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Hardy and Rellich Inequalities for
Sums of Squares of Vector Fields

In this chapter, we demonstrate how some ideas originating in the analysis on
groups can be applied in related settings without the group structure. In particular,
in Chapter 7 we showed a number of Hardy and Rellich inequalities with weights
expressed in terms of the so-called £-gauge. There, the L-gauge is a homogeneous
quasi-norm on a stratified group which is obtained from the fundamental solution
to the sub-Laplacian. At the same time, in Chapter 11 we used the fundamental
solutions of the sub-Laplacian for the advancement of the potential theory on
stratified groups, and in Section 7.3 fundamental solutions for the p-sub-Laplacian
and their properties were used on polarizable Carnot groups for the derivation of
further Hardy estimates in that setting.

The aim of this chapter is to show that given the existence of a fundamental
solution one can use the ideas from the analysis on groups to establish a number
of Hardy inequalities on spaces without group structure.

Thus, let M be a smooth manifold of dimension n with a volume form duv.
Let {X;}_, be a family of real vector fields on M, and denote by £ the sum of
their squares:

L:=) X{. (12.1)

Identifying each vector field X with the derivative in its direction, second-order
differential operators in the form (12.1) have been widely studied in the literature.
For instance, by the well-known Hormander sums of the squares theorem from
[Hor67], the operator £ is locally hypoelliptic if the iterated commutators of the
vector fields {X;}&_, generate the tangent space at each point. Such operators
have been also investigated under weaker conditions or without the hypoellipticity
property. There are many geometric considerations related to such operators, see,
e.g., the seminal papers of Rothschild and Stein [RS76] and of Nagel, Stein and
Wainger [NSW85].
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In this chapter our main assumption on the operator £ in (12.1) will be
that it has a local fundamental solution. In particular, this is the case when M
is a stratified or a graded group, but the group assumption is, in principle, not
necessary. In what follows we will give other examples of naturally appearing
operators in other contexts having local or global fundamental solutions. The
presentation of this chapters is based on the results obtained in [RS17d].

12.1 Assumptions

We start by formulating assumptions for the presentation in this chapter. Then
we discuss several settings where these assumptions are satisfied. This will include
stratified Lie groups and operators on R” satisfying the Hormander commutator
condition.

Let M be a smooth manifold of dimension n with a volume form dv, and let
L be an operator as in (12.1). At a point y € M we will be making the following
assumption that we call (A,), asking for the existence of a local fundamental
solution at y:

(Ay) Fory € M, assume that there is an open set T,, C M containing y such
that the operator —£ has a fundamental solution in 7}, that is, there exists
a function T'y € C?(T,, \ {y}) such that

— LT, =6, in T,, (12.2)

where 9§, is the Dirac J-distribution at y.

When the point y is fixed, we will often use the notation I'(x,y) = I'y(z)
or simply I'(z). Here C? stands for the space of functions with continuous sec-
ond derivatives with respect to {X;}4~_,. We note that among other things the
existence of a fundamental solution implies that £ is hypoelliptic.

Sometimes we will strengthen Assumption (A,) to the following assumption
that we call (A;‘) asking for the local positivity of the fundamental solution:

(A)) Forye M, assume that (A,) holds and, moreover, we have

Iy(z) >0in T, \ {y}, and Fl (y) =0.

Y

The second part of the assumption is usually naturally satisfied since for a
fundamental solution I'y, the quotient Fly is usually well-defined and is equal to 0
at y since I'y normally blows up at y.

As before, we will be using the notation (Xj,dv) for the duality product
of the vector field X with the volume form dv, that is, since dv is an n-form,
(Xk,dv) is an (n — 1)-form on M.

It will be convenient to use the following notion of admissible domains in
this chapter. We note that this notion here differs from the one in Definition 1.4.4.
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However, there should be no confusion since the following definition will be used
in this chapter only.

Definition 12.1.1 (Admissible domains). We will say (in this chapter) that an
open bounded set 2 C M is an admissible domain if its boundary 02 has no
self-intersections, and if the vector fields { X} satisfy the equality

N N
I;/kafkdy_;/m fre( X, dv), (12.3)

for all fr, € CL(QYNC(Q),k=1,...,N.

We will also say that an admissible domain €2 is strongly admissible with
y € M if assumption (A,) is satisfied, Q C T, and (12.3) holds for f; = vX;I',
for all v € C1(Q) (N C(Q).

Although there are several conditions incorporated in the notion of a strongly
admissible domain the examples below will actually show that in a number of
natural settings, any open bounded set with a piecewise smooth boundary without
self-intersections is strongly admissible, see Proposition 12.2.1. The condition that
the boundary 052 has no self-intersections implies that 02 is orientable. For brevity,
we will say that such boundaries are simple.

12.1.1 Examples

Let us now describe several rather general settings when bounded domains with
simple boundaries are strongly admissible in the sense of Definition 12.1.1. More-
over, we discuss also the validity of assumptions (A,) and (A}).

For the examples (E2) and (E3) below we will need the following definition.

Definition 12.1.2 (Control distance and Hoélder spaces). The control distance
d.(x,y) associated to the vector fields X}, is defined as the infimum of T > 0
such that there is a piecewise continuous integral curve v of X1, ..., X such that
7(0) =z and ¥(T') = y.

The Hélder space C*(2) with respect to the control distance is then defined
for 0 < a <1 as the space of all functions u for which there is C' > 0 such that

lu(z) —u(y)| < Cdg (x,y)
holds for all z,y € Q. Then, u € C* if Xpu € C® for all k = 1,..., N, and the
spaces C™% are defined inductively.

Example 12.1.3 (Examples of strongly admissible domains). Let us give several
examples.

(E1) Let M be a stratified Lie group, n > 3, and let {X;}_, be left invariant
vector fields giving the first stratum of M. Then for any y € M the assump-
tion (A})) is satisfied with T, = M. Moreover, any open bounded set @ C M
with a piecewise smooth simple boundary is strongly admissible.
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Let M =R"™, n > 3, and let the vector fields X, k=1,...,N, N <n, be of
the form
0
Xy = T Z Qo ( 8mm (12.4)
m=N+1

where ay ,,, (z) are locally C1:®-regular for some 0 < o < 1, where C1® stands
for the space of functions with Xj-derivatives in the Holder space C'* with
respect to the control distance defined by these vector fields. Assume also

0 _ > N (@)X X)) (12.5)

al‘k
1<i<j<N

for all k = N +1,...,n, with A} € L (M). Then for any y € M the
assumption (A)) is satlsﬁed Moreover any open bounded set 2 C M with
a piecewise smooth simple boundary is strongly admissible.

More generally, let M = R™, n > 3, and let the vector fields Xy, k =1,..., N,
N < n, satisfy the Hormander commutator condition of step r > 2. Assume
that all Xy, k=1,..., N, belong to C™*(U) for some 0 < a < land U C M,
and if 7 = 2 we assume a = 1. Then for any y € M the assumption (A])
is satisfied. Moreover, if X}’s are in the form (12.4), then any open bounded
set Q C M with a piecewise smooth simple boundary is strongly admissible.

Some remarks are in order.

Remark 12.1.4.

1.

In Example (E1), the validity of Assumption (A}) for any y follows from
(1.74) and (1.75). The equality of (12.3) for (E1) and the strong admissibility
for any domain with piecewise smooth simple boundary follows from Theorem
1.4.5.

In Example (E2), the existence of a local fundamental solution, that is (A,)
for any y € M was shown by Manfredini [Man12]. While the positivity of
I'y does not seem to be explicitly stated there, see Sdnchez-Calle [SC84], or
Fefferman and Sanchez-Calle [FSC86] for the positivity, thus assuring that
Assumption (A}) holds. The validity of (12.3) and the strong admissibility
for any domain with piecewise smooth simple boundary will follow from
Theorem 12.2.1.

Condition (12.5) implies that the collection of vector fields { X }_, satisfies
Hormander’s commutator condition of step two.

The condition (12.4) on the vector fields in (E2) and (E3) is not restrictive.
In fact, by a change of variables one can show that any collection of linearly
independent vector fields which are locally C™*-regular (r € N) can be trans-
formed to a collection of the same regularity which satisfies condition (12.4),
see Manfredini [Man12, page 975].
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5. In Example (E3), the validity of condition (A;) was studied by Bramanti,
Brandolini, Manfredini and Pedroni [BBMP17, Theorem 4.8 and Theorem
5.9]. The validity of (12.3) and the strong admissibility for any domain with
piecewise smooth simple boundary will follow from Theorem 12.2.1.

6. Assumptions (A,) or (A}) hold also in some other settings. The subject of the
existence of local and global fundamental solutions for £ is well studied when
L is a hypoelliptic operator, see, e.g., [Man12, BLU04, FSC86, SC84, OR73|
for more general and detailed discussions.

7. For both Examples (E2) and (E3) let us give the following explicit example:
In R3 let N = 2 and let

0 0
Xl - 8331 + Q(I) (9.%‘37

0 0
X2 - 61‘2 + b(I) 8.1‘3 ’

be vector fields with coefficients
a(z) = z2(1 + |z2]), b(z) = —21(1 + [21]).

Clearly, these coefficients are not smooth. Then
0
X1, Xo] = —2(1 .
(X1 Xa) = ~2(1 +[oa + aal)

The vector fields X;, X, are C! and satisfy Hérmander’s commutator con-
dition of step two, so that assumptions of Example (E2) hold. Replacing |21,
|wa| with @1|21|, 22|72] we get C?1 vector fields, satisfying assumptions of
Example (E3).

These examples and the corresponding sub-Laplacian £ = X? + X2
were studied in [BBMP17, Section 6]. Other explicit examples can be built
from the so-called Ay-Laplacians, see, e.g., [KS16].

12.2 Divergence formula

For this, there is no need to make any assumptions on the step to which Hérman-
der’s commutator condition is satisfied, whether it is satisfied or not, or on the
existence of fundamental solutions as in (A, ). Thus, let us formulate this property
as a general statement which shall be of interest on its own. The assumption for
smoothness on X}, can be reduced here, e.g., to ax,m € Cl.

Theorem 12.2.1 (Divergence formula). Let Q@ C R™ be an open bounded domain
with a piecewise smooth boundary that has mno self-intersections. Let X, k =
1,...,N, be C* vector fields in the form
0 - 0
X = —+ Z akym(z)
m=N-+1

(12.6)
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Let fr, e CY(QONC(Q), k=1,...,N. Then for each k = 1,..., N, we have

/ kakdl/ = fk<Xk,dl/>. (127)
Q o0

Consequently, we also have the divergence type formula

N
/QZkade_/BQI;fk<Xk7dV>. (12.8)

k=1

If y € R™ is such that (Ay) is satisfied, then we can also take fi, = vXiIy in
formulae above, for allve CH(Q)NC(Q).

Formula (12.8) is exactly the one needed for the admissibility of a domain
in Definition 12.1.1. For a discussion of other related versions of the divergence
formula in the literature see Remark 1.4.7. The proof of Theorem 12.2.1 is similar
to that of Theorem 1.4.5.

Proof of Theorem 12.2.1. For any function f we calculate the following differenti-
ation formula

k=1 m=N+1
N N n n 3]‘
= Xpfdog =Y > arm (@) o dry + > o, BEm
k=1 k=1m=N-+1 m=N-+1
= Xpfdre+ Y 8a:m(7 > g (@)dag + da)
k=1 m=N+1 k=1
N n
of
= Xpfdep+ Y o, O
k=1 m=N+1
where we denote
N
0,, = — Zak m(x)dzy + dxy,, m=N+1,. . (12.9)
k=1
That is, we have
df = Zkada:k + Z (12.10)
m= N+1
It is simple to see that
<Xs,d$j>: dl‘j:(ssj71§8§N,1§j§n,

0z
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where §,; is the Kronecker delta. Moreover, we have

) - 0 &
(Xs,0m) = <6a?s + Z as,q(x) o, Zak,m(x)dxk + dxm>
g=N+1 § k=1
N 9 N
__Z(a sak’m(x)> dmk_za’“’m(x)a sdl‘k—‘ra Sdl’m
k=1 k=1
N n o N n o
-3 s q(T) ( p ak,m(x)> Ak = Y asg(@)akm(z) o L
k=1g=N+1 9 k=1g=N+1 g
- 0
+ Z as.q() dx,,
eyt Oxg
N

N n 9 N
- Z Z @s,9(7) o ak,m(l‘)> dxy — Z (8 ak,m(m)> dxy,
k=1g=N+1 g 1 s
N n
0
- Z [ as,g(2) (63: ay m(x)> + P ak,m(x)] dzy.
k=1 -g=N+1 9 s

That is, we have
<Xs7dl‘j> = 6sj7

fors=1,...,N, j=1,...,n, and

N
(Xs,0pm) = ch(s,m)daﬁk,
k=1
fors=1,...,N, m=N +1,...,n, where we denote
Ci(s,m) := — Z s.9(T) aag ag,m(x) aasak,m(a?)
g=N+1

We have

n

N N N n
dv :=dv(z) = /\ dxj = /\ dxj /\ dx,, = /\ dx; /\ Orm,
j=1 j=1 j=1

m=N+1 m=N+1
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so that

(X, dv(z /\ dz; /\ Orm (12.11)

j=1,j#k m=N+1

Therefore, by using formula (12.10) we get

d(fs(Xs, dv(x)))
= dfs A <stdy(m)>

N

=Y Xpfudai A (X, dv(z)) Z a * O A (X, dv(z))
k=1 m=N+1
N n

=> kfsdﬂ«”k/\/\dafg /\ Om+ > afs@ /\/\da:] /\ Orm
k=1 ];ék m=N-+1 m= N+1 ];ék m=N+1

The first term in the last line is equal to X fsdv(z) and the second term is zero
by the wedge product rules. Therefore, we obtain

d({fsXs,dv(z))) = Xsfsdv(z), s=1,...,N. (12.12)

Now using the Stokes theorem (see, e.g., [DFN84, Theorem 26.3.1]) we obtain
(12.7). Taking a sum over k we also obtain (12.8) for all f, € C1(Q) N C(Q).

As in the classical case, the formula (12.7) is still valid for the fundamental
solution of £ since I' can be estimated by a distance function associated to { X}
(see, e.g., [Man12, Proposition 4.8]), or [FSC86, SC84] for such estimates in a more
general setting. 0

12.3 Green’s identities for sums of squares

Similar to Theorem 1.4.6 the divergence formula in Theorem 12.2.1 implies the
corresponding Green identities.

Theorem 12.3.1 (Green’s identities). Let M be a smooth manifold of dimension n
with a volume form dv and let L be an operator as in (12.1). Let Q C M be an
admissible domain.

1. Green’s first identity: If v € CH(Q) N C(Q) and u € C*(Q) (N CH(Q) then we

have
/ ( (Vo) u—l—vﬁu) z/ (Vu, dv), (12.13)
Q Ble)

where

N
Vu =" (Xyu) Xi. (12.14)
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2. Green’s second identity: If u,v € C?(Q)(CL(Q) then we have

/(uﬁv —vLu)dv = / (u(Vv, dv) — v(Vu,dv)). (12.15)
Q o0

Moreover, if Q) is strongly admissible, we can put u =T in (12.13), and wu =T or
v="Tin (12.15).

As in Remark 1.4.7, Part 1, the notation (12.14) implies that for functions u
and v we have

N N
(%v) u=Vou= Z (Xpv) (Xpu) = ZkaXku = (%u) v (12.16)
k=1 k=1
is a scalar.

Proof of Theorem 12.3.1. Taking fr = vXiu, we get
N ~
Z Xifr = (Vo)u + vLu.
k=1

Since € is admissible we can use (12.3), so that we obtain

/(z(ﬁvu—&—vﬁu) dV:/QiX’ff’de

k=1

N
= [ > (fuXy,dv)

Ele Sl

N
= Z(vXkuXk, dv)
09 =1

= /BQ o(Vu, dv).

This proves (12.13). Then by rewriting (12.13) for interchanged functions u and v
we have

[ (Gwwrue)av= [ wGean,

oQ
/Q ((Foyu+ vw) dv = /8 o(Tud).

By subtracting the second identity from the first one and using (Vu)v = (Vo)u
in view of (12.16), we obtain (12.15).

If Q is strongly admissible, we can put I' for u or v as stated since (12.3)
holds in these cases as well. O
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Remark 12.3.2. It is crucial that Green’s identities are valid for the fundamental
solution T". In the classical (Euclidean) case Green’s identities are valid for the
fundamental solution of the Laplacian and this fact is of fundamental importance
in the classical theory as well.

12.3.1 Consequences of Green’s identities

Let us now record several useful consequences of Theorem 12.3.1. Setting v = 1
we obtain the following analogue of Gauss’ mean value type formulae:

Corollary 12.3.3 (Gauss’ mean value formulae). Let Q@ C M be an admissible
domain. Then we have

Lu>0inQ = <6u,dy>20
Ble)
and

Lu<0inQ) = (Vu,dv) < 0.
12,9}
Consequently, we also have

Lu=01inQ = (Vu,dv) = 0.
o0

Also, for a fixed x € Q, taking v = 1 and u(y) = I'(z,y) in (12.13) we obtain:

Corollary 12.3.4. Let Q C M be a strongly admissible domain such that Q@ C T},
for ally € Q, and let © € Q. Then we have

/ (VT (), dv(y)) = —1,
oQ

where VT (z,y) = %llf(x,y) refers to the notation (12.14) with derivatives taken
with respect to the variable y.

The assumption of Q2 C T}, for all y € Q in Corollary 12.3.4 just assures that
the family of I, is defined over y € €.

Corollary 12.3.5 (Representation formulae). Let us assume the conditions of Corol-
lary 12.3.4. Taking v in (12.15) to be the fundamental solution I we obtain the
following representation formulae.

1. Letu € C*(Q) N CHQ). Then for all x € Q we have
uw) = = [ T@pcutany
- [ u)Fr ) v + [ D) @ut)dv).
o9

o0
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2. Let u € C?*(Q)NCHR) and Lu =0 on 2. Then for all x €  we have

u() = — /a )T ). dv(y) + / P () (Fuly), dv(y)).

o2
3. Letu € C?(Q)NCH(Q) and
u(z) =0, x € 9.

Then for all x € Q we have

u(z) = — /Q P(z,y) Culy)du(y) + /a I(z,y)(Vuly), dv(y)).

Q

4. Letuw € C%2(Q)NCHQ) and

N
ZXﬂL(Xj,dV) =0 on 0Q.

j=1
Then for all x € Q we have

uw) = = [ Ta)Lumvty) = [ u) (L), driy).

o0

12.3.2 Differential forms, perimeter and surface measures

In this section we briefly describe the relation between the forms (X, dv), perime-
ter measure, and the surface measure on the boundary 0€2. In this we follow [RS17¢]
where this topic was discussed in the setting of stratified groups, and we would
like to thank Nicola Garofalo and Valentino Magnani for discussions.

Definition 12.3.6 (Perimeter measure). Let @ C M be an open set with a piecewise
smooth boundary. The perimeter measure on 0S2 is defined by

N
o (09) = SUP{Z/ Vi(Xiydv) 2 ¥ = (Y1, 9N,), [ <1, 4 € Cl}~
i=1 799

Then we have the following simple proof of the divergence formula in Theorem
12.2.1.

Proposition 12.3.7 (Divergence formula). Let X be a vector field and let (X, dv)
be the contraction of the volume form dv = dxz1 A -+ N dx, by X. Then we have

/QXW:/BQ o(X, dv). (12.17)
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Proof of Proposition 12.3.7. Let Lx denote the Lie derivative with respect to the
vector field X. The Cartan formula for Lx gives

Lx =dix +1xd, where ixdv = (X, dv).

Then we have

/XLpdV:/diV((pX)dV:/wadVZ/d(lwde):/ (X, dv),
Q Q Q Q o9
showing (12.17). O

Proposition 12.3.8 (Relation between forms, perimeter and surface measures). Let
(,-Yg denote the Euclidean scalar product. Then the perimeter measure doy and
the surface measure dS on OS2 are related by

X.
(v, X;)e 1daH:/ (X, dv),  (12.18)
o0

/{m Pl Xj)mdS = o0 N 2
(Zj:l (v, Xj>2E)

for all outer unit vectors v and all ¢ € C(IN).
Moreover, if g denotes the vector space spanned by {Xj}é-vzl and X; are
orthonormal on g, then for any f; € C°°(0N2) we have

N
/BQ;fj<vadV> = /BQ<X7 vi)gdom, (12.19)

where X = Z;\le [iX; and vy = Z;.V:l(v,Xj)EXj.
Proof of Proposition 12.3.8. For an outer unit vector v on 0f) let us write

1/2
N /

lvg| = Z(qu)% and lve|j =

j=1

(v, Xj)p
lv|

If dS is the surface measure on 02, we have
dO’H = |’()H|dS,

and all these relations are well defined because the perimeter measure of the set
of characteristic points of a smooth domain §2 is zero. We can now calculate

/Xj(pdV:/diV((pXj)dl/:/ @sz(dV):/ o(v, X;)pdS
Q Q o2 o2

v, X;
:/ Lp< ]>E|’UH|dS:/ LP‘UH|de'H7
o9 lv| o9
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giving one equality in (12.18). Combining this with (12.17) we obtain

| ety = [ cloul; o, (12.20)
o0 o0

the other equality in (12.18). Let us now assume that X; are orthonormal on g,

and let
N

X =Y fiX;.

j=1

We write

for a vector v with |vg| = 1. Then we have

N
(X,vm)g =Y _ filvnl;-

j=1
Now, applying (12.20) with ¢ = f; and summing over j, we get

N

N
/ag;fj<Xj7dV> = /BQ<X, vp)gdop, X = ijXj,

Jj=1

which gives (12.19). O

12.4 Local Hardy inequalities

In this section we describe local versions of the Hardy inequality including bound-
ary terms. The weights are formulated in terms of the fundamental solution and
the proof relies on Green'’s first formula from Theorem 12.3.1. As usual, we denote

vX' = (X17"'7XN)'

Theorem 12.4.1 (Local Hardy inequality with boundary terms). Let y € M be
such that (A}) holds with the fundamental solution T' =T, in T,. Let Q C T, be
a strongly admissible domain such that y & 0. Let o« € R, a« >2— 3, > 2 and

R > esupgl’ 225 Then for all u € CHQ)NC(Q) we have

e 72 2 ox—
/ F2*5|qu‘2 dv > (ﬂ+01 ) / F2*§|vxr2iﬁ |2|u‘2 dv
Q 2 Q
—2
+ Fta
2(8-2)

(12.21)
/ =%~ u|*(VT, dv),
o0
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as well as its further refinement

o —2\? o )
/Fz—ﬂvxu\?dyz (5+;‘ > /F2*§|VXF2fﬁ|2|u\2dV
Q Q

1 o -2
+zl/rz’g\vxﬁi“z (m X ) juf*dv
Q Le=e (12.22)

1 . R\ ! -
+ / [22st (m . ) u|2(VT, dv
2(8 —2) Joo 25 ful™ >

f+a—2 o112/
I'e- I, dv).
2(8-2) /asz Pl VT

Remark 12.4.2.

1. If u = 0 on the boundary 92, for example when supp u C €, then (12.21) can
be regarded as a usual Hardy inequality (without boundary term). Inequality
(12.22) can be regarded as a further refinement of (12.21) since it includes
further positive interior terms as well as further boundary terms.

2. Even if y € 09, the estimates (12.21) and (12.22) of Theorem 12.4.1 remain
true if y ¢ 0Q N supp u.

3. In (12.21) the boundary term can be positive, see Remark 11.4.2, Part 2, i.e.,
we sometimes have

b+a—2

208 —2) /BQFZS‘*AIUPWRCZW >0, (12.23)

for some w.

4. In the setting of Example (E1), i.e., when M is a stratified group, and X’s
are the vectors from the first stratum, then (12.21) is equivalent to (11.73) in
Theorem 11.4.1, where this inequality was expressed in terms of the £-gauge

d, taking f = @Q > 3, and d(z) = F(:E,O)"’*IQ7 where @ is the homogeneous
dimension of the group. For example, with o = 0 we get

—2\? 2
/|qu|2duz (Q 2) [Vaxd] lu|? dv
Q 2 Q

2
d (12.24)

1 -
+ / 492 uP(Vd>2, dv),
2 Joaq

2
with the sharp constant (Q2_2> .

Proof of Theorem 12.4.1. In the proof and in the subsequent analysis we follow
[RS17d].
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First, let us prove (12.21). By an argument of Remark 2.1.2, Part 3, we can
assume that wu is real-valued. In this case, recalling that

N
(Vuyu = (Xpu)Xpu = |Vxul?,
k=1

inequality (12.21) reduces to

2
/F?Sﬁ(%u)udyz (5—’_;_2) /Fg:g(%l“;ﬁ)lwiﬁuzdu
Q Q

5 (12.25)
5"‘04— / szﬁ*1u2<%r7dy>7
2(8-2) Joa
which we will now prove. Setting
u=d'q (12.26)

for some real-valued functions d > 0, ¢, and a constant v # 0 to be chosen later,
we have

(Vu)u = (Vd'q)dq

N
= Xi(dq) Xi(d"q)
k=1
N N N
=2y (Xkd)’q? +2yd* T g Y Xpd Xpg +d7 Y (Xpq)?
k=1 k=1 k=1

= 2D 2((Vd)d)g? + 2yd> 1 q(Vd)q + d* (Vg)q.

Multiplying both sides of this equality by d* and applying Green’s first formula
from Theorem 12.3.1 to the second term in the last line we observe that

at+2v—1 (e _ < gat2yy 2 0., ) <2\ jat2
27/d+27 Yy(Vd)qdy = /Vdﬂqdu_ /qu Tdy
Q (Vd) sz( ) a+ 2y sz( )

a4+ 2y
__ 7 / FLdetdy+ 7 / R (Vd*T2 ),
a+2y Jo a+ 27 Jaq
where we note that later on we will choose v so that d**27 = T, and hence

Theorem 12.3.1 is applicable. Consequently, we get

/da(%u)udyzqﬂ/ At =2((Vd)d) ¢*dv + 7 /(%d‘”zw)qzdy
Q Q

Q o+ 2y
+/ AT (Vq)qdy
Q
A2 a+2y—2( (T 2 v 2/ jok2y
—’y/d Vd)d) ¢*dv + /q Vvd ,dv
) ((Vd)d) oty fog )

v / 2 o+2y o+2y o
— q°Ld du+/ d Vq)qdv
a+2y Jo Q Vo)
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> 2 [ P (Vd)d) Py + / 2(Vd* 2, d
>0t [ @ @ag i T, [ e )

vy 2 pojo+2
_ L4+ dy, 12.27
o /ﬂq v (12.27)

since d > 0 and (Vq)q = |Vx¢q|? > 0. On the other hand, it can be readily checked
that for a vector field X we have

) 2/ ja+2 a+2y—1 v a+2v+B—2 2—0
X~(d 7 = X(d il Xd) = X(d v X(d

(a+27+ 8= 2)d XX (F) + ! ﬂda+27+5‘2X2(d2‘5)

_ 7
2-p
Y(a+2y+ B —2)d* 73X d)? +

) Y da+2’Y+B_2X2(d2_B)~

Consequently, we get the equality

— T Ldot = —y(a+ 2y + B — 2)dTIR(VA)d — o228,

o+ 2y 2—-p
(12.28)

Since ¢%> = d~?7u? in view of (12.26), substituting (12.28) into (12.27) we obtain

/ d*(Vu)udy > (=2 —v(a + 8 — 2)) / d*2((Vd)d)yu?dv
Q Q

Y 2—B\ ja+B—2, 2 Y / —2v, 2/ Jo+2y
— Ld d u“dx + d"“"u*(Vd ,dv).
2-p sz( ) a+2v Jaa < )

Taking d =T 225 , B> 2, concerning the second term we observe that for a« > 2—
and 8 > 2 we have

/(ﬁr)r“ﬁfu?dx =0, (12.29)
Q

since I' = I'y is the fundamental solution to £. Indeed, the above equality is clear
when y is outside of €. If y belongs to 2 we have

a+B—2

/(EF)Faﬁ?quw =T 20 (y)u’(y) =0,

Q

since conditions o > 2 — 3 and 8 > 2 imply that a;‘fﬁ_z < 0, and since %(y) =0
by (A}). Thus, with d = T2*5, 8> 2, we get

/ I (Vu)udy > (=% = y(a + 8 — 2))/ I (%I’Ziﬁ )F2iﬁ u? dv
Q Q
7 / 262 (VI 5 ,dv).
a+2y Joa
Taking v = 27g7a7 we obtain (12.25). Finally, we note that with this v, we have
d®*t?7 =T, so that the use of Theorem 12.3.1 is justified.
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Let us now prove (12.22), with the proof similar to the above proof of (12.21).
Recalling that

N
Z Xpu)Xpu = \qu|
k=1

inequality (12.22) reduces to

[e7 = 72 2 a—2
/F%B(Vu)udl/z <B+(21 > / I'2-5 (VF2 H)F2 su?dy
Q Q

1 a-2 ~ 1 1 R -2
o e (n R )
Q [2=s (12.30)

1 o R\ ', ~
+ / 2=t (m . > w?(VT, dv
2(8 - 2) Joa I'2-5 < >

Bra—2 [ . 4o
2= I'd
252 )

which we will now prove. Let us recall the first part of (12.27) as
/ d*(Vu)udy
Q

= [ @aaear T, [ @eias [ a G
Q a+2y Jq Q

2 a+2v—2( (T 2 Y 2/ ja+2y
=7 /d (Vd)d) ¢“dv + / q“(Vd ,dv)
Q a+2v Jaa

Y 2 p ja42 a+27 (o
— LAYT7d d*T7(Vq)qdv. 12.31
a+2v/ﬂq V+/Q (Vq)qdv ( )

Since ¢% = d~?7u?, substituting (12.28) into (12.31) we obtain

/ d*(Vu)udy = (— 7% —y(a+ - 2)) / d“~2((Vd)d)u>dv
Q

Q
Y 2— B\ ja+B—2, 2
— Ld d u dx
2-p sz( )

K / A2 (VA dv) + / 4o+ (V
: q)qdv.
a+2y Joa Q

Using (12.29), with d = T'2°5, B > 2, we obtain

/sz‘ymwy:(_72_7<a+5_2))/ T25 (VD250 P2 s u? du
Q Q

v / =2 200 S a+2v (S
25y VFZﬁ,dV+/d T(Vq)qdv.
a+2y Jaq < ) Q Vo)
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—B—a

Taking v = 2 5 we obtain
o = —2\? w—d o~
/ I2-8 (Vu)udy = (5 *‘2)‘ ) / D355 (VD229 )220 u? dy (12.32)
Q Q

B+a-—2 / o=l 25 / =
+ [z u*(VI,dv) + | T'(Vq)qdv.
2(8-2) Joa < > ) Vo)

R\ 2
q= <1n 1 ) P
r2ls

1

-1 L

= <ln Ei > Ffi%’ffﬁ) Uu.
I'2-5

A straightforward computation shows that

~ N : } ?
/F(Vq)qu:Z/F X; (m Rl > Lp—&-(ln Rl ) Xjp| dv
Q =179 ['2-5 T2-5

1
1 p o~
- 4/F2—Bﬁ(vrzia)rziﬁ (m R ) p2dv
Q

Let us now take

that is,

D26
— [ T2t (VD228 )od ' 7 (Vo)ed
o(V )pdv + n_, (Ve)edv
Q Q ['2-8

1 5~ . -
= /rz—‘%(vrziﬁ)rz—ﬁ <ln r > o2dv
4 Ja I'2-5

1 — R -
+ 2(572)/9(VF)<,0 dV—&-/QFlani/3 (Vo)pdy

—1
1 p o~

- /Fz—ﬁﬁ(vrzia)rziﬂ (m R ) p2dv
4 Ja I'2-5

1 2 1 2 I
d d
*2(5—2)/9‘6“0 ”*2(6—2)[%2““’ V)

R ~
+ / Fln | (Ve)edv. (12.33)
Q ['2-s

Since the second integral term of the right-hand side vanishes and the last integral
term is positive from (12.33) we obtain that

. 1 . R\ !
/r(vq)qduz 4/F2—‘2 (VD2 8)T20s (m X > P2dv
Q Q T2-8
1

T -2) /a P (VI dv)
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-2
1 oo ~
- /rzfﬁ(vrfziﬁ)rzia (m R ) u2dy
4 Jo I'2-5

1 o _1( R )1 e
+ [2-5 In u*(VT,dv). 12.34
2(8-2) /asz [22s < ) ( )

Finally, (12.32) and (12.34) imply (12.30). O

12.5 Anisotropic Hardy inequalities via
Picone identities

In this section we discuss the anisotropic versions of local Hardy inequalities for
general (real-valued) vector fields as in the previous sections. As in the most of this
chapter, such weighted anisotropic Hardy type inequalities will also include the
boundary terms, which of course disappear if one works with functions supported
in the interior of the considered domain. The analysis is based on the anisotropic
Picone type identities, analogous to those described in Section 6.10.1. As con-
sequences, we also recover some of the Hardy type inequalities of the Euclidean
space described earlier in the setting of the stratified groups. The presentation of
this section is based on [RSS18c].

Throughout this and further sections, let M be a smooth manifold of dimen-
sion n equipped with a volume form dv, and let {Xk}{g\’:p N < n, be a family of
real vector fields.

We start with the following weighted anisotropic Hardy type inequalities in
admissible domains in the sense of Definition 12.1.1.

Theorem 12.5.1 (Weighted anisotropic Hardy type inequality). Let Q@ C M be an
admissible domain. Let W;(x), H;(x) be non-negative functions for i =1,...,N,
such that for v e CH(Q) N C(Q) satisfying v > 0 a.e. in Q, we have

— X;(Wi(2)| X2 X0) > Hy(z)oP ™Y, i=1,...,N. (12.35)

Then, for all non-negative functions u € C*(Q) (N C*(Q) and the positive function
v e CHQ)NC(Q) satisfying (12.35), we have

N N
Z/ Wi(x)| XulPidy > Z/ H;(z)|u
i=1 7% i=1 7%

N
ubi ~ o
2> | s (B W) Xool? 2 Xi0) ).

Pidy (12.36)

where %Z—f:Xiin andp; > 1, fori=1,...,N.

Before proving this inequality let us formulate several of its consequences,
recovering and extending a number of known results, see Remark 12.5.3. In these
examples of the weighted anisotropic Hardy type inequalities on M we express the
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weights in terms of the fundamental solution I' = T () in the assumption A,,. For
brevity, we can just denote it by I', if we fix some y € M and the corresponding
T, and I'y.

Corollary 12.5.2 (Anisotropic Hardy inequalities and fundamental solutions). Let
Q C M be an admissible domain. Then we have the following estimates.

(1) Let a e R, 1 <p; < PB+a,i=1,...,N, and v > —1,8 > 2. Then for all
u € C§°(Q\{0}) we have

N
Z/ 2% | X,T28 || XulP dv
— Ja
= (12.37)
Pi PR
Z <B+Oz > / F2*%1 \XZ-F;/S pi+'v|u Pi .
i=1 Q2
(2) Let o,y € R and a # 0,8 > 2. Then for any u € C3(Q) we have
N
>
—Ja
. 1 (12.38)
S A
— Q
where Ci(a, 7, pi) == (a_l)(p'ip:l)_w_l, pi>1,andi=1,...,N.
(3) Let a e R, >2, 1 <p; < B+« fori=1,...,N. Then for all u € C5°()
we have
N
Z/ D22 | XulPidy
=179
(12.39)

ulPidy,

N 1
o . -3 |Pi
> g C’i(ﬂ,a’iﬂi)/ I2-s |X1F2m| pi
i1 Q (1 + [*(pi—m(zfﬁ))

_, \Pi—l
where Ci (B3, o, p;) = (5;1.011“) B+ ).
(4) Let a e R, >2, 1 <p; < B+« fori=1,...,N. Then for all u € C5°()

we have
N Py a(pifl) X
Z/ (1 + [*(m—l)@—ﬁ)) | XulPidy
/0
v (12.40)
Z (B, pi,a / o) [ulPidu,

Q Pj (1-pi)(1—
(1 + [i-1E-8) )

i—1
where C; (B, pi, @) :=f8 (pi(flfl)>p .

pi—1
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(5) Let 8> 2, a,b>0 and a,y,m € R. If ay > 0 and m < 5;2. Then for all

u € C§°(Q) we have

br2s )
/Q (a +F221nﬁ ) |VXU|2dV

prze )y
> c(pm? [ (@t O )| G e Dats Pluf2dy

Q I 2-8
prz2s)1—1
(B, m)ah / @ O ets PlufPdy,  (12.41)
Q T =

where C(B,m) := 5725"72 and Vx = (X1,..., XnN).

Remark 12.5.3.

1. In Theorem 12.5.1, if u vanishes on the boundary 02 and if p; = p, then we

have the two-weighted Hardy type inequalities for general vector fields of the
form

/W(m)|VXu|pdV2/H(m)|u\pdy, (12.42)
Q Q

where Vx = (X1,..., Xn).

. Inequality (12.37) is an analogue of the result of Wang and Niu [WNO8], but
now for general vector fields. Also, by taking v = 0 and p; = 2 we have the
following inequality

al B+a—2 ? -2 1
/szﬂ\qulzdv > Z( ) /Fz—a VD206 [2|u)?dy, (12.43)
Q i=1 2 @

for all w € C3°(2) and where Vx = (Xi,...,Xn), which gives (12.21)
without the boundary term.

. Inequality (12.38) recovers the result of D’Ambrosio in [D’A05, Theorem 2.7].

4. A Carnot group version of inequality (12.39) was established by Goldstein,

Kombe and Yener in [GKY17].

. The Carnot and Euclidean versions of inequality (12.40) were established in
[GKY17] and [Skr13], respectively.

. The Carnot and Euclidean versions of inequality (12.41) were established in
[GKY17] and [GM11], respectively.

As in the setting of stratified groups let us first present the anisotropic Picone

type identity, now for general vector fields.

Lemma 12.5.4 (Anisotropic Picone identity for general vector fields). Let Q C M
be an open set. Let u,v be differentiable a.e. in Q, v > 0 a.e. in Q and u > 0.
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Define

N

R(u,v) = Z; ZX ( >

N .
i wpi—1 -~
L(u,v) := E | X ulPt — E Pipi1 | X0[" 2 XjvXiu

i=1 i=1

Xﬂ}, (1244)

(12.45)
+ Z
where p; > 1,1=1,...,N. Then
L(u,v) = R(u,v) > 0. (12.46)

In addition, we have L(u,v) =0 a.e. in Q if and only if w = cv a.e. in Q with a
positive constant ¢ > 0.

Proof of Lemma 12.5.4. A direct calculation yields

N
R(u,v) = Z\Xu\l" ZX ( p_1>|X 2 X
N .
= Z sz . |X vP 2 XX u 4 Z \X v|Pi
=1 =1

|
h

(u,v),

which gives the equality in (12.46). Now we restate L(u,v) in a different form,
with the aim to show that L(u,v) > 0. Thus, we write

N

Z | Xiul" — sz i1 IX P Xl + ) (s IX ol

=1
pi—1

U -
+ Zpi i1 ‘X{U|pl 2 (\szHXlu| — Xiinu)
i=1

=51+ 5o,

where

pq
e S a7 ()]
*sz 1\X11

pi— 1|X ul,




12.5. Anisotropic Hardy inequalities via Picone identities 523

and

N
uPi—1 o
Syi= > pi ot | Xl 2 (1Xv]| Xu| — XjvXu) .
=1

Since

‘Xﬂ)‘ |Xiu| Z Xﬂ}Xi’U,,

we have Sy > 0. To check that S; > 0 we will use Young’s inequality for a > 0
and b > 0 stating that

ab< '+, (12.47)
where p; > 1,¢; > 1, and ; + qlv =1fori=1,...,N. The equality in (12.47)
holds if and only if a?* = b%, i.., if a = bri~1. By setting
U pi—1
a:=|X;u| and b:= ( \Xiv|>
v

in (12.47), we get

Pq
pi—l 1 i — 1 pi—1\ pi—1
il Xiul <u|Xi'U|> <pi l | XulP + b ((uXivD > ] . (12.48)
v Pi Di v

This implies S; > 0 which proves that L(u,v) = S; + Sz > 0.

Tt is straightforward to see that u = cv implies R(u,v) = 0.

Now let us show that L(u,v) = 0 implies v = cv. Due to u(z) > 0 and
L(u,v)(zg) = 0, zp € 2, we consider the two cases u(xg) > 0 and u(zg) = 0. For
the case u(xzg) > 0 we conclude from L(u,v)(xzg) = 0 that S; = 0 and Sz = 0.
Then S = 0 yields

Xiu| = “|Xw|, i=1,...,N, (12.49)
v
and Sy = 0 implies
| Xov||Xou| — XjoXu=0, i=1,...,N. (12.50)
The combination of (12.49) and (12.50) gives
Xi . .
XiZ:::c’ with ¢#0, ¢=1,...,N. (12.51)

Let us denote
QO ={xeQ: ulx) =0}
If Q* # Q, then suppose that o € 9Q*. So there exists a sequence zj ¢ Q*
such that xp — xzo. In particular, u(xy) # 0, and hence by the first case we have
u(zy) = cv(xy). Passing to the limit we get u(xg) = cv(zg). Since u(xg) = 0 and
v(zg) # 0, we get that ¢ = 0. But then by the first case again, since u = cv and
u # 0 in Q\Q*, it is impossible that ¢ = 0. This contradiction implies that Q* = Q.
It completes the proof of Lemma 12.5.4. O
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The established anisotropic Picone identity can be used to prove Theorem
12.5.1.

Proof of Theorem 12.5.1. In the following calculation, we will use the following
properties: anisotropic Picone type identity (12.46), then we apply the divergence
theorem and the hypothesis (12.35), respectively, finally yielding (12.36). Thus,
we obtain

N N
0S/SZZWi(m)L(uvv)dV:AZWi(w)R(u,v)du
=1 i=1
a N ubi
= . 2 |Pidy — ) : ‘
;/ﬂ Wi ()| Xul P dv ;/QXZ (vm_l) Wi(z)| X
al N ubi
i=1 i=1
N ubi - .,
a Z/ag pPi—1 (Vi (Wi()| Xi0P 2 Xi0) , dv)
i=1
N N
< [ w3 [ e
i=1 i=1

N Ppi ~
-2 /6Q vi—1 (Vi (Wi(2)| X" 2 X0) , dv),
=1

Pi=2 X udy

pi*QXﬂ/) dv

where %Z—f = X, fX;. The proof of Theorem 12.5.1 is complete. O
Finally, we prove Corollary 12.5.2.
Proof of Corollary 12.5.2. Part (1). Consider the functions W; and v such that
Wi = d*|X;d|" and v =T2"5 = d, (12.52)
where, to abbreviate the calculation, we denote

f+a—pi
Di .

d:=T2% and 1= —

Now we plug (12.52) in (12.35) to determine the candidate for the function H;.
For this, we first prepare several calculations. We can readily find
Xiv = vdY "t Xd,
‘Xiv|pi_2 _ ‘,l)[}‘p'i_2d('¢'_1)(pi_2)|Xid|pi_2’
Wi Xv Pim2X g = | Pi*zwd@+(w71)(pi*1) ‘Xid|7+pi*2Xid.
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Also, we get
N N N o ath2
X2de =Y X;(XiT2"e) =) X; 228 X,T
LD RLLEOESS (.75 )
N N
ala+—2) jat2s-4 9 « atp—2 5
= L 2-s X,I']? + [ 208 xr
(2 By D DY
ala+ 8 —2) al
_ - da+25—4 Xid2_’8 2
(2 By 2 Xl
N
=ala+B-2)d"* > |Xid|. (12.53)

i=1

We observe that Zfil X?2T = 0 outside y, since I' = I, is the fundamental solution
for L. Also, we have

X;|Xd|]" = X, ((X3d)?)V/? = 5| Xyd| "2 Xd X 2d
! (12.54)
= y(B — 1)d | Xd|” X;d.

In the last line, we have used (12.53) with o = 1. Using (12.53) and (12.54), we
compute

XZ(WZ‘XZU piiQXiU)
= P2 X; ( d‘”(l"’l)(’”’l)|Xid|7+pi’2Xid)
= [p[Pi 2 ((a + (¢ —1)(ps — 1))d0¢+(¢—1)(m—1)—1‘Xid|7+pi>
+ |[Pi—2y ((’Y +pi—2)(8— 1)da+(¢—1)(m—1)—1‘Xidp-i-pi)
+ |[Pi—2y ((B — 1)da+(w*1)(pi71)71‘Xidpﬂn)

= [0lP 70 (— 4 (3 + i = 2)(8 — 1)) PP X
— *W’ Xidpﬂnvpﬁl
Py 4 pi = 2)(8 — D XK

Pi ¥~ Pi

If we put back the value of 1, we get

- Xz(Wz ‘XZ’U piiQXZ‘U)
Ppi
= ‘6+api de—pi Xid"y+pivpi71
bi

4

— . pl_2 — .
+ ‘B + « Y2 (5 + a pz) (’7 +pz . 2)(5 _ 1)da—pi ‘Xid"Y‘FP'ivpi—l
bi
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. | P
> ‘ﬂ TP o Xy d et > Hy (o,
bi

the last inequality being the desired one. So having satisfied the hypothesis, we
plug the values of these functions W; and

B+ a—p;

?

pi

a—p; 1
H; = I 25 |Xi].—‘2*ﬁ |'Y+pi’

in (12.36), which completes the proof of Part (1).
Part (2) can be proved by the same approach as the previous case by con-
sidering the functions
Y+p; _(a=1)(p;—1)—vy-1
W, =125 and v="T (2=P)p;
Part (3) can be proved by the same approach as the previous cases by con-
sidering the functions

_ Bta—p;

W; =Tz and v = (1 + F(prlpf@—m) P

Part (4) can be proved by the same approach as the previous case by con-
sidering the functions
P a(pi—1) P; 1-a
W, = (1 + F(,,l,,w,ﬁ)) and  v= (1 + Fm—w—m) .

Part (5) can be proved by the same approach for p; = 2,7 =1,..., N, as the
previous cases by considering the functions

(j v —2m—
w= @I g =R
I2-s
This completes the proof of Corollary 12.5.2. O

12.6 Local uncertainty principles

As usual, Hardy inequalities imply uncertainty principles, and we now formulate
such consequences of Theorem 12.4.1 and Theorem 12.5.1.

Corollary 12.6.1 (Local uncertainty principles for sums of squares). Let y € M be
such that (A}) holds with the fundamental solution T' =T, in Ty. Let Q C T, be

an admissible domain and let B > 2. Then for all u € C*(Q) (N C(Q) we have
/ 278 |VxT2s \2\u|2dy/ |V xuldv
Q Q

2 2
- (6 2 2) (/ VT 2u|2d”>
Q

1 ~
+ / F*1|u\2<vr,dy>/ 225 |VxT25 [2|u)2dv, (12.55)
2 Joa Q
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and also

2

r
T Py [ (Vxuli (12.56)
Q ‘er *ﬁ |2
2 2 2
—2 1 ~ T2-8
> (6 > (/ u|2dy> + / I ul|?(VT, dv) / L uldv

2 Q 2 Jog Q |VxI2-5|2

Remark 12.6.2.

1. Asin Remark 12.4.2, Part 3, the last (boundary) terms in (12.55) and (12.56)
can also be positive, thus providing refined uncertainty principles with respect
to the boundary conditions.

2. One can readily check that (12.55) extends the classical Hardy inequality.
Indeed, in the case of M = R™ and X = Ba: ,k=1,...,n, taking a = 0
and f§ = n > 3, the fundamental solution for the Laplacian is given by
['(z) = Cplx|*~™ for some constant C,, and |z|g being the Euclidean norm,
so that (12.55) reduces to the classical Hardy inequality

_9\?2 2
\Vu(z)|*de > " fu(@) dx, mn >3, (12.57)
Rn 2 n |$|2E

where V is the standard gradient in R™, v € C§°(R"\{0}), and the con-
stant ("52)2 is known to be sharp. The constant C,, does not enter (12.57)
due to the scaling invariance of the inequality (12.55) with respect to the
multiplication of I' by positive constants.

3. Further to the Euclidean example (12.57), with I2's (x) = Clx|g we have

VT 2i/3\ = C, and hence both (12.55) and (12.56) reduce to the classical
uncertainty principle for Q@ C R™ if uw = 0 on 99 (for example, for u €
CGe ():

2 2
/|x|E\u \dx/wu dx>< 2) ( |u(x)|2d;1:> , n>3.
Q

4. In the example of stratified Lie groups with § = @ > 3 being the homo-
geneous dimension of the group, and \PRY () = d(x) being the L-gauge,
inequality (12.55) reduces to

/dQ\VXd\2|u\2dl// |V xul*dv
Q Q

Q*2 2 5 ) 2
(4 ([t

1 ~
+ / dQ_Q\u|2<Vd2_Q,dy>/ d?|V xd|?|u|*dv,
2 Joa Q

which gives inequality (12.24).
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Proof of Corollary 12.6.1. Taking o = 0 in inequality (12.21) we get
/ 278 |VxT28 \2\u|2dy/ |V xul*dv
Q Q

-2 2 \V4 ing 2
- <ﬁ ) /F"’E‘*\Vﬂziﬂ?\uI?dV/' A e
2 Q o TDe2s

1 ~ .
+ / F*1|u\2<vr,dy>/r23ﬁ\vxr2—ﬂ|2|u\2du
2 Jaq Q

2 2
- (5 2 2) (/ VT 2|u2d”>
Q

1 ~ 1
+ / r*1|u\2<vr,dy>/rzfﬁ\vxrzﬂﬂu\?dy,
2 Joa Q

where we have used the Hélder inequality in the last line. This shows (12.55). The
proof of (12.56) is similar. O

Inequality (12.22) also implies the following refinement of Corollary 12.6.1.

Corollary 12.6.3 (Refined local uncertainty principles for sums of squares). Let
y € M be such that (AJ) holds with the fundamental solution T' = T, in T,.
Let Q C Ty, y & 092, be an admissible domain and let > 2. Then for all u €
CLQ)NC(Q) we have

/sza|VXI‘2iﬁ\2|u\2dy/ |V xu|?dv
Q Q

2 2
- (5 2 2) (/ VT 2|u2d”>
Q

1
1 L2582 R \ 2
+ V=] <ln > |u\2dy/rzfﬁ|vxr2izs\2|u\2dy
Q

4 Jo T22s [2-5
T / r! (m & >_1u|2<%r du>/r23ﬁ|vxrziﬁ\2|u\2du
2(8-2) Joa [25 7 Q
+ 1/ r*1|u\2<6r,dy>/rzfﬁ\vxrziﬁ|2|u\2dy, (12.58)
2 Joa Q
and also

2
re2s
/ N \u|2d1// |V xul*dv
Q |VxI[e2-s|? Q
9\ 2 2
=(727) ()
2 Q

1 _9 2

1 V xI'2-5 |2 R T 2258

+ Vx ) | <ln . > |u\2d1// L JulPdy
4Ja T2 [2-5 Q |[VxDz-5 2



12.6. Local uncertainty principles 529

1 . r22s
+ / - (m " ) |u\2<VF,dy>/ T Py
2(6 —2) Joa [2-s o [VxD2-s |2

2

1 ~ T2-8

+ /F‘IIU\2<VF,dV>/ L JufPdv. (12.59)
2 Jog Q |VxI26|2

Proof of Corollary 12.6.3. Taking o = 0 in inequality (12.22) we get

/rzfawxrzia\?\uﬁdy/ |V xuldv

Q ) Q )
-2 V252
> (5 ) /rﬁﬁ\vxrziﬂ?\uﬁdu/' X B e a
2 Q FQ—L—?

v rz 5|2 R \?
VA (i B ) s [ et vt P
4 Q F2 8 T2-5 Q

1 R\ ! ~ 2 1
+ r-! (m > u2(VT, dv /rz—ﬁ VD25 |?|ul?dy
sgzy [ T (0 D) T [ 1t wrets Pl

1 ~ .
+ / F*1|u\2<vr,dy>/rzfa\vxrz—ﬁmuﬁdy
2 Jaq Q

2 2
- (5 2 2) (/ VT 2|u2d”>

282 R\
Vx | (n X > |u\2du/ F23ﬁ|VXI’2iﬁ|2|u\2dV
4 Jo T22s T2-58 Q
* s, / r (l i >_1| 2(VT,d >/“’"ﬁ|v T2 Pfufd
n u ,dv =8 |VxID2-8 % |ul*dv
2(8-2) Joq AP Q

1 ~
+ / r-1|u\2<vr,dy>/rzfﬁ\vxrziﬂ?\uﬁdy,
2 Jaq Q

where we have used the Holder inequality. This shows (12.58). The proof of (12.59)
is similar. O
Remark 12.6.4.

1. In the Euclidean case M = R"™ with § =n > 3, we have 25 (x) = Clz|g is
a constant multiple of the Euclidean distance, so that |[VT 225 | = C. Conse-

quently both (12.58) and (12.59) reduce to the improved uncertainty principle
for @ C R™ if uw = 0 on 0N (for example, usually one takes u € C§°(2)):

[t P [ [Vato)Pas
> (”2 > </Qu(;1:)2dx>
ﬂll/ﬂ \;‘2 (ln|f|)_2u(m)2dv/ﬂa:2|u(x)|2du, n>3.
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2. In the Example of stratified Lie groups with 8 = @ > 3 being the homo-
1
geneous dimension of the group G, and I'2-# (z) = d(z) being the L-gauge,
inequality (12.58) reduces to

/d2|VXd|2|u\2dl// |V xul?dv
Q Q

—9\2 2
> (97) ([ 1wxaptupar)
Q
df? -2
Vxd (m?) \u|2dy/d2\vxd\2|u\2du
Q

i) &

1 R\ ! -
+ / d9—2 (m ) w2 (Vd*= 9, dv / d?|V xd|?|ul?dv

1 ~
+ / dQ*2|u\2<Vd2*Q,dy>/d2\vxd|2|u\2dy.
2 Joa Q

Again, if u € C§°(G), the last terms disappear, and one obtains the improved
uncertainty principle on stratified Lie groups compared to the statement of
Corollary 11.4.3.

Theorem 12.5.1 also implies the following uncertainty principles:

Corollary 12.6.5 (Further uncertainty inequalities). Let Q C M be an admissible
domain. Let B > 2. Then we have the following uncertainty inequalities:

(1) For all uw € C§°(S2) we have

2 2 1 2
([ wear) < ([ 19arete o) ([ ot ea)
4 Q Q Q

(12.60)
(2) For all u € C§° () we have

2 1 2 1 2
(/qu|2dy> (/F2ﬁ|VXI‘2ﬁ2u|2dV> > P (/VXF2ﬁ|2|u2dV> .
Q Q 4 \Ja

(12.61)
(3) For all u € C§°(2) we have

</ |qu|2d1/> </ F22HVXF2IH|2|u2dV>
Q
2
> b (/ F_2IH|VXF2152|u2dV> .
4 Q

The Carnot group versions of these uncertainty principles in were established
in [Kom10] and [GKY17], and in our proof we follow [RSS18c].

(12.62)
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Proof of Corollary 12.6.5. Part (1). In Theorem 12.5.1, by letting

2
W(z) = |VXF2i/3 |2 and v=e o’

with o € R, we obtain the inequality
—4a2/ AP lul?dv + 2a6/ lu|?dv — / |VXI’2iﬁ | 72|V xul?dv < 0.
Q Q Q
This inequality is of the form ac® 4+ ba + ¢ < 0, if we denote by

a:= —4/ r=2s lu|dv, b= 25/ lu|dv,
Q Q
and

c::f/ |VXF2i5\_2\VXu\2dV.
Q

Thus, we must have b?> — 4ac < 0 which proves (12.60).
Part (2). Setting

2
_ 2—p3
W=1andv=e¢ T

with a € R, we obtain
/ Vxuldy > 2a6/ \vxrziﬂﬁuﬁdy_zxa?/ 225 |VxT2"5 2u)2d.
Q Q Q

Using the same technique as in Part (1) we prove (12.61).
We can prove Part (3) by the same approach, considering the pair

1
_ 2—p8
W=1and v=e .

The proof is complete. g

12.7 Local Rellich inequalities

In this section we present local refined versions of Rellich inequalities with ad-
ditional boundary terms on the right-hand side, in the way analogous to Hardy
inequalities and uncertainty principles in the previous sections. As before, we use
the notation

vX' = (X17"'7XN)'

Theorem 12.7.1 (Local Rellich inequalities for sums of squares). Let y € M be
such that (A}) holds with the fundamental solution T' =T, in T,. Let Q C T, be
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a strongly admissible domain such that y € 0Q. Let « € R, B >a >4— 3, > 2
1
and R > esupol'2=4. Then for all u € C*(Q) (N C*(Q) we have

[z"s —4)2(8 - a)? o
/ |£ |2d1/ > (6 +a ) (ﬁ Oé) / F27§|vxr2i3 ‘2‘u|2 dv
0 |VxI2- /3|2 16 Q

(B+a—4P(B-0) [ gz men
Wz TR
+(6+a_f>(3_a>6(u), (12.63)

as well as its further refinement

[22s
/ L |LufPdv
Q ‘VxIbfﬁ ‘2

_ 2 _ 2 a—4a 1
L e POl [ gt pupa
Q

16
-2
+(5+a—4)(5—0é)/p§i§|vx[‘2iﬁ|2 (111 Rl > ful2dv
8 Q T2-8
(B+a—4)(—-a) a2y R\ ' L=
Toap-2) /aszr ’ (1“ ) > [ul (VT dv)

(B+a—026-0a) [ Le2oa oo g
ooz Lt

G _f)(ﬁ ~ o), (12.64)

where

a—2

C(u) :== -

U2I‘§:§_1<6I‘7dy> —2/ Fg:gu(ﬁu,dl/)
o

Proof of Theorem 12.7.1. Let us prove (12.63) first. A direct calculation shows
that

N N
Lr3 = 3T XPEG = (a-2) > X, (T3 X, 02
k=1 k=1
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N
= (a—2)(a—3)0%" Z’ an’

k=1
N
-2
k:l
a—2_ Bta-a a—4 1|2
o T = (0= 2@ -3 Z\Xkrw
N 1 a— 2 sta-a
+(a—2)(8—1)l:- Z XiD2o0) (X420 ) + [ e=s LT
k=1 27B
9 o
= (B+a—4)(a—2)T5 3 |VyD22s 2 + . ﬁrﬁi—ﬁ“zr,
that is, we have
o o ~ 9 gia
LT575 = (B+a—4)(a—2)Ti5 |VxD2 s + g—ﬂrﬁ;ﬁ“' (12.65)

As in the proof of Theorem 12.4.1 we can assume that u is real-valued.
Multiplying both sides of (12.65) by u? and integrating over 2, since I' is the
fundamental solution of £ and 8 + o — 4 > 0, we obtain

/ WALTE 5 dy = (B+ o — 4)(a — 2)/ 25 |VxD20s 202 du. (12.66)
Q Q

On the other hand, by using Green’s second formula (12.15) we have

/uzﬂfgj dV:/Fg:gﬁquV—i—/ uQ(%ngg,dW—/ 55 (Vu?, dv)
Q Q oQ o0
:/Fé‘iﬁ (2uLu + 2|V xul?) dv + C(u), (12.67)
Q

where

= uQF;:L?*l(%F,dV) —/ 2F§:5u<§u,dy>.
2—0 Joa o9

Combining (12.66) and (12.67) we obtain
—2/ 55 uludy + B+a—4)(a-2) / I |VXI’2iﬁ 1> u?dy
Q Q

By (12.68)
:2/ L35 |V xul?dv + C(u).
Q
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By using (12.21) we have
- 2/ 55 uludy + B+a—4)(a- 2)/ s \VXFQiﬁ % |u|?dv
Q Q

2
=2 (5 : ; . 4) / D55 VXD [ fuf? dv
Q

—4 a—2 ~
4 Ata / P57 (9T, dv) + C(u).
B=2 Jag

It follows that

. 4 - - .
_/I‘27§u£udy2 ﬂ+a B @ /FZ*S‘V)(FQ*L*F‘UFdV
Q 2 2 Q

B+a—4 0T 12/ 1
25— 2) /(%ZF 57 ul <VF7dV>+2C(’U,).

On the other hand, for any e > 0, Holder’s and Young’s inequalities give

a—2 a—4 1 1/2 ]_—‘235 1/2
7/I‘2—/3 uludy < </F2ﬁ |V xT'2-s |2|u2d1/> / .| Lul?dv
Q Q Q|VxI2-6]2

o 1 1 2%
ge/F273|VXF27ﬁ|2|u\2dy+ / | LCulPdv.
0 de Jo |VxT2-5]2

(12.69)

(12.70)

Inequalities (12.70) and (12.69) imply that

F (jﬁ a— 1
/ ] L |Lufdy > (*4€2+(ﬂ+a*4)(ﬂ7(¥)6)/ F2*3\VXF2*H|2|U\2dV
Q |VxIz-s|? Q

208+ —4)e

+ B2

/ 125~ Hu2(VT, dv) + 26C(u).
o

Taking € = (’B+a_g)(’8_a), we obtain

/ F%ﬁl | Cul|*dv
Q |VxI[z-s|?
(B+a-4*p-a)?
16
(B+a—4)?%B-a)
A(B-2)

which proves (12.63).

> /ré‘i?\vxrziﬁ 12|ul? dv
Q

/ Fg:§—1|u‘2<6r7dy> + (ﬂ + o 7;)(& - O‘)C(u)7
o0
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Let us now prove (12.64). From (12.68), if we use (12.22), we get
- 2/ 055 uludy + B+a—4)(a-— 2)/ s \VXFQiﬁ % |u|?dv
Q Q

2
=2 (5 : ; . 4) / D255 VXD 2 fuf? dv
Q

1 . . -2
" E/IwﬂaVXF”“F On X > |ul*dv
2 Jo I['2-5

Ly L (n ) e
+ T2-8 In | u|“(VT, dv
(B—=2) Jaq I'2-5 ful™ )

—4 a—2 ~
*5232 /“fﬁ‘liu\%vr,dww(u).

It follows that

o — 74 - o — 1
—/szguﬁudyz Pra p-a /F273‘VXF27H|2|U‘2dV
Q 2 2 Q

1 [ o R \7?
+ /F2*§|VXI’2iﬁ|2 (111 . > lu|?dv
4 0 F2

1 a2 R \ ! ~
+ / 25—t (m ) ) u|2(VT, dv
2(8 —2) Jon 25 ful ™ )

6 +a— 4 3:271 9, 1
2(8 —2) /6st 87 ulX(VE, dv) + 2C(u). (12.71)

Inequalities (12.70) and (12.71) imply that

225 .
/ ’ L |LufPdy > (—462+(5+a—4)(5—a)e)/F2*3|VXF2iﬁ\2\u|2dV
Q|VxIz-5|2 Q

=y
~ ©
L
=
[\v]
<
-
QL
S

2€ / a-2_
+ ['2-5 In
(B=2) Jog F2i/3

(oo [ g
0

52 VT, dv) + 26C(u).

—~

_ (B+a—4)(B~a)
€= 8

Taking , we obtain

2%
/ L |LufPdv
Q|VxI[2-8]2

(B+a—4)?2(B—a)

>
- 16

/ré‘ié\vxrziﬁ 12[ul? dv
Q
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2
T S STl (3 IS
Q 2

8 :
(B+a—4)(8-a) a24< 1%)1 2%
I2- 1 VI, d
i 48 -2) /852 ’ nF2iﬁ [l (VT dv)
(B+a—4)%B—a) SR TT YL B+a-4)(—-a)
+ 4(8-2) /aszr 87 u|*(VT, dv) + 4 C(u).
This completes the proof of Theorem 12.7.1. 0

By a modification and refinement of the proof of Theorem 12.7.1 we can
obtain another alternative of an improved Rellich inequality with boundary terms.

Theorem 12.7.2 (Refined local Rellich inequalities for sums of squares). Let y € M
be such that (A}) holds with the fundamental solution T' =T, in T,. Let Q C T,
be a strongly admissible domain such that y & 0Q. Let o € R, f > a > 8g5, B8 >2

and R > esupQFQiﬁ. Then for all u € C?(Q) (N C(Q) we have

[2%s —a)? -
/ ] |Cul?dv > (8—a) / F2—§|qu|2du
Q Q

|er2i/3 ‘2 4
(B+3a=8)(B+a—-4)(8-a) 51l (9T. dv
! 8(3 - 2) 5 )
+ (B+O‘*f)(ﬂfo‘)6(u), (12.72)

and its further refinement

[2-6
/ L | LulPdy
o [VxD2ts 2

— 2 a—2
> (5 Oé) /FZ*ﬁ\VXuPdV
Q

4

-2
+(3+3a—8)(6—a)/Fg:gwxpaiﬁﬁ <1n f ) [ul*dv
o I'2-5

16

(B+3a—-8)(B—a) 321( R >—1 =

' 8(6-2) /{mr i lnrziﬁ (VT dv)
(B+3a—8)(B+a—4)(8—a) .

" 8(3 —2) /BQF ST (VT dy)

+ (3-&-&—;1)(3—&)6(”)7 o)

where
C(U) = g:; . u2Fg:§*1<%F7dV> — 2/BQF27[3 U(dey)
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Proof of Theorem 12.7.2. Let us first prove (12.72). Let us rewrite (12.68) in the
form

1 o
,Cw) +/ 25 |V xul2dy (12.74)
Q

B+a—4)(a-2)

- —/Fg:guﬁudv—k
Q 2

/ P57 |V T2 2 [ulPd.
Q
Also recalling (12.70) we have

- o 1 28
—/F?*guﬁudyg e/ F2*§|VXI’2iﬁ\2\u|2dy+ / |Lul?dv.
Q

Q de Jo |VXF2113 |2
(12.75)
Inequalities (12.75) and (12.74) imply that
1 a—2 2
C(u)+ [ T2-5|Vxul|=dv
2 Q
—4 — a— 1
< ((6+O{ )(Oé 2) +6>/Fzgvxr2ﬁ2u|2dy
2 Q
1 2%
+ / L |LufPdv. (12.76)
46 [e) ‘VXFQ—L—} |2

The already obtained inequality (12.63) can be rewritten as

16 T2 s ) 4
d _
P | R T Gl NUM T IS R

4 / a-2_1 9, = a—4 19 12
- L2-6 " u|*(VT,dv) > / T2-6|VxT2-6|%|ul* dv.
(B=a)(B-2) Joa Q

Combining this with (12.76) we obtain

| (B+a—4)(a—2) 4
20+ ( 2 ) 0o

B+a—-4)(a-2) 4 Sy I2(ST. dv
*( 2 +6>(Ba)(f32)/ [l VL, dv)

D52 |V yul?d
<< 16¢ . 8(a — 2) +1)
T \Bta—-42B-a)? (Bra—4)(f-a)? 4de

[22s
></ L |LuPdv.
Q |[VxID2-5]2
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_ (B+a—4)(B~a)
€= 8

Taking this implies

(B+a—4)(B—a) (B+3a—8)(B+a—4)(B—a) 5
A Clu) + 8(8—2) /aszr

—a)? o =26
+ (B=a) / 55 |V xul?dv §/ L |Lufdy,
4 Q Q |VxI'z-s5]?

52 (VT, dv)

which shows (12.72).
Let us now prove (12.73). Inequality (12.64) can be rewritten as

16 [2%s ) 16
(B+a—4)2(8 — a)? /Q ‘erziﬁ‘g‘ﬁu\ dv — (5+a74)2(5704)2p

z/ré‘i?\vxrziamuﬁdy,
Q

where

4 (5 — . -2
D= Bra=-4B-a) / s |V)(F2i’3 2 (ln Rl > |ul*dv
8 Q [2-s

—1
+(6+a—4)(6—a>/ o (m R ) [l (T, dv)
onN

4(8—-2)
B+a—4)>*B—a) 512 (YT. du (B+a—-4)(8—a) u
Wom TR T e

Combining it with (12.76) we obtain

1 (B+a—4)(a—2) 16 / - )
rss

2(3(u)+ ( 2 e (5+a—4)2(5—a)2p+ Q IVocul"dv

16¢ 8(a—2) 1) r="s 2
= ((6+a—4)2(/3—a)2 * s aca@-ap tac) wratep T

Taking € = (’B+a_g)(’8_a) we obtain

(8- a)? B+3a—-8 (504)2/ o2 2
C [2-5|V d
s CWFop Pt 0 ) T Vxuldy
AR
< / ) L |culdv,
Q ‘erhfﬁ |2
completing the proof. O

Remark 12.7.3. Let us formulate several consequences of the described estimates
for the setting of functions u € C§°(2), so that we have C(u) = 0. Thus if M =
G is a stratified group of homogeneous dimension @ > 3, we take § = @, so
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that T'>s (x) = d(z) is the L-gauge on the group G. Then the above estimates
give refinements compared to known estimates, as, e.g., in Kombe [Kom10], with
respect to the inclusion of boundary terms. Thus, for all u € C§°(£2), we have that

1. Estimate (12.63) is reduced to

(Q@+a—-42%Q—a)?
16

da

Q |de|2\£u\2dV =

/ d* "V xd|?|ul® dv,
Q

for @ >a>4-Q.
2. Estimate (12.64) is reduced to

d® (Q+a—4)%*Q—«)? / _
Lul?dv > A YV xd|*|ul? d
/Q|de|2| uffdv 2 16 Q IVl dv

(0 — -2
4 (Q+O{ )(Q O[) / da74‘de‘2 (IHR> |U‘2dl/7
8 Q d
for @ >a>4—-Q.
3. Estimate (12.72) is reduced to

dOé

2
cudy > @) /doﬂv 2d

8-Q
for @ > a > ",".
4. Estimate (12.73) is reduced to

(o3

—a)?
|vxd‘2\£u\2dy > (@ 4 ) /d“iQ\VXuFdV
Q Q

—2
+ (Q+3a78)(Qia)/da74|vxd|2 lIlR ‘U|2d1/,
16 o d
8—
for Q@ > a > 3Q.

For unweighted versions (with aw = 0) inequalities (12.63)—(12.64) work under the
condition @ > 5 which is usually appearing in Rellich inequalities, while (12.72)—
(12.73) work for homogeneous dimensions @ > 9.
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12.8 Rellich inequalities via Picone identities
In this section we discuss weighted Rellich inequalities in the spirit of Hardy in-
equalities from Section 12.5, relying on an appropriate version of Picone identities.

Theorem 12.8.1 (Weighted anisotropic Rellich type inequality). Let Q@ C M be an
admissible domain. Let W;(z) € C*(Q) and H;(x) € L () be the non-negative
weight functions. Let v > 0, v € C*(Q) (N C*(Q) with

X7 (Wi(z)| X7

Pim2X20) > Hy(z)vP™' and — X7v >0, (12.77)

a.e. in Q, for alli =1,...,N. Then for every 0 < u € C*(Q)(NC*(Q) we have
the following inequality

i/QHi(l'Nup’idl/ < i/QWi(x)|Xi2u|pidV o
“E et e ()
2/69 (vfl) (W) X2

where 1 <p; < N fori=1,..., N, and%iu:XiuXi.

PUEX ), dy),

The proof of Theorem 12.8.1 will rely on first establishing an appropriate
version of the second-order Picone identity. Before giving its formulation and the
proofs, let us make some remarks and also formulate several of its consequences.

Remark 12.8.2.

1. A Carnot group version of Theorem 12.8.1 was obtained by Goldstein, Kombe
and Yener in [GKY18]. In our exposition for general vector fields we follow
[RSS18c], also allowing one to include boundary terms into the inequality.

2. Note that the function v from the assumption (12.77) appears in the bound-
ary terms (12.78), which seems a new effect unlike known particular cases of
Theorem 12.8.1.

As a consequence of Theorem 12.8.1 we can obtain several Rellich type in-
equalities involving the sum of squares operator.

Corollary 12.8.3 (Rellich inequalities for sums of squares). Let Q C M be an
admissible domain, and let the operator L is the sum of squares of vector fields:

N
L= ZXE
i=1

Then we have the following estimates:
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(1) Let 6>2, a e R, f+a >4 and 8 > a. Then we have
/ e |Cul|*dv > (B o= %8 —a)” / FS:E|VXF2iﬁ‘2|U‘2dV
Q [VxT2s|2 - 16 Q 7

for all w € C§°(Q\{0}).

(2) Let 1 <p<ooand2—f <a<min{(f—-2)(p—1),(6—2)}. Then for all
u € C§°(Q\{0}) we have

a+2p—2
T 2- a—
/ 1 |£u|pdVZC(6,a,p)p/ D572 |V T2 08 Pufdy, (12.79)
Q |VxI2-¢|2p—2 Q

where C(B, a, p) 1= (5+Z*2) (5*2)(571)711'

Proof of Corollary 12.8.3. To prove Part (1), we take v = 75*';‘_4, and choose
the functions W (z) and v such that

RN
W(zx) = L and v=T2"%,
‘XiFQ*ﬁ |2
and apply Theorem 12.8.1.
To prove Part (2), we set
a+2p—2
2-5 _ Bta-—2
W(x) = and v =y P25,

— ‘erziﬁ |2p72
and apply Theorem 12.8.1. O

Now let us prove the following anisotropic (second-order) Picone type iden-
tity, extending its horizontal version in Lemma 6.10.4. Then, as a consequence, we
obtain Theorem 12.8.1.

Lemma 12.8.4 (Second-order Picone identity). Let Q@ C G be an open set. Let u,v
be twice differentiable a.e. in Q and satisfying the following conditions:

u>0,v>0, Xi27)<0 a.e. in .

Letp; >1,i=1,...,N. Then we have

Li(u,v) = Ry(u,v) >0, (12.80)
where
N N ubi
a0 = o2 - Yo () Ixtopix,
v T
i=1 i=1
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and

N N
pi—1
o)=Y X2 =i (1) XPuxPolxFup
1=1 1=1
N UN Pi
+ 3= (v) |
- sz Pi — ‘XQ

Proof of Lemma 12.8.4. A direct computation yields

uPi uPi—1 uPi
X (Wl) =X ( fpo X = = 1) Xw)
Pi=2 /(X X; pi—1
u (( w)v — u( v)) Xiu-l-piu T xz
v

2
Pi=2x2y (Xiuquiv> .
v

=pipi—1) . 02 pi—1
uPi—l (Xu)v — u(X;v) uPi
*pz(Pz -1 q)pi_l ( 02 XZ'U — (pz — 1)1)1%' Xz v

uPi— 5 upifl uPi )
_pl( Pi ]_) 1 ‘X u| VP XZ"UXZ'U + va_l ‘XZ’U‘

uPi—1 uPi
+ pi opi1 X2u—(p; — 1) o X2
ubi—2 U uPi—1 ) uPi
—pilpi— 1), (X UXW) tpi, o XPu— (= 1)), X,

which gives the equality in (12.80). By Young’s 1nequality we have

uPi

w|Pi 1 uPi
+

XQUXQv\XQ Pi=2 < i=1,...,N,

Pt Di q; VP

where p; > 1 and ¢; > 1 with pl_ + ; = 1. Since X?v < 0,7 = 1,..., N, we

arrive at

XZ2ulPi 1 uPi ,
Z‘X2 |pz+z |X2 i Zp < . s + 0 o |Xi2vprl>

=1

2
—sz pi—1 |X2 P2 X2y ‘Xu— Xiv
N
N uP
—z(w“)“
Py qi vPi
—Zpl pi— 1 |X2v|pl X2 ’Xu— Xv > 0.

This completes the proof of Lemma 12.8.4. O
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Proof of Theorem 12.8.1. Let us give a brief outline of the following proof as it is
similar to the proof of Theorem 12.5.1: we start by using the Picone type identity
(12.80), then we apply an analogue of Green’s second formula and the hypothesis
(12.77), respectively. Finally, we arrive at (12.78) by using H,(x) > 0. Summariz-
ing, we have

0< /QWi(x)Ll(u,v)dl/:/QWi(x)Rl(u,v)dl/

Di
/Wi(x)|Xi2upidV—/Xi2( 51> Wi(2)| X7 olP 2 X Pody
Q Q v

Pi
Pidy—/ ¢ 1Xi2 (Wilz)| XPv
Q pPi—

pi*QXizv) dv

Wi(z)|XPu
Q
o —~ upi
v [ (Wi ()
uPi = 2 1pi—2 2
~ | ypim (Vi(Wi(z)| X7 |72 X v), dv)
/Wz(x)|Xl2u pidv—/Hi(x)|u
Q Q
~ Pi
+ Wi(2)| X20P2X20(v,; (4 ), dv)
o0 ! ! ppi—l
uPi ~
( | )<vi<wi<z>|X3v

Up@_l

IN

Pidy

Pim2 X 2), dy>> .

In the last line, we have used (12.77) which leads to (12.78). O
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