiu|pidν

≥
N∑
i=1

Ci(β, pi, α)

∫
Ω

|XiΓ
1

2−β |pi(
1 + Γ

pi
(pi−1)(2−β)

)(1−pi)(1−α)
|u|pidν,

(12.40)

where Ci(β, pi, α) := β
(

pi(α−1)
pi−1

)pi−1

.
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(5) Let β > 2, a, b > 0 and α, γ,m ∈ R. If αγ > 0 and m ≤ β−2
2 . Then for all

u ∈ C∞
0 (Ω) we have∫

Ω

(a+ bΓ
α

2−β )γ

Γ
2m
2−β

|∇Xu|2dν

≥ C(β,m)2
∫
Ω

(a+ bΓ
α

2−β )γ

Γ
2m+2
2−β

|∇XΓ
1

2−β |2|u|2dν

+ C(β,m)αγb

∫
Ω

(a+ bΓ
α

2−β )γ−1

Γ
2m−α+2

2−β

|∇XΓ
1

2−β |2|u|2dν, (12.41)

where C(β,m) := β−2m−2
2 and ∇X = (X1, . . . , XN ).

Remark 12.5.3.

1. In Theorem 12.5.1, if u vanishes on the boundary ∂Ω and if pi = p, then we
have the two-weighted Hardy type inequalities for general vector fields of the
form ∫

Ω

W (x)|∇Xu|pdν ≥
∫
Ω

H(x)|u|pdν, (12.42)

where ∇X := (X1, . . . , XN).

2. Inequality (12.37) is an analogue of the result of Wang and Niu [WN08], but
now for general vector fields. Also, by taking γ = 0 and pi = 2 we have the
following inequality∫

Ω

Γ
α

2−β |∇Xu|2dν ≥
N∑
i=1

(
β + α− 2

2

)2 ∫
Ω

Γ
α−2
2−β |∇XΓ

1
2−β |2|u|2dν, (12.43)

for all u ∈ C∞
0 (Ω) and where ∇X = (X1, . . . , XN ), which gives (12.21)

without the boundary term.

3. Inequality (12.38) recovers the result of D’Ambrosio in [D’A05, Theorem 2.7].

4. A Carnot group version of inequality (12.39) was established by Goldstein,
Kombe and Yener in [GKY17].

5. The Carnot and Euclidean versions of inequality (12.40) were established in
[GKY17] and [Skr13], respectively.

6. The Carnot and Euclidean versions of inequality (12.41) were established in
[GKY17] and [GM11], respectively.

As in the setting of stratified groups let us first present the anisotropic Picone
type identity, now for general vector fields.

Lemma 12.5.4 (Anisotropic Picone identity for general vector fields). Let Ω ⊂ M
be an open set. Let u, v be differentiable a.e. in Ω, v > 0 a.e. in Ω and u ≥ 0.
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Define

R(u, v) :=

N∑
i=1

|Xiu|pi −
N∑
i=1

Xi

(
upi

vpi−1

)
|Xiv|pi−2 Xiv, (12.44)

L(u, v) :=

N∑
i=1

|Xiu|pi −
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2

XivXiu

(12.45)

+

N∑
i=1

(pi − 1)
upi

vpi
|Xiv|pi ,

where pi > 1, i = 1, . . . , N . Then

L(u, v) = R(u, v) ≥ 0. (12.46)

In addition, we have L(u, v) = 0 a.e. in Ω if and only if u = cv a.e. in Ω with a
positive constant c > 0.

Proof of Lemma 12.5.4. A direct calculation yields

R(u, v) =
N∑
i=1

|Xiu|pi −
N∑
i=1

Xi

(
upi

vpi−1

)
|Xiv|pi−2Xiv

=

N∑
i=1

|Xiu|pi −
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2XivXiu+

N∑
i=1

(pi − 1)
upi

vpi
|Xiv|pi

= L(u, v),

which gives the equality in (12.46). Now we restate L(u, v) in a different form,
with the aim to show that L(u, v) ≥ 0. Thus, we write

L(u, v) =

N∑
i=1

|Xiu|pi −
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−1|Xiu|+

N∑
i=1

(pi − 1)
upi

vpi
|Xiv|pi

+

N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2 (|Xiv||Xiu| −XivXiu)

= S1 + S2,

where

S1 :=

N∑
i=1

pi

[
1

pi
|Xiu|pi +

pi − 1

pi

((u
v
|Xiv|

)pi−1
) pi

pi−1

]

−
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−1|Xiu|,
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and

S2 :=

N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2 (|Xiv||Xiu| −XivXiu) .

Since
|Xiv||Xiu| ≥ XivXiu,

we have S2 ≥ 0. To check that S1 ≥ 0 we will use Young’s inequality for a ≥ 0
and b ≥ 0 stating that

ab ≤ api

pi
+

bqi

qi
, (12.47)

where pi > 1, qi > 1, and 1
pi

+ 1
qi

= 1 for i = 1, . . . , N . The equality in (12.47)

holds if and only if api = bqi , i.e., if a = b
1

pi−1 . By setting

a := |Xiu| and b :=
(u
v
|Xiv|

)pi−1

in (12.47), we get

pi|Xiu|
(u
v
|Xiv|

)pi−1

≤ pi

[
1

pi
|Xiu|pi +

pi − 1

pi

((u
v
|Xiv|

)pi−1
) pi

pi−1

]
. (12.48)

This implies S1 ≥ 0 which proves that L(u, v) = S1 + S2 ≥ 0.

It is straightforward to see that u = cv implies R(u, v) = 0.

Now let us show that L(u, v) = 0 implies u = cv. Due to u(x) ≥ 0 and
L(u, v)(x0) = 0, x0 ∈ Ω, we consider the two cases u(x0) > 0 and u(x0) = 0. For
the case u(x0) > 0 we conclude from L(u, v)(x0) = 0 that S1 = 0 and S2 = 0.
Then S1 = 0 yields

|Xiu| = u

v
|Xiv|, i = 1, . . . , N, (12.49)

and S2 = 0 implies

|Xiv||Xiu| −XivXiu = 0, i = 1, . . . , N. (12.50)

The combination of (12.49) and (12.50) gives

Xiu

Xiv
=

u

v
= c, with c �= 0, i = 1, . . . , N. (12.51)

Let us denote
Ω∗ := {x ∈ Ω : u(x) = 0}.

If Ω∗ �= Ω, then suppose that x0 ∈ ∂Ω∗. So there exists a sequence xk /∈ Ω∗

such that xk → x0. In particular, u(xk) �= 0, and hence by the first case we have
u(xk) = cv(xk). Passing to the limit we get u(x0) = cv(x0). Since u(x0) = 0 and
v(x0) �= 0, we get that c = 0. But then by the first case again, since u = cv and
u �= 0 in Ω\Ω∗, it is impossible that c = 0. This contradiction implies that Ω∗ = Ω.
It completes the proof of Lemma 12.5.4. �
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The established anisotropic Picone identity can be used to prove Theorem
12.5.1.

Proof of Theorem 12.5.1. In the following calculation, we will use the following
properties: anisotropic Picone type identity (12.46), then we apply the divergence
theorem and the hypothesis (12.35), respectively, finally yielding (12.36). Thus,
we obtain

0 ≤
∫
Ω

N∑
i=1

Wi(x)L(u, v)dν =

∫
Ω

N∑
i=1

Wi(x)R(u, v)dν

=

N∑
i=1

∫
Ω

Wi(x)|Xiu|pidν −
N∑
i=1

∫
Ω

Xi

(
upi

vpi−1

)
Wi(x)|Xiv|pi−2Xivdν

=

N∑
i=1

∫
Ω

Wi(x)|Xiu|pidν +

N∑
i=1

∫
Ω

upi

vpi−1
Xi

(
Wi(x)|Xiv|pi−2Xiv

)
dν

−
N∑
i=1

∫
∂Ω

upi

vpi−1
〈∇̃i

(
Wi(x)|Xiv|pi−2Xiv

)
, dν〉

≤
N∑
i=1

∫
Ω

Wi(x)|Xiu|pidν −
N∑
i=1

∫
Ω

Hi(x)u
pidν

−
N∑
i=1

∫
∂Ω

upi

vpi−1
〈∇̃i

(
Wi(x)|Xiv|pi−2Xiv

)
, dν〉,

where ∇̃if = XifXi. The proof of Theorem 12.5.1 is complete. �

Finally, we prove Corollary 12.5.2.

Proof of Corollary 12.5.2. Part (1). Consider the functions Wi and v such that

Wi = dα|Xid|γ and v = Γ
ψ

2−β = dψ, (12.52)

where, to abbreviate the calculation, we denote

d := Γ
1

2−β and ψ := −β + α− pi
pi

.

Now we plug (12.52) in (12.35) to determine the candidate for the function Hi.
For this, we first prepare several calculations. We can readily find

Xiv = ψdψ−1Xid,

|Xiv|pi−2 = |ψ|pi−2d(ψ−1)(pi−2)|Xid|pi−2,

Wi|Xiv|pi−2Xiv = |ψ|pi−2ψdα+(ψ−1)(pi−1)|Xid|γ+pi−2Xid.
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Also, we get

N∑
i=1

X2
i d

α =

N∑
i=1

Xi(XiΓ
α

2−β ) =

N∑
i=1

Xi

(
α

2− β
Γ

α+β−2
2−β XiΓ

)

=
α(α + β − 2)

(2 − β)2
Γ

α+2β−4
2−β

N∑
i=1

|XiΓ|2 + α

2− β
Γ

α+β−2
2−β

N∑
i=1

X2
i Γ

=
α(α + β − 2)

(2 − β)2
dα+2β−4

N∑
i=1

|Xid
2−β |2

= α(α + β − 2)dα−2
N∑
i=1

|Xid|2. (12.53)

We observe that
∑N

i=1 X
2
i Γ = 0 outside y, since Γ = Γy is the fundamental solution

for L. Also, we have

Xi|Xid|γ = Xi((Xid)
2)γ/2 = γ|Xid|γ−2XidX

2
i d

= γ(β − 1)d−1|Xid|γXid.
(12.54)

In the last line, we have used (12.53) with α = 1. Using (12.53) and (12.54), we
compute

Xi(Wi|Xiv|pi−2Xiv)

= |ψ|pi−2ψXi

(
dα+(ψ−1)(pi−1)|Xid|γ+pi−2Xid

)
= |ψ|pi−2ψ

(
(α+ (ψ − 1)(pi − 1))dα+(ψ−1)(pi−1)−1|Xid|γ+pi

)
+ |ψ|pi−2ψ

(
(γ + pi − 2)(β − 1)dα+(ψ−1)(pi−1)−1|Xid|γ+pi

)
+ |ψ|pi−2ψ

(
(β − 1)dα+(ψ−1)(pi−1)−1|Xid|γ+pi

)
= |ψ|pi−2ψ (−ψ + (γ + pi − 2)(β − 1)) dα−pi+ψ(pi−1)|Xid|γ+pi

= −|ψ|pidα−pi |Xid|γ+pivpi−1

+ |ψ|pi−2ψ(γ + pi − 2)(β − 1)dα−pi |Xid|γ+pivpi−1.

If we put back the value of ψ, we get

−Xi(Wi|Xiv|pi−2Xiv)

=

∣∣∣∣β + α− pi
pi

∣∣∣∣pi

dα−pi |Xid|γ+pivpi−1

+

∣∣∣∣β + α− pi
pi

∣∣∣∣pi−2 (
β + α− pi

pi

)
(γ + pi − 2)(β − 1)dα−pi |Xid|γ+pivpi−1
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≥
∣∣∣∣β + α− pi

pi

∣∣∣∣pi

dα−pi |Xid|γ+pivpi−1 ≥ Hi(x)v
pi−1,

the last inequality being the desired one. So having satisfied the hypothesis, we
plug the values of these functions Wi and

Hi =

∣∣∣∣β + α− pi
pi

∣∣∣∣pi

Γ
α−pi
2−β |XiΓ

1
2−β |γ+pi ,

in (12.36), which completes the proof of Part (1).

Part (2) can be proved by the same approach as the previous case by con-
sidering the functions

Wi = Γ
γ+pi
2−β and v = Γ

− (α−1)(pi−1)−γ−1

(2−β)pi .

Part (3) can be proved by the same approach as the previous cases by con-
sidering the functions

Wi = Γ
α

2−β and v =
(
1 + Γ

pi
(pi−1)(2−β)

)−β+α−pi
pi

.

Part (4) can be proved by the same approach as the previous case by con-
sidering the functions

Wi =
(
1 + Γ

pi
(pi−1)(2−β)

)α(pi−1)

and v =
(
1 + Γ

pi
(pi−1)(2−β)

)1−α

.

Part (5) can be proved by the same approach for pi = 2, i = 1, . . . , N, as the
previous cases by considering the functions

W =
(a+ bΓ

α
2−β )γ

Γ
2m
2−β

and v = Γ− β−2m−2
2(2−β) .

This completes the proof of Corollary 12.5.2. �

12.6 Local uncertainty principles

As usual, Hardy inequalities imply uncertainty principles, and we now formulate
such consequences of Theorem 12.4.1 and Theorem 12.5.1.

Corollary 12.6.1 (Local uncertainty principles for sums of squares). Let y ∈ M be
such that (A+

y ) holds with the fundamental solution Γ = Γy in Ty. Let Ω ⊂ Ty be

an admissible domain and let β > 2. Then for all u ∈ C1(Ω)
⋂

C(Ω) we have∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν
∫
Ω

|∇Xu|2dν

≥
(
β − 2

2

)2 (∫
Ω

|∇XΓ
1

2−β |2|u|2dν
)2

+
1

2

∫
∂Ω

Γ−1|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν, (12.55)
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and also∫
Ω

Γ
2

2−β

|∇XΓ
1

2−β |2
|u|2dν

∫
Ω

|∇Xu|2dν (12.56)

≥
(
β − 2

2

)2 (∫
Ω

|u|2dν
)2

+
1

2

∫
∂Ω

Γ−1|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β

|∇XΓ
1

2−β |2
|u|2dν.

Remark 12.6.2.

1. As in Remark 12.4.2, Part 3, the last (boundary) terms in (12.55) and (12.56)
can also be positive, thus providing refined uncertainty principles with respect
to the boundary conditions.

2. One can readily check that (12.55) extends the classical Hardy inequality.
Indeed, in the case of M = Rn and Xk = ∂

∂xk
, k = 1, . . . , n, taking α = 0

and β = n ≥ 3, the fundamental solution for the Laplacian is given by
Γ(x) = Cn|x|2−n for some constant Cn and |x|E being the Euclidean norm,
so that (12.55) reduces to the classical Hardy inequality∫

Rn

|∇u(x)|2dx ≥
(
n− 2

2

)2 ∫
Rn

|u(x)|2
|x|2E

dx, n ≥ 3, (12.57)

where ∇ is the standard gradient in Rn, u ∈ C∞
0 (Rn\{0}), and the con-

stant
(
n−2
2

)2
is known to be sharp. The constant Cn does not enter (12.57)

due to the scaling invariance of the inequality (12.55) with respect to the
multiplication of Γ by positive constants.

3. Further to the Euclidean example (12.57), with Γ
1

2−β (x) = C|x|E we have

|∇Γ
1

2−β | = C, and hence both (12.55) and (12.56) reduce to the classical
uncertainty principle for Ω ⊂ Rn if u = 0 on ∂Ω (for example, for u ∈
C∞

0 (Ω)):∫
Ω

|x|2E |u(x)|2dx
∫
Ω

|∇u(x)|2dx ≥
(
n− 2

2

)2 (∫
Ω

|u(x)|2dx
)2

, n ≥ 3.

4. In the example of stratified Lie groups with β = Q ≥ 3 being the homo-

geneous dimension of the group, and Γ
1

2−β (x) = d(x) being the L-gauge,
inequality (12.55) reduces to∫

Ω

d2|∇Xd|2|u|2dν
∫
Ω

|∇Xu|2dν

≥
(
Q− 2

2

)2 (∫
Ω

|∇Xd|2|u|2dν
)2

+
1

2

∫
∂Ω

dQ−2|u|2〈∇̃d2−Q, dν〉
∫
Ω

d2|∇Xd|2|u|2dν,

which gives inequality (12.24).
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Proof of Corollary 12.6.1. Taking α = 0 in inequality (12.21) we get∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν
∫
Ω

|∇Xu|2dν

≥
(
β − 2

2

)2 ∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν
∫
Ω

|∇XΓ
1

2−β |2
Γ

2
2−β

|u|2 dν

+
1

2

∫
∂Ω

Γ−1|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν

≥
(
β − 2

2

)2 (∫
Ω

|∇XΓ
1

2−β |2|u|2dν
)2

+
1

2

∫
∂Ω

Γ−1|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν,

where we have used the Hölder inequality in the last line. This shows (12.55). The
proof of (12.56) is similar. �

Inequality (12.22) also implies the following refinement of Corollary 12.6.1.

Corollary 12.6.3 (Refined local uncertainty principles for sums of squares). Let
y ∈ M be such that (A+

y ) holds with the fundamental solution Γ = Γy in Ty.
Let Ω ⊂ Ty, y �∈ ∂Ω, be an admissible domain and let β > 2. Then for all u ∈
C1(Ω)

⋂
C(Ω) we have∫

Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν
∫
Ω

|∇Xu|2dν

≥
(
β − 2

2

)2 (∫
Ω

|∇XΓ
1

2−β |2|u|2dν
)2

+
1

4

∫
Ω

|∇XΓ
1

2−β |2
Γ

2
2−β

(
ln

R

Γ
1

2−β

)−2

|u|2dν
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν

+
1

2(β − 2)

∫
∂Ω

Γ−1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν

+
1

2

∫
∂Ω

Γ−1|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν, (12.58)

and also∫
Ω

Γ
2

2−β

|∇XΓ
1

2−β |2
|u|2dν

∫
Ω

|∇Xu|2dν

≥
(
β − 2

2

)2 (∫
Ω

|u|2dν
)2

+
1

4

∫
Ω

|∇XΓ
1

2−β |2
Γ

2
2−β

(
ln

R

Γ
1

2−β

)−2

|u|2dν
∫
Ω

Γ
2

2−β

|∇XΓ
1

2−β |2
|u|2dν
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+
1

2(β − 2)

∫
∂Ω

Γ−1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β

|∇XΓ
1

2−β |2
|u|2dν

+
1

2

∫
∂Ω

Γ−1|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β

|∇XΓ
1

2−β |2
|u|2dν. (12.59)

Proof of Corollary 12.6.3. Taking α = 0 in inequality (12.22) we get∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν
∫
Ω

|∇Xu|2dν

≥
(
β − 2

2

)2 ∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν
∫
Ω

|∇XΓ
1

2−β |2
Γ

2
2−β

|u|2 dν

+
1

4

∫
Ω

|∇XΓ
1

2−β |2
Γ

2
2−β

(
ln

R

Γ
1

2−β

)−2

|u|2dν
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν

+
1

2(β − 2)

∫
∂Ω

Γ−1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν

+
1

2

∫
∂Ω

Γ−1|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν

≥
(
β − 2

2

)2 (∫
Ω

|∇XΓ
1

2−β |2|u|2dν
)2

+
1

4

∫
Ω

|∇XΓ
1

2−β |2
Γ

2
2−β

(
ln

R

Γ
1

2−β

)−2

|u|2dν
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν

+
1

2(β − 2)

∫
∂Ω

Γ−1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν

+
1

2

∫
∂Ω

Γ−1|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν,

where we have used the Hölder inequality. This shows (12.58). The proof of (12.59)
is similar. �
Remark 12.6.4.

1. In the Euclidean case M = R
n with β = n ≥ 3, we have Γ

1
2−β (x) = C|x|E is

a constant multiple of the Euclidean distance, so that |∇Γ
1

2−β | = C. Conse-
quently both (12.58) and (12.59) reduce to the improved uncertainty principle
for Ω ⊂ Rn if u = 0 on ∂Ω (for example, usually one takes u ∈ C∞

0 (Ω)):∫
Ω

|x|2|u(x)|2dx
∫
Ω

|∇u(x)|2dx

≥
(
n− 2

2

)2 (∫
Ω

|u(x)|2dx
)2

+
1

4

∫
Ω

1

|x|2
(
ln

R

|x|
)−2

|u(x)|2dν
∫
Ω

|x|2|u(x)|2dν, n ≥ 3.
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2. In the Example of stratified Lie groups with β = Q ≥ 3 being the homo-

geneous dimension of the group G, and Γ
1

2−β (x) = d(x) being the L-gauge,
inequality (12.58) reduces to∫

Ω

d2|∇Xd|2|u|2dν
∫
Ω

|∇Xu|2dν

≥
(
Q− 2

2

)2 (∫
Ω

|∇Xd|2|u|2dν
)2

+
1

4

∫
Ω

|∇Xd|2
d2

(
ln
R

d

)−2

|u|2dν
∫
Ω

d2|∇Xd|2|u|2dν

+
1

2(Q− 2)

∫
∂Ω

dQ−2

(
ln
R

d

)−1

|u|2〈∇̃d2−Q, dν〉
∫
Ω

d2|∇Xd|2|u|2dν

+
1

2

∫
∂Ω

dQ−2|u|2〈∇̃d2−Q, dν〉
∫
Ω

d2|∇Xd|2|u|2dν.

Again, if u ∈ C∞
0 (G), the last terms disappear, and one obtains the improved

uncertainty principle on stratified Lie groups compared to the statement of
Corollary 11.4.3.

Theorem 12.5.1 also implies the following uncertainty principles:

Corollary 12.6.5 (Further uncertainty inequalities). Let Ω ⊂ M be an admissible
domain. Let β > 2. Then we have the following uncertainty inequalities:

(1) For all u ∈ C∞
0 (Ω) we have

β2

4

(∫
Ω

|u|2dν
)2

≤
(∫

Ω

|∇XΓ
1

2−β |−2|∇Xu|2dν
)(∫

Ω

Γ
2

2−β |u|2dν
)
.

(12.60)

(2) For all u ∈ C∞
0 (Ω) we have(∫

Ω

|∇Xu|2dν
)(∫

Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν
)

≥ β2

4

(∫
Ω

|∇XΓ
1

2−β |2|u|2dν
)2

.

(12.61)

(3) For all u ∈ C∞
0 (Ω) we have(∫

Ω

|∇Xu|2dν
)(∫

Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν
)

≥ (β − 1)2

4

(∫
Ω

Γ− 1
2−β |∇XΓ

1
2−β |2|u|2dν

)2

.

(12.62)

The Carnot group versions of these uncertainty principles in were established
in [Kom10] and [GKY17], and in our proof we follow [RSS18c].



12.7. Local Rellich inequalities 531

Proof of Corollary 12.6.5. Part (1). In Theorem 12.5.1, by letting

W (x) = |∇XΓ
1

2−β |−2 and v = e−αΓ
2

2−β

with α ∈ R, we obtain the inequality

−4α2

∫
Ω

Γ
2

2−β |u|2dν + 2αβ

∫
Ω

|u|2dν −
∫
Ω

|∇XΓ
1

2−β |−2|∇Xu|2dν ≤ 0.

This inequality is of the form aα2 + bα+ c ≤ 0, if we denote by

a := −4

∫
Ω

Γ
2

2−β |u|2dν, b := 2β

∫
Ω

|u|2dν,
and

c := −
∫
Ω

|∇XΓ
1

2−β |−2|∇Xu|2dν.

Thus, we must have b2 − 4ac ≤ 0 which proves (12.60).

Part (2). Setting

W = 1 and v = e−αΓ
2

2−β

with α ∈ R, we obtain∫
Ω

|∇Xu|2dν ≥ 2αβ

∫
Ω

|∇XΓ
1

2−β |2|u|2dν − 4α2

∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν.

Using the same technique as in Part (1) we prove (12.61).

We can prove Part (3) by the same approach, considering the pair

W = 1 and v = e−αΓ
1

2−β
.

The proof is complete. �

12.7 Local Rellich inequalities

In this section we present local refined versions of Rellich inequalities with ad-
ditional boundary terms on the right-hand side, in the way analogous to Hardy
inequalities and uncertainty principles in the previous sections. As before, we use
the notation

∇X = (X1, . . . , XN).

Theorem 12.7.1 (Local Rellich inequalities for sums of squares). Let y ∈ M be
such that (A+

y ) holds with the fundamental solution Γ = Γy in Ty. Let Ω ⊂ Ty be
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a strongly admissible domain such that y �∈ ∂Ω. Let α ∈ R, β > α > 4− β, β > 2

and R ≥ e supΩΓ
1

2−β . Then for all u ∈ C2(Ω)
⋂
C1(Ω) we have∫

Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν ≥ (β + α− 4)2(β − α)2

16

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+
(β + α− 4)2(β − α)

4(β − 2)

∫
∂Ω

Γ
α−2
2−β −1|u|2〈∇̃Γ, dν〉

+
(β + α− 4)(β − α)

4
C(u), (12.63)

as well as its further refinement∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν

≥ (β + α− 4)2(β − α)2

16

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+
(β + α− 4)(β − α)

8

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2

(
ln

R

Γ
1

2−β

)−2

|u|2dν

+
(β + α− 4)(β − α)

4(β − 2)

∫
∂Ω

Γ
α−2
2−β −1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉

+
(β + α− 4)2(β − α)

4(β − 2)

∫
∂Ω

Γ
α−2
2−β −1|u|2〈∇̃Γ, dν〉

+
(β + α− 4)(β − α)

4
C(u), (12.64)

where

C(u) := α− 2

2− β

∫
∂Ω

u2Γ
α−2
2−β −1〈∇̃Γ, dν〉 − 2

∫
∂Ω

Γ
α−2
2−β u〈∇̃u, dν〉.

Proof of Theorem 12.7.1. Let us prove (12.63) first. A direct calculation shows
that

LΓα−2
2−β =

N∑
k=1

X2
kΓ

α−2
2−β = (α− 2)

N∑
k=1

Xk

(
Γ

α−3
2−β XkΓ

1
2−β

)

= (α− 2)(α− 3)Γ
α−4
2−β

N∑
k=1

∣∣∣XkΓ
1

2−β

∣∣∣2 + (α− 2)Γ
α−3
2−β

N∑
k=1

Xk

(
XkΓ

1
2−β

)
= (α− 2)(α− 3)Γ

α−4
2−β

N∑
k=1

∣∣∣XkΓ
1

2−β

∣∣∣2 + α− 2

2− β
Γ

α−3
2−β

N∑
k=1

Xk

(
Γ

β−1
2−β XkΓ

)
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= (α− 2)(α− 3)Γ
α−4
2−β

N∑
k=1

∣∣∣XkΓ
1

2−β

∣∣∣2
+

(α− 2)(β − 1)

2− β
Γ

α−3
2−β Γ−1

N∑
k=1

(XkΓ
1

2−β )(XkΓ)

+
α− 2

2− β
Γ

β+α−4
2−β LΓ = (α− 2)(α− 3)Γ

α−4
2−β

N∑
k=1

∣∣∣XkΓ
1

2−β

∣∣∣2
+ (α− 2)(β − 1)Γ

α−4
2−β

N∑
k=1

(XkΓ
1

2−β )(XkΓ
1

2−β ) +
α− 2

2− β
Γ

β+α−4
2−β LΓ

= (β + α− 4)(α− 2)Γ
α−4
2−β |∇XΓ

1
2−β |2 + α− 2

2− β
Γ

β+α−4
2−β LΓ,

that is, we have

LΓα−2
2−β = (β + α− 4)(α− 2)Γ

α−4
2−β |∇XΓ

1
2−β |2 + α− 2

2− β
Γ

β+α−4
2−β LΓ. (12.65)

As in the proof of Theorem 12.4.1 we can assume that u is real-valued.
Multiplying both sides of (12.65) by u2 and integrating over Ω, since Γ is the
fundamental solution of L and β + α− 4 > 0, we obtain∫

Ω

u2LΓα−2
2−β dν = (β + α− 4)(α− 2)

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2u2 dν. (12.66)

On the other hand, by using Green’s second formula (12.15) we have∫
Ω

u2LΓα−2
2−β dν =

∫
Ω

Γ
α−2
2−β Lu2 dν +

∫
∂Ω

u2〈∇̃Γ
α−2
2−β , dν〉 −

∫
∂Ω

Γ
α−2
2−β 〈∇̃u2, dν〉

=

∫
Ω

Γ
α−2
2−β (2uLu+ 2|∇Xu|2) dν + C(u), (12.67)

where

C(u) := α− 2

2− β

∫
∂Ω

u2Γ
α−2
2−β −1〈∇̃Γ, dν〉 −

∫
∂Ω

2Γ
α−2
2−β u〈∇̃u, dν〉.

Combining (12.66) and (12.67) we obtain

−2

∫
Ω

Γ
α−2
2−β uLudν + (β + α− 4)(α− 2)

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2 u2dν

= 2

∫
Ω

Γ
α−2
2−β |∇Xu|2dν + C(u).

(12.68)
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By using (12.21) we have

− 2

∫
Ω

Γ
α−2
2−β uLudν + (β + α− 4)(α− 2)

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2 |u|2dν

≥ 2

(
β + α− 4

2

)2 ∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+
β + α− 4

β − 2

∫
∂Ω

Γ
α−2
2−β −1|u|2〈∇̃Γ, dν〉+ C(u).

It follows that

−
∫
Ω

Γ
α−2
2−β uLudν ≥

(
β + α− 4

2

)(
β − α

2

)∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+
β + α− 4

2(β − 2)

∫
∂Ω

Γ
α−2
2−β −1|u|2〈∇̃Γ, dν〉+ 1

2
C(u).

(12.69)

On the other hand, for any ε > 0, Hölder’s and Young’s inequalities give

−
∫
Ω

Γ
α−2
2−β uLudν ≤

(∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2dν

)1/2
(∫

Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν

)1/2

≤ ε

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2dν +

1

4ε

∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν.

(12.70)

Inequalities (12.70) and (12.69) imply that∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν ≥ (−4ε2 + (β + α− 4)(β − α)ε

) ∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+
2(β + α− 4)ε

β − 2

∫
∂Ω

Γ
α−2
2−β −1|u|2〈∇̃Γ, dν〉+ 2εC(u).

Taking ε = (β+α−4)(β−α)
8 , we obtain∫

Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν

≥ (β + α− 4)2(β − α)2

16

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+
(β + α− 4)2(β − α)

4(β − 2)

∫
∂Ω

Γ
α−2
2−β −1|u|2〈∇̃Γ, dν〉+ (β + α− 4)(β − α)

4
C(u),

which proves (12.63).
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Let us now prove (12.64). From (12.68), if we use (12.22), we get

− 2

∫
Ω

Γ
α−2
2−β uLudν + (β + α− 4)(α− 2)

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2 |u|2dν

≥ 2

(
β + α− 4

2

)2 ∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+
1

2

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2

(
ln

R

Γ
1

2−β

)−2

|u|2dν

+
1

(β − 2)

∫
∂Ω

Γ
α−2
2−β −1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉

+
β + α− 4

β − 2

∫
∂Ω

Γ
α−2
2−β −1|u|2〈∇̃Γ, dν〉+ C(u).

It follows that

−
∫
Ω

Γ
α−2
2−β uLudν ≥

(
β + α− 4

2

)(
β − α

2

)∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+
1

4

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2

(
ln

R

Γ
1

2−β

)−2

|u|2dν

+
1

2(β − 2)

∫
∂Ω

Γ
α−2
2−β −1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉

+
β + α− 4

2(β − 2)

∫
∂Ω

Γ
α−2
2−β −1|u|2〈∇̃Γ, dν〉+ 1

2
C(u). (12.71)

Inequalities (12.70) and (12.71) imply that∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν ≥ (−4ε2 + (β + α− 4)(β − α)ε

) ∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+ ε

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2

(
ln

R

Γ
1

2−β

)−2

|u|2dν

+
2ε

(β − 2)

∫
∂Ω

Γ
α−2
2−β −1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉

+
2(β + α− 4)ε

β − 2

∫
∂Ω

Γ
α−2
2−β −1|u|2〈∇̃Γ, dν〉+ 2εC(u).

Taking ε = (β+α−4)(β−α)
8 , we obtain∫

Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν

≥ (β + α− 4)2(β − α)2

16

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν
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+
(β + α− 4)(β − α)

8

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2

(
ln

R

Γ
1

2−β

)−2

|u|2dν

+
(β + α− 4)(β − α)

4(β − 2)

∫
∂Ω

Γ
α−2
2−β −1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉

+
(β + α− 4)2(β − α)

4(β − 2)

∫
∂Ω

Γ
α−2
2−β −1|u|2〈∇̃Γ, dν〉+ (β + α− 4)(β − α)

4
C(u).

This completes the proof of Theorem 12.7.1. �

By a modification and refinement of the proof of Theorem 12.7.1 we can
obtain another alternative of an improved Rellich inequality with boundary terms.

Theorem 12.7.2 (Refined local Rellich inequalities for sums of squares). Let y ∈ M
be such that (A+

y ) holds with the fundamental solution Γ = Γy in Ty. Let Ω ⊂ Ty

be a strongly admissible domain such that y �∈ ∂Ω. Let α ∈ R, β > α > 8−β
3 , β > 2

and R ≥ e supΩΓ
1

2−β . Then for all u ∈ C2(Ω)
⋂
C1(Ω) we have∫

Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν ≥ (β − α)2

4

∫
Ω

Γ
α−2
2−β |∇Xu|2dν

+
(β + 3α− 8)(β + α− 4)(β − α)

8(β − 2)

∫
∂Ω

Γ
α−2
2−β −1|u|2〈∇̃Γ, dν〉

+
(β + α− 4)(β − α)

4
C(u), (12.72)

and its further refinement∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν

≥ (β − α)2

4

∫
Ω

Γ
α−2
2−β |∇Xu|2dν

+
(β + 3α− 8)(β − α)

16

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2

(
ln

R

Γ
1

2−β

)−2

|u|2dν

+
(β + 3α− 8)(β − α)

8(β − 2)

∫
∂Ω

Γ
α−2
2−β −1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉

+
(β + 3α− 8)(β + α− 4)(β − α)

8(β − 2)

∫
∂Ω

Γ
α−2
2−β −1|u|2〈∇̃Γ, dν〉

+
(β + α− 4)(β − α)

4
C(u), (12.73)

where

C(u) := α− 2

2− β

∫
∂Ω

u2Γ
α−2
2−β −1〈∇̃Γ, dν〉 − 2

∫
∂Ω

Γ
α−2
2−β u〈∇̃u, dν〉.
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Proof of Theorem 12.7.2. Let us first prove (12.72). Let us rewrite (12.68) in the
form

1

2
C(u) +

∫
Ω

Γ
α−2
2−β |∇Xu|2dν (12.74)

= −
∫
Ω

Γ
α−2
2−β uLudν +

(β + α− 4)(α− 2)

2

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2 |u|2dν.

Also recalling (12.70) we have

−
∫
Ω

Γ
α−2
2−β uLudν ≤ ε

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2dν +

1

4ε

∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν.

(12.75)
Inequalities (12.75) and (12.74) imply that

1

2
C(u) +

∫
Ω

Γ
α−2
2−β |∇Xu|2dν

≤
(
(β + α− 4)(α− 2)

2
+ ε

)∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+
1

4ε

∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν. (12.76)

The already obtained inequality (12.63) can be rewritten as

16

(β + α− 4)2(β − α)2

∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν − 4

(β + α− 4)(β − α)
C(u)

− 4

(β − α)(β − 2)

∫
∂Ω

Γ
α−2
2−β −1|u|2〈∇̃Γ, dν〉 ≥

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν.

Combining this with (12.76) we obtain

1

2
C(u) +

(
(β + α− 4)(α− 2)

2
+ ε

)
4

(β + α− 4)(β − α)
C(u)

+

(
(β + α− 4)(α− 2)

2
+ ε

)
4

(β − α)(β − 2)

∫
∂Ω

Γ
α−2
2−β −1|u|2〈∇̃Γ, dν〉

+

∫
Ω

Γ
α−2
2−β |∇Xu|2dν

≤
(

16ε

(β + α− 4)2(β − α)2
+

8(α− 2)

(β + α− 4)(β − α)2
+

1

4ε

)
×
∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν.
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Taking ε = (β+α−4)(β−α)
8 this implies

(β+α−4)(β−α)

4
C(u) + (β+3α−8)(β+α−4)(β−α)

8(β − 2)

∫
∂Ω

Γ
α−2
2−β −1|u|2〈∇̃Γ, dν〉

+
(β − α)2

4

∫
Ω

Γ
α−2
2−β |∇Xu|2dν ≤

∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν,

which shows (12.72).

Let us now prove (12.73). Inequality (12.64) can be rewritten as

16

(β + α− 4)2(β − α)2

∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν − 16

(β + α− 4)2(β − α)2
D

≥
∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν,

where

D :=
(β + α− 4)(β − α)

8

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2

(
ln

R

Γ
1

2−β

)−2

|u|2dν

+
(β + α− 4)(β − α)

4(β − 2)

∫
∂Ω

Γ
α−2
2−β −1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉

+
(β + α− 4)2(β − α)

4(β − 2)

∫
∂Ω

Γ
α−2
2−β −1|u|2〈∇̃Γ, dν〉+ (β + α− 4)(β − α)

4
C(u).

Combining it with (12.76) we obtain

1

2
C(u) +

(
(β + α− 4)(α− 2)

2
+ ε

)
16

(β + α− 4)2(β − α)2
D +

∫
Ω

Γ
α−2
2−β |∇Xu|2dν

≤
(

16ε

(β + α− 4)2(β − α)2
+

8(α− 2)

(β + α− 4)(β − α)2
+

1

4ε

)∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν.

Taking ε = (β+α−4)(β−α)
8 we obtain

(β − α)2

8
C(u) + β + 3α− 8

2(β + α− 4)
D +

(β − α)2

4

∫
Ω

Γ
α−2
2−β |∇Xu|2dν

≤
∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν,

completing the proof. �
Remark 12.7.3. Let us formulate several consequences of the described estimates
for the setting of functions u ∈ C∞

0 (Ω), so that we have C(u) = 0. Thus if M =
G is a stratified group of homogeneous dimension Q ≥ 3, we take β = Q, so
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that Γ
1

2−β (x) = d(x) is the L-gauge on the group G. Then the above estimates
give refinements compared to known estimates, as, e.g., in Kombe [Kom10], with
respect to the inclusion of boundary terms. Thus, for all u ∈ C∞

0 (Ω), we have that

1. Estimate (12.63) is reduced to∫
Ω

dα

|∇Xd|2 |Lu|
2dν ≥ (Q+ α− 4)2(Q − α)2

16

∫
Ω

dα−4|∇Xd|2|u|2 dν,

for Q > α > 4−Q.

2. Estimate (12.64) is reduced to∫
Ω

dα

|∇Xd|2 |Lu|
2dν ≥ (Q+ α− 4)2(Q− α)2

16

∫
Ω

dα−4|∇Xd|2|u|2 dν

+
(Q+α−4)(Q−α)

8

∫
Ω

dα−4|∇Xd|2
(
ln
R

d

)−2

|u|2dν,

for Q > α > 4−Q.

3. Estimate (12.72) is reduced to∫
Ω

dα

|∇Xd|2 |Lu|
2dν ≥ (Q− α)2

4

∫
Ω

dα−2|∇Xu|2dν,

for Q > α > 8−Q
3 .

4. Estimate (12.73) is reduced to∫
Ω

dα

|∇Xd|2 |Lu|
2dν ≥ (Q− α)2

4

∫
Ω

dα−2|∇Xu|2dν

+
(Q+3α−8)(Q−α)

16

∫
Ω

dα−4|∇Xd|2
(
ln
R

d

)−2

|u|2dν,

for Q > α > 8−Q
3 .

For unweighted versions (with α = 0) inequalities (12.63)–(12.64) work under the
condition Q ≥ 5 which is usually appearing in Rellich inequalities, while (12.72)–
(12.73) work for homogeneous dimensions Q ≥ 9.



540 Chapter 12. Hardy and Rellich Inequalities for Sums of Squares

12.8 Rellich inequalities via Picone identities

In this section we discuss weighted Rellich inequalities in the spirit of Hardy in-
equalities from Section 12.5, relying on an appropriate version of Picone identities.

Theorem 12.8.1 (Weighted anisotropic Rellich type inequality). Let Ω ⊂ M be an
admissible domain. Let Wi(x) ∈ C2(Ω) and Hi(x) ∈ L1

loc(Ω) be the non-negative
weight functions. Let v > 0, v ∈ C2(Ω)

⋂
C1(Ω) with

X2
i

(
Wi(x)|X2

i v|pi−2X2
i v

) ≥ Hi(x)v
p−1 and −X2

i v > 0, (12.77)

a.e. in Ω, for all i = 1, . . . , N . Then for every 0 ≤ u ∈ C2(Ω)
⋂

C1(Ω) we have
the following inequality

N∑
i=1

∫
Ω

Hi(x)|u|pidν ≤
N∑
i=1

∫
Ω

Wi(x)|X2
i u|pidν (12.78)

+

N∑
i=1

∫
∂Ω

Wi(x)|X2
i v|pi−2X2

i v〈∇̃i

(
upi

vpi−1

)
, dν〉

−
N∑
i=1

∫
∂Ω

(
upi

vpi−1

)
〈∇̃i(Wi(x)|X2

i v|pi−2X2
i v), dν〉,

where 1 < pi < N for i = 1, . . . , N , and ∇̃iu = XiuXi.

The proof of Theorem 12.8.1 will rely on first establishing an appropriate
version of the second-order Picone identity. Before giving its formulation and the
proofs, let us make some remarks and also formulate several of its consequences.

Remark 12.8.2.

1. A Carnot group version of Theorem 12.8.1 was obtained by Goldstein, Kombe
and Yener in [GKY18]. In our exposition for general vector fields we follow
[RSS18c], also allowing one to include boundary terms into the inequality.

2. Note that the function v from the assumption (12.77) appears in the bound-
ary terms (12.78), which seems a new effect unlike known particular cases of
Theorem 12.8.1.

As a consequence of Theorem 12.8.1 we can obtain several Rellich type in-
equalities involving the sum of squares operator.

Corollary 12.8.3 (Rellich inequalities for sums of squares). Let Ω ⊂ M be an
admissible domain, and let the operator L is the sum of squares of vector fields:

L :=

N∑
i=1

X2
i .

Then we have the following estimates:
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(1) Let β > 2, α ∈ R, β + α > 4 and β > α. Then we have∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν ≥ (β + α− 4)2(β − α)2

16

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2dν,

for all u ∈ C∞
0 (Ω\{0}).

(2) Let 1 < p < ∞ and 2 − β < α < min{(β − 2)(p − 1), (β − 2)}. Then for all
u ∈ C∞

0 (Ω\{0}) we have∫
Ω

Γ
α+2p−2

2−β

|∇XΓ
1

2−β |2p−2
|Lu|pdν ≥ C(β, α, p)p

∫
Ω

Γ
α−2
2−β |∇XΓ

1
2−β |2|u|pdν, (12.79)

where C(β, α, p) := (β+α−2)
p

(β−2)(p−1)−α
p .

Proof of Corollary 12.8.3. To prove Part (1), we take γ = −β+α−4
2 , and choose

the functions W (x) and v such that

W (x) =
Γ

α
2−β

|XiΓ
1

2−β |2
and v = Γ

γ
2−β ,

and apply Theorem 12.8.1.

To prove Part (2), we set

W (x) =
Γ

α+2p−2
2−β

|∇XΓ
1

2−β |2p−2
and v = γ−β+α−2

p(2−β) ,

and apply Theorem 12.8.1. �

Now let us prove the following anisotropic (second-order) Picone type iden-
tity, extending its horizontal version in Lemma 6.10.4. Then, as a consequence, we
obtain Theorem 12.8.1.

Lemma 12.8.4 (Second-order Picone identity). Let Ω ⊂ G be an open set. Let u, v
be twice differentiable a.e. in Ω and satisfying the following conditions:

u ≥ 0, v > 0, X2
i v < 0 a.e. in Ω.

Let pi > 1, i = 1, . . . , N . Then we have

L1(u, v) = R1(u, v) ≥ 0, (12.80)

where

R1(u, v) :=
N∑
i=1

|X2
i u|pi −

N∑
i=1

X2
i

(
upi

vpi−1

)
|X2

i v|pi−2X2
i v,
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and

L1(u, v) :=

N∑
i=1

|X2
i u|pi −

N∑
i=1

pi

(u
v

)pi−1

X2
i uX

2
i v|X2

i v|pi−2

+

N∑
i=1

(pi − 1)
(u
v

)pi |X2
i v|pi

−
N∑
i=1

pi(pi − 1)
upi−2

vpi−1
|X2

i v|pi−2X2
i v

(
Xiu− u

v
Xiv

)2

.

Proof of Lemma 12.8.4. A direct computation yields

X2
i

(
upi

vpi−1

)
= Xi

(
pi
upi−1

vpi−1
Xiu− (pi − 1)

upi

vpi
Xiv

)
= pi(pi − 1)

upi−2

vpi−2

(
(Xiu)v − u(Xiv)

v2

)
Xiu+ pi

upi−1

vpi−1
X2

i u

− pi(pi − 1)
upi−1

vpi−1

(
(Xiu)v − u(Xiv)

v2

)
Xiv − (pi − 1)

upi

vpi
X2

i v

= pi(pi − 1)

(
upi−2

vpi−1
|Xiu|2 − 2

upi−1

vpi
XivXiu+

upi

vpi+1
|Xiv|2

)
+ pi

upi−1

vpi−1
X2

i u− (pi − 1)
upi

vpi
X2

i v

= pi(pi − 1)
upi−2

vpi−1

(
Xiu− u

v
Xiv

)2

+ pi
upi−1

vpi−1
X2

i u− (pi − 1)
upi

vpi
X2

i v,

which gives the equality in (12.80). By Young’s inequality we have

upi−1

vpi−1
X2

i uX
2
i v|X2

i v|pi−2 ≤ |X2
i u|pi

pi
+

1

qi

upi

vpi
|X2

i v|pi , i = 1, . . . , N,

where pi > 1 and qi > 1 with 1
pi

+ 1
qi

= 1. Since X2
i v < 0, i = 1, . . . , N, we

arrive at

L1(u, v) ≥
N∑
i=1

|X2
i u|pi+

N∑
i=1

(pi − 1)
upi

vpi
|X2

i v|pi−
N∑
i=1

pi

( |X2
i u|pi

pi
+

1

qi

upi

vpi
|X2

i v|pi

)

−
N∑
i=1

pi(pi − 1)
upi−2

vpi−1
|X2

i v|pi−2X2
i v

∣∣∣Xiu− u

v
Xiv

∣∣∣2
=

N∑
i=1

(
pi − 1− pi

qi

)
upi

vpi
|X2

i v|pi

−
N∑
i=1

pi(pi − 1)
upi−2

vpi−1
|X2

i v|pi−2X2
i v

∣∣∣Xiu− u

v
Xiv

∣∣∣2 ≥ 0.

This completes the proof of Lemma 12.8.4. �
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Proof of Theorem 12.8.1. Let us give a brief outline of the following proof as it is
similar to the proof of Theorem 12.5.1: we start by using the Picone type identity
(12.80), then we apply an analogue of Green’s second formula and the hypothesis
(12.77), respectively. Finally, we arrive at (12.78) by using Hi(x) ≥ 0. Summariz-
ing, we have

0 ≤
∫
Ω

Wi(x)L1(u, v)dν =

∫
Ω

Wi(x)R1(u, v)dν

=

∫
Ω

Wi(x)|X2
i u|pidν −

∫
Ω

X2
i

(
upi

vpi−1

)
Wi(x)|X2

i v|pi−2X2
i vdν

=

∫
Ω

Wi(x)|X2
i u|pidν −

∫
Ω

upi

vpi−1
X2

i

(
Wi(x)|X2

i v|pi−2X2
i v

)
dν

+

∫
∂Ω

(
Wi(x)|X2

i v|pi−2X2
i v〈∇̃i

(
upi

vpi−1

)
, dν〉

−
(

upi

vpi−1

)
〈∇̃i(Wi(x)|X2

i v|pi−2X2
i v), dν〉

)
≤

∫
Ω

Wi(x)|X2
i u|pidν −

∫
Ω

Hi(x)|u|pidν

+

∫
∂Ω

(
Wi(x)|X2

i v|pi−2X2
i v〈∇̃i

(
upi

vpi−1

)
, dν〉

−
(

upi

vpi−1

)
〈∇̃i(Wi(x)|X2

i v|pi−2X2
i v), dν〉

)
.

In the last line, we have used (12.77) which leads to (12.78). �
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