
Modelling CECA Diagram as a State Machine

Jerzy Chrząszcz1,2(&)

1 Institute of Computer Science, Warsaw University of Technology,
Warsaw 00-665, Poland
jch@ii.pw.edu.pl

2 Pentacomp Systemy Informatyczne S.A., Warsaw 02-222, Poland

Abstract. Cause-Effect Chains Analysis (CECA) is one of the main TRIZ
methods used for identification of system disadvantages. The analysis results in
a diagram documenting these disadvantages and causal relations between them.
Although the nature of causality implies that any effect must follow its cause, the
original CECA concept does not address time explicitly. This drawback has
been indicated by Yoon, who proposed Occasion Axis to describe changes of
system state upon meeting particular conditions specified using values of
parameters. Such an axis illustrates a sequence in time and an additional
requirement is to interleave nodes referring to parameters with those referring to
functions, originally dubbed as Parameter-Function Pair Nexus.
The method of transforming a CECA diagram into a logical model presented

during TFC 2016 conference relies on decomposing the diagram into a context-
dependent layer (specific content) and a context-independent layer, representing
the structure of connections. The logical model describes the structure with a set
of Boolean functions, which may be minimized and analyzed in a systematic
way.
This paper explores the idea of Occasion Axis and examines the possibility of

converting a CECA model into a state machine with transitions between the
states described by conditions referring to parameters of objects in the analyzed
system or its super-system. The expected benefits of such transformation range
from better understanding of the time-domain interrelations of the causes up to
describing the causality using standard notation, such as UML. The paper
presents rules proposed for systematic conversion of CECA diagram into state
machine representation and discusses required extensions to formal state
machine definition.

Keywords: Cause-Effect Chains Analysis � Logical model � Boolean algebra
State machine � Harmful process

1 Basic CECA Model

Cause-Effect Chains Analysis (CECA) is an iterative method for revealing causal
relations in the analyzed system [1, 2]. It starts with indicating drawbacks to be
removed, which are called target disadvantages. Then their causes (intermediate dis-
advantages) are investigated subsequently, until finding primary causes (root causes)
that reflect laws of nature or specific constraints of the project, remaining beyond
control. Because root causes cannot be literally eliminated, CECA procedure aims at

© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
D. Cavallucci et al. (Eds.): TFC 2018, IFIP AICT 541, pp. 302–314, 2018.
https://doi.org/10.1007/978-3-030-02456-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02456-7_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02456-7_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02456-7_25&domain=pdf
https://doi.org/10.1007/978-3-030-02456-7_25

identification of the key disadvantages instead, removal of which should remove target
disadvantages.

The analysis results in a diagram with boxes containing descriptions of disadvan-
tages, arrows denoting causality flow and – possibly – logical AND/OR operators,
reflecting how the causes contribute to a given effect. Although the nature of causality
seems simple at the level of intuition and common sense, it is not equally straight-
forward for systematic modelling and analyzing, as may be seen in [3, 4] and the
accompanying discussions.

Several doubts regarding the original method have been indicated in [5], addressing
possible approaches to in-depth and in-width growth of causality diagrams, as well as
identifying proper stop conditions, which jointly affect completeness of the diagram.
Significant improvements to the method employ using cause-effect patterns identified
in real projects [6, 7], adding information about advantages (positive effects) in addi-
tion to disadvantages [8], observing specific structure of the causal chains to support
their correctness and completeness [2, 9] or using additional criteria [8, 10].

2 Logical CECA Model

Systematic approach to conversion of CECA diagram into a set of logical functions is
presented in [11]. It starts with decomposition of the diagram into two separate layers:
contents and structure. The contents (box descriptions) are specific to a particular
problem situation, while structure of the interconnections is context-independent.
Proposed logical model uses binary logic with 0 representing inactive disadvantage and
1 representing active disadvantage. Logical operators are modelled with respective
gates. AND gate outputs 1 only for 1s on all its inputs, while OR gate outputs 0 only
for 0s on all inputs, and the truth tables of 2-input gates are as follows:

AND x y x y OR x y x + y
0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 1

Target disadvantages are outputs of the network and the inputs may reflect root
causes or any intermediate causes – in particular, the key disadvantages. Such approach
allows for describing structure of the CECA diagram with a set of combinatorial logical
functions – one for each of the target disadvantages. These functions may be trans-
formed using rules of Boolean algebra and minimized in order to obtain most concise
representation of the logical relations between selected input causes and target disad-
vantages. This paves the way to answering important questions regarding the structure
of the model of causality, ranging from which inputs influence particular output? up to
what minimal set of inputs must be acted upon in order to deactivate all the outputs?

Some enhancements to the logical model were introduced in [12], including pro-
visions for removal of intermediate disadvantages and criteria for verification of model

Modelling CECA Diagram as a State Machine 303

completeness. Proposed representation was developed as a solution to a physical
contradiction describing disadvantages in linear CECA chains (excluding the root
causes):

• each disadvantage should have exactly one control to retain coherence between the
model and the diagram (as we only draw one arrow between the boxes), BUT

• each disadvantage should have more than one control to retain coherence between
the model and the concept (as we may remove a disadvantage without removing its
predecessor).

Using separation in relation principle [13] the active/inactive status of the inter-
mediate disadvantage was split between the input (independent of deeper causes) and
the output (dependent on deeper causes). The logical model of a linear chain of dis-
advantages comprises of cascaded AND gates, with one input connected to the output
of previous gate and the other input controlled by an independent variable, as shown in
Fig. 1. The first input is used for passing information about deeper causes in the chain
and the second input controls given disadvantage directly. If any of the inputs is
disabled (i.e. set to 0), the output is disabled as well, simulating indirect and direct
removal of the given disadvantage, respectively.

3 Time Axis and Occasion Axis

Although the nature of causality implies that any effect must follow its cause, the original
CECA concept does not address time explicitly and the only notion of time precedence
comes from arrows pointing from causes to effects. Such representation clearly defines a
sequence of disadvantages in a given linear chain, but it tells nothing about the time
relations between disadvantages located in different branches of a diagram.

This also holds true for the logical model considered so far, consisting of combi-
natorial functions i.e. with outputs depending solely on inputs. When a change is
applied to an input of a combinatorial network, it propagates through subsequent gates
until it reaches a particular output or disappears on the way due to a specific logical
function. For an AND gate 0 on any input switches output to 0 independently of other
inputs, so that AND output will reflect changes of a particular input if and only if all
remaining inputs are 1s. Similarly, for an OR gate 1 on any input switches output to 1,
hence the change of a particular input will propagate to OR output if and only if all
other inputs are 0s. In the digital design area this approach is called path sensitization
and it is used in testing to assure that changes of a given signal will propagate to an
observable output.

XiXi-1 Xi+1

xi+1xi

Xi-1 Xi Xi+1

Xi = Xi-1 xi

AND AND

Fig. 1. Chain of AND gates modelling linear branch of a CECA diagram [12].

304 J. Chrząszcz

The time axis is explicitly used in [14] for modelling causal chain as a sequence of
events, which is similar to extending a single row of screens in the System Operator into
the past (to identify the causes) and into the future (towards a solution). An obvious
limitation of this method is the inability to model multiple connected chains of causes.

The lack of a strict notion of time in CECAmethodwas extensively explored byYoon
[9], who pointed out that disadvantages occur due to changes of particular parameters of a
system (or super-system), not just because of the time flow. The proposed approach uses
concept of occasion, being a moment in time when a particular parameter pertinent to the
analyzed problem situation has a certain value. And the Occasion Axis is a sequence of
occasions in time that describes the development of a target disadvantage.

Points on this axis are determined by the nature and intensity of the interactions e.g.
the moment of thermal shutdown of a computer is determined by a preset temperature
limit and operating conditions, and so its location in time may vary. Depending on the
amount of generated heat and the heat dissipation efficiency, the shutdown may be
performed sooner or later, but it follows one scenario. And lack of the shutdown during
a long operation also fits within the same scenario, yet unfinished. Therefore Occasion
Axis may be considered discrete time axis defined by moments when some threshold
values of pertinent parameters are achieved (i.e. specific events happen).

Furthermore, Yoon argues that a properly modelled chain of causes should consist
of interleaved nodes of two types, defining conditions and actions. Conditions should
refer to particular values of parameters, while actions should describe interactions
between objects. The resulting chain was dubbed Parameter-Function Pair Nexus.

The justification for this interleaved structure is that a state of an object may only be
changed as a result of interactions between the objects. Therefore neither two states nor
two actions may appear in the diagram one after another and subsequent nodes of the
same type indicate a missing node of the opposite type, which should be inserted in
between. Recommended forms of descriptions are as follows [9]:

• state (condition):
entity þ its parameter þ value of the parameter;
e:g: : temperature of processor is higher than Ts;

• action (function):
tool þ action þ object;
e:g: : processor heats computer case excessivelyð Þ:

Such structured approach to construction of the cause-effect chains allows for
detection of other types of omissions, including overlooked parameter-function or
function-parameter pairs. This results in additional support for ensuring completeness
of the CECA diagram. Nevertheless, all information regarding the causes still comes
from the contents of boxes and the arrows only indicate the flow of causality.

Time is also referred to in Root Conflict Analysis (RCA+) developed by Souchkov.
The method is focused on both disadvantages and advantages, possibly brought by
some of the causes identified during analysis [8]. This allows for indicating physical
contradictions with conflicting requirements to be fulfilled “at the same time”. Time
references are used at the stage of selecting root conflicts, but they reflect conditions
rather than specific moments in time (e.g. “during strong wind”), which seems similar
to the concept of occasion. Another similarity between RCA+ and Yoon’s approach
comes from the recommendations for describing identified causes, which also distin-
guish conditions and functions.

Modelling CECA Diagram as a State Machine 305

4 Merging Occasion Axis with Logical Model

The question usually asked when building CECA diagram is why which seems ade-
quate and correct in this context. But adding another box and arrow to a cause-effect
chain is like answering only one part of this question, namely what causes a particular
effect, while we are also interested in when and how does this “causing” happen.

A renowned approach capable of modelling conditional changes of a system in time
is state machine representation. Therefore it seems interesting to attempt a conversion
of a CECA diagram into a state machine (automaton) with finite number of states and
deterministic transitions between the states, i.e. Deterministic Finite State Machine
(DFSM). State machines and other abstract machines are covered by Automata theory,
and an introduction to this topic pertinent to the scope of our paper is given in [15].

DFSM is formally defined as a 5-tuple <Q, R, d, q0, F>, where:

• Q is a finite set of states,
• R is a finite set of input symbols,
• d is the transition function (d: Q � R ! Q),
• q0 is the initial state of the automaton (q0 2 Q),
• F is a set of states called accept states (F�Q).

Informally, we need some states to be defined as well as conditional transitions
between the states, which depend on inputs. Combinations of inputs form input sym-
bols and the initial state is the predefined start state, in which the automaton awaits the
first input symbol. Outputs of an automaton depend on its state and – in particular –
may differentiate the accept states and the other states. Automata are usually depicted
as graphs with nodes representing states and directed edges (arcs) representing
transitions.

The simplest state machine implementation used in digital circuits is the D-type
flip-flop with two states {zero, one} and two input symbols {0, 1}. Transition function
makes the flip-flop state to follow the input, i.e. 0 on input causes transition to state
zero with output 0 and 1 on input causes transition to state one with output 1. In other
words, such flip-flop remembers the latest input symbol and so it may be considered
a 1-bit memory element. To complete the definition, we select zero as the initial state
and one as the accept state.

Respective transition graph is shown in Fig. 2 using generic notation and basic
UML notation for state machine modelling. The “E” prefixes in the UML model denote
that respective actions are performed upon entering given states (as this notation also
allows for describing actions executed upon exiting the states).

1

0

zero
E: output :=0

1

one
E: output :=1

0

0 1

0
zero one1

0 1

Fig. 2. State diagram (left) and basic UML model (right) of D-type flip-flop.

306 J. Chrząszcz

An example of an automaton with 4 states, 2 binary inputs and 1 output is shown in
Fig. 3. The set of input symbols contains 4 elements {00, 01, 10, 11} and edge labels
describe input symbols. The required operation is to detect the sequence 11-00-11. The
initial state is denoted as A and the accept state is denoted as D. The successful
detection is indicated with 1 on the output and all other states outputs 0. Response of
the state machine to a test sequence 00-01-11-00-11-00-11-10 is presented below.

In taxonomy of the logical circuits state machines are categorized as sequential
circuits. Outputs of a sequential circuit depend both on its inputs and its current state
[15]. That is why a state machine (contrary to combinatorial logic) may produce dif-
ferent responses to the same input signals, and in the above example the first 11 symbol
in the sequence (t2) could be distinguished from the second (t4). It is worth noticing that
the third occurrence (t6) also matches the pattern, so that state D is traversed twice.

5 Converting CECA Diagram into State Machine Diagram

An apparent similarity between the state machine diagram and the CECA diagram is
both promising and misleading. The former suggests an ability to reflect a structure of
causal interrelations between disadvantages as states and transitions, while the latter
comes from significant semantic differences between the respective elements:

• nodes in a CECA graph describe disadvantages, while nodes in a state machine
graph describe states of the automaton,

• edges in a CECA graph only indicate direction of the causality flow (and so they do
not need any labels), while edges in a state machine diagram describe transitions
(and they are labeled with respective input symbols or logical conditions),

• logical operators in a CECA diagram reflect how the input causes combine to trigger
the resulting disadvantages, with no direct counterpart in the state machine diagram.

Regardless of these differences, it should be noticed that:

• linear chain of disadvantages in a CECA diagram may be perceived as a model of
the process of development of the last disadvantage in that chain,

• logical OR indicates that any of the input causes is sufficient to trigger the effect,
• logical AND indicates that all of the input causes are necessary to trigger the effect,
• state machine approach may be used for modelling processes.

A
0

B
0

D
1

C
0

11

00

01+10 00

00+01+10 11

0011

11
me t0 t1 t2 t3 t4 t5 t6 t7

input 00 01 11 00 11 00 11 10

state A A B C D C D A

output 0 0 0 0 1 0 1 0

01+10

Fig. 3. Sample state machine and description of its operation. Plus sign denotes logical OR.

Modelling CECA Diagram as a State Machine 307

From such perspective, we may interpret a CECA diagram as a model of the
development of all target disadvantages included in that diagram. And this resembles
the idea of a harmful system described in [16], being a conceptual source of the harmful
functions resulting in the observed disadvantages of the analyzed system. By analogy,
CECA diagram may be interpreted as a model of interconnected harmful processes,
which – in spite of being unintended – “produce” unwanted effects in an organized and
repeatable way.

This approach allows for transforming a CECA diagram into a state machine
model, with the only prerequisite of having the diagram build using parameter-function
(or condition-action) paradigm introduced in [9]. The proposed rules of conversion are
described below and illustrated in Fig. 4.

• nodes describing actions in the CECA diagram are converted into respective nodes
in the state machine diagram,

• nodes describing conditions in the CECA diagram are converted into edges with
respective condition labels, positioned accordingly to locations of the incoming and
outgoing edges in the CECA diagram,

• common causes, i.e. causes forking through edges to several nodes in the CECA
diagram, are reflected in the state machine diagram as groups of edges modelling
transitions to respective states (labelled with the same condition),

• OR operators appearing in the CECA diagram are converted into groups of edges in
the state machine diagram (one edge for each input), modelling alternative of
conditions required for transitions to the respective output states; in practice ORs
are often omitted and modelled as multiple edges, which do not need conversion,

• AND operators appearing in the CECA diagram are converted into additional nodes
and edges in the state machine diagram, modelling coincidence of conditions
required for transitions to the respective output states,

• an additional loopback edge is created for each of the nodes in the state machine
diagram, with a condition complementary to conditions of all other outgoing edges
of this node to model waiting in the same state; such transition is default when none
of the exit condition are met and it is usually not shown in diagrams.

ANDOR

ai ci ai
ci

ci

cj

akak

ci

cj

ANDak

ci
cj ak

ci cj

aj

ak

ciai

ajci

ak
ci

ai

ci
cj

(a) (b)

(c) (d)

Fig. 4. Building blocks of a CECA diagram and their counterparts in state machine model:
regular action-condition segment (a), action-condition segment with common cause (b), OR
operator (c) and AND operator (d). Concatenation of symbols denotes logical AND. Loopback
edges have been omitted for clarity.

308 J. Chrząszcz

A sample CECA diagram and the result of its conversion into state machine dia-
gram is presented in Fig. 5, with root causes a1�a5 and target disadvantages t1�t3. As
may be seen, the number of states is reduced compared to the initial number of nodes in
the CECA diagram (14 vs. 24), because the nodes representing conditions are trans-
formed into conditional transitions between the states.

6 Analyzing Sequential CECA Model

Let us discuss the results of the conversion and the implications of the proposed rules.

Linear Chain of Causes. Described procedure properly transforms a linear chain of
causes into a DFSM-like graph. The differences come from the specific interpretation
of the states. For a regular automaton exactly one state is current and active at any
given moment. In the transformed CECA model the states are related to functions
performed in particular stages of a harmful process which “produces” a given disad-
vantage. Therefore the current state reflects the most advanced stage of the process
reached within a chain (after a specific sequence of transitions), while some other states
in this chain may be active i.e. their functions may still be performed.

Accept state of the automaton models the final product of the respective harmful
process and therefore one accept (final) state should be generated during the conversion
for each of the target disadvantages included in the CECA diagram.

Initial state of the automaton reflects the initial stage of the respective harmful
process, which conforms to the criteria of identifying CECA root causes. Indeed, laws
of nature or project constraints act continuously and thus qualify for the initial stages,
when “production” of disadvantages has not started yet. And just like for the final
states, we also need one initial state for each of the root causes included in the CECA
diagram.

Input symbols are combinations of states of inputs and they are used for evaluating
the transition function i.e. determining the next state of the automaton. Because tran-
sitions in the resulting state machine reflect conditions inherited from the CECA model,
they should refer to particular objects, parameters and values. The inputs may be seen
as logical signals evaluating to true or false – one for each of the conditions used in the

a4 c4

a3 c3

a2 c2

a1 c1

a7 c7

a6 c6

t2

t1

a1
c1

a2
c2

a3 c3

a4
c4

a6

a7
c7

t1

t2

c6

AND

AND

c1
c3 c4

c1 c6

a5 c5
t3a8 c8

a5
c5 a8

c8 AND
c7 c8 t3

Fig. 5. A sample CECA diagram and an equivalent state machine diagram created using
proposed conversion rules. Loopback edges have been omitted for clarity.

Modelling CECA Diagram as a State Machine 309

state machine diagram, e.g. condition temperature is higher than Ts evaluates to true if
T > Ts and it evaluates to false otherwise.

Logical operators in the CECA diagram may be perceived as synchronization
gates of the harmful processes. OR operator implies that the resulting transition will be
triggered when the first of the involved conditions is satisfied, while AND operator
implies that the transition will be triggered when the last of the involved conditions is
satisfied. Hence an OR operator is modelled with separate edges in the state machine
diagram (alternative transition for every OR input) and AND operator is modelled with
extra state for waiting until all contributing causes become active. Some of these causes
may be active and some may be inactive while automaton remains in the waiting state,
which is coherent with the proposed interpretation of the current state.

Common causes are depicted in the CECA model with separate (or split) edges
leading to two or more different resulting disadvantages. This is another type of a
synchronization gate with one input and many outputs, deterministically triggered at
the same time upon satisfying a particular condition.

There is a misunderstanding about referring to dependence between contributing
causes for selecting logical operators in a CECA diagram. Some TRIZ materials rec-
ommend using OR operator “if underlying causes are independent of each other”, while
dependence (resulting, for instance, from a common cause of the input disadvantages)
is not related to logical functions describing the influence on the output disadvantages.
In other words dependence relates to causes and logical operators relate to effects,
so that both OR and AND may be used for dependent as well as independent causes.

Concurrency and Hierarchy. Because a CECA diagram models a set of intercon-
nected harmful processes, the resulting state machine is in fact a structured collection of
automata running concurrently. The bottom level of the hierarchy is formed by linear
chains, containing initial states, final states and – perhaps – some intermediate states,
connected by respective conditional transitions. Such chains may contain root causes or
target disadvantages and may connect on inputs (with common causes) or outputs (due
to logical operators in the CECA diagram). And they may be treated as single super-
states at the higher levels of the hierarchy. Taking the above into consideration, we
should adjust the DFSM definition <Q, R, d, q0, F> presented before.

• set of states Q includes all stages of all processes modelled with linear chains in the
CECA diagram and additional states resulting from conversion of AND operators,

• set of input symbols R is determined by all conditions inherited from the CECA
diagram, so that all required transition criteria may be evaluated,

• transition function d is determined by the locations and directions of the edges and
OR operators in the CECA diagram; concurrent operation of automata is syn-
chronized on transitions labelled with the same input symbol,

• instead of a single initial state q0 2 Q we need a set of initial states Q0�Q, which
includes all root causes identified in the CECA diagram (each root cause determines
the first stage of the respective harmful process),

• set of final states F�Q includes all terminal stages of all linear chains in the CECA
diagram – in particular, all target disadvantages.

310 J. Chrząszcz

The extended definition is close to Hierarchical Concurrent Finite State Machine,
which may be systematically described using Unified Modeling Language, Place-
Transition notation (Petri nets), state charts or other notations supported by modelling
tools.

7 Example

As an example, we will consider computer overheating, which was briefly mentioned
in Sect. 3. Target disadvantage is that computer stops because of overheating and
a simplified CECA diagram is shown in Fig. 6, together with a state machine diagram
obtained using proposed conversion rules. The model covers two scenarios of creating
excessive amount of heat and two variants of stopping the computer, depending on the
operation of the thermal protection: properly configured (and operable) vs. disabled (or
misconfigured, or inoperable). For clarity, the descriptions are shortened and the
alternative causes in the CECA diagram are depicted with multiple edges instead of the
explicit OR gates. As can be seen, interleaving of actions and conditions is crucial.

8 Summary and Conclusions

We have briefly presented original CECA method and some improvements proposed in
order to produce correct and complete models of causality. The Yoon’s idea of the
Occasion Axis and structuring the diagrams using condition-action segments provides

thermal
efficiency

is insufficient

computer uses
electricity computer stops

because of
overheating

electronic chips
heat computer

excessively

thermal
protection

is configured

cooling system
cools computer

insufficiently

computer
performs
shutdown

ambient
temperature

affects cooling

ambient
temperature
is excessive

user configures
thermal

protection

computer
ceases

operation

thermal
protection
is disabled

user disables
thermal

protection

heat
generation
is excessive

computer
cumulates heat

excessively

heat
dissipation

is insufficient

thermal efficiency
is insufficient

computer uses
electricity

temperature of chips
is excessive computer stops

because of
overheating

electronic chips
heat computer

excessively

thermal protection
is configured

cooling system
cools computer

insufficiently

computer
performs
shutdown

ambient
temperature

affects cooling

ambient temperature
is excessive

user configures
thermal

protection

computer
ceases

operation

thermal protection
is disabled

user disables
thermal

protection

heat generation
is excessive

computer
cumulates heat

excessively

heat dissipation
is insufficient

AND

AND

temperature of chips
is excessive AND

temperature of chips
is excessive AND
thermal protection
is disabled

thermal protection
is configured

temperature
of chips

is excessive

Fig. 6. An example CECA diagram (top) and the respective state machine diagram (bottom).

Modelling CECA Diagram as a State Machine 311

proper perspective for modelling the development of target disadvantages as sequences
of events. On the other hand, it touches upon the natural limitation of regular CECA
diagram by modelling essentially different aspects (conditions and actions) with same
type of objects and asserting additional constraints regarding structure of the cause-
effect chains to counterbalance that drawback. This construction looks artificial,
compared to the original method, where all boxes are meant as disadvantages.

This paper reframes Yoon’s approach by pointing out that cause-effect analysis
actually identifies harmful processes responsible for “producing” target disadvantages,
which may be represented using the state machine model. We have proposed rules for
converting a CECA diagram into a state machine diagram and indicated required
extensions to basic state machine definition. The resulting model employs heterogenic
information about actions, conditions, logical operators and their interconnections
inherited from the input cause-effect diagram. Such representation offers several
benefits:

• stages of the process and transitions between stages are clearly distinguished, which
makes the model more comprehensible,

• logical operators are converted into states or transitions and disappear as a separate
type of nodes, which makes the model simpler,

• states and transitions appear to be more intuitive representations for behavior of
a process than the regular CECA diagram (which looks static in comparison),

• state machine approach is well known in the IT domain and other areas, which
increases chances of a successful communication with specialists in these areas,

• existing state machine notations facilitate automatic processing of model description
(e.g. syntactic validation or verification of properties),

• information about objects, functions, parameters and threshold values of parameters
contributing to development of the target disadvantages may be easily extracted
from the state machine model described in a standard notation,

• finally, simplification and unification of the model building blocks seems to follow
the Trend of Increasing Degree of Trimming [13].

Starting this research, we expected to obtain results similar to previously achieved
with the combinatorial logical model reflecting structure of the CECA diagram [11,
12]. Likewise, we aimed at developing a sequential logical model, which would allow
for content-independent analysis using methods coming from Boolean algebra, such as
minimization, refactoring, race detection etc. This attempt failed, because we were not
able to devise an appropriate separation of model layers. Instead, a content-aware state
machine approach was proposed for modelling of causality diagrams, with little so far –
albeit promising – outcome. Current results need verification and enhancements,
because some elements seem rough, such as different approaches to modelling OR and
AND operators and counterintuitive concept of many active states, to name a few.

Further work could address transformations (e.g. reduction) of the resulting dia-
gram. It is also known, that every state machine defines a formal grammar describing
rules of creating input expressions (sequences of input symbols) capable of causing
transitions to final states. This duality indicates an interesting direction of research:

312 J. Chrząszcz

analyzing causal relations using linguistic approach. Another area of further work is
identifying and exploring possible connections or fusions with other methods of cause-
effect analysis, with Interaction Causality Scheme [17] and vulnerability-based
approach [18] in the first places.

Acknowledgments. Author gratefully acknowledges Dr. Oleg Abramov for valuable materials
and explanations regarding the CECA method, Mr. Piotr Salata for inspiring discussions and Mr.
Dariusz Burzyński for helping to make the paper comprehensible.

References

1. Litvin, S.S., Akselrod, B.M.: Cause-Effects Chains of Undesired Effects, Methodical theses
(in Russian). CPB, 1995/12/18–1996/01/03

2. Abramov, O., Kislov, A.: Cause-Effect Analysis of Engineering System’s Disadvantages,
Handbook on Methodology (in Russian), Algorithm, Ltd. (2000)

3. Falkov, D.S., Misyuchenko, I.L.: Analysis of typical errors made when choosing logical
functions (in Russian) (2013). http://www.metodolog.ru/node/1643. Accessed 10 July 2018

4. Falkov, D.S., Misyuchenko, I.L.: Characteristics of building fragments of Cause-Effect
Chains with serial connection of Disadvantages (in Russian) (2013). http://www.metodolog.
ru/node/1654. Accessed 10 July 2018

5. Efimov, A.V.: Identification of Key Disadvantages and Key Problems using Cause-Effect
Chains of Undesired Effects (in Russian) (2011). http://www.metodolog.ru/node/993.
Accessed 10 July 2018

6. Pinyayev, A.M.: A Method for Inventive Problem Analysis and Solution Based On Why-
Why Analysis and Functional Clues. TRIZ Master thesis (2007)

7. Medvedev, A.V.: Algorithm for Automated Building of Cause-Effect Chains of Disadvan-
tages (in Russian). TRIZ Master thesis (2013)

8. Souchkov, V.V.: A Guide to Root Conflict Analysis (RCA+). ICG Training & Consulting.
http://www.xtriz.com/publications/RCA_Plus_July2011.pdf. Accessed 10 July 2018

9. Yoon, H.: Occasion axis and parameter-function pair nexus for effective building of cause
effect chains. In: Souchkov, V., Kässi, T. (eds.) Proceedings of the TRIZfest-2014
International Conference, Prague, Czech Republic, pp. 184–194. MATRIZ (2014)

10. Lok, A.: A simple way to perform CECA and generate ideas in practice. In: Souchkov, V.
(ed.) Proceedings of the TRIZfest-2017 International Conference, Krakow, Poland, pp. 23–
30. MATRIZ (2017)

11. Chrząszcz, J., Salata, P.: Cause-effect chains analysis using boolean algebra. TRIZ Future
2016 Conference, Wroclaw, Poland (2016). In: Koziołek, S., Chechurin, L., Collan, M.
(eds.) Advances and Impacts of the Theory of Inventive Problem Solving. The TRIZ
Methodology, Tools and Case Studies. Springer (2018). https://doi.org/10.1007/978-3-319-
96532-1

12. Chrząszcz, J.: Quantitative approach to cause-effect chains analysis. In: Souchkov, V. (ed.)
Proceedings of the TRIZfest-2017 International Conference, Krakow, Poland, pp. 341–352.
MATRIZ (2017)

13. Ikovenko, S.: Level 1 Certification TRIZ Workshop, pp. 171–193. MATRIZ (2016)
14. Russo, D., Duci, S.: How to exploit standard solutions in problem definition. Procedia Eng.

131, 951–962 (2015). https://doi.org/10.1016/j.proeng.2015.12.407
15. Wagner, F., Wolstenholme, P.: Misunderstandings about state machines. Comput. Control

Eng. J. 15(4), 40–45 (2004)

Modelling CECA Diagram as a State Machine 313

http://www.metodolog.ru/node/1643
http://www.metodolog.ru/node/1654
http://www.metodolog.ru/node/1654
http://www.metodolog.ru/node/993
http://www.xtriz.com/publications/RCA_Plus_July2011.pdf
http://dx.doi.org/10.1007/978-3-319-96532-1
http://dx.doi.org/10.1007/978-3-319-96532-1
http://dx.doi.org/10.1016/j.proeng.2015.12.407

16. Lenyashin, V., Kim, H.J.: “Harmful System” – using this concept in modern TRIZ (in
Russian) (2006). http://www.metodolog.ru/00859/00859.html. Accessed 10 July 2018

17. Axelrod, B.: Systems approach: modeling engineering systems using interactions causality
scheme. In: Grundlach, K. (ed.) Proceedings of TRIZ Future 2007 Conference, Frankfurt,
Germany, pp. 131–138 (2007)

18. Chrząszcz, J.: Indicating system vulnerabilities within CECA model. In: Mayer, O. (ed.)
Proceedings of the TRIZfest-2018 International Conference, Lisbon, Portugal, pp. 31–37.
MATRIZ (2018)

314 J. Chrząszcz

http://www.metodolog.ru/00859/00859.html

	Modelling CECA Diagram as a State Machine
	Abstract
	1 Basic CECA Model
	2 Logical CECA Model
	3 Time Axis and Occasion Axis
	4 Merging Occasion Axis with Logical Model
	5 Converting CECA Diagram into State Machine Diagram
	6 Analyzing Sequential CECA Model
	7 Example
	8 Summary and Conclusions
	Acknowledgments
	References

