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Abstract. Process monitoring aims to provide transparency over oper-
ational aspects of a business process. In practice, it is a challenge that
traces of business process executions span across a number of diverse
systems. It is cumbersome manual engineering work to identify which
attributes in unstructured event data can serve as case and activity iden-
tifiers for extracting and monitoring the business process. Approaches
from literature assume that these identifiers are known a priori and data
is readily available in formats like eXtensible Event Stream (XES). How-
ever, in practice this is hardly the case, specifically when event data from
different sources are pooled together in event stores. In this paper, we
address this research gap by inferring potential case and activity identi-
fiers in a provenance agnostic way. More specifically, we propose a semi-
automatic technique for discovering event relations that are semantically
relevant for business process monitoring. The results are evaluated in an
industry case study with an international telecommunication provider.

Keywords: Business process management · Process monitoring
Process mining · Case identification

1 Introduction

Business process monitoring is a key step towards improvement. In practice,
Business Process Management (BPM) solutions are implemented over multiple
independent systems. While system integration is a common endeavor in this
scenario, monitoring techniques are only available for the single systems and
not for the entire system-landscape. For instance, in the telecommunications
industry, a customer order request is typically processed through various systems
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for checking its contract conditions, available credit and promotions, several
consents to the treatment of data, and finally activating the contract. Therefore,
in order to monitor the business process, it must be taken into account that
traces span over several systems and that identifiers for cases and activities are
not known a priori.

This problem has been approached in two ways, namely (i) manual integra-
tion and (ii) automatic matching. Manual integration techniques are typically
ad-hoc engineering solutions that exploit domain knowledge about events to
be monitored. This class of techniques focuses on specific key events and often
leave out interesting patterns that happen as a consequence of other events that
were not manually selected as monitoring-relevant. Instead, automatic match-
ing techniques aim to identify relevant events and relationships assuming no
prior domain knowledge. Existing literature has addressed several challenges of
automatic matching. Two main techniques are case matching [6,18] and map-
ping [3,7] of events to activities at different abstraction layers. Case match-
ing approaches strive to reconstruct case identifiers compatible with eXtensi-
ble Event Stream (XES). Mapping approaches either assume the presence of a
case identifier or make use of domain knowledge. These techniques help getting
insights on extant relationships between events. However, they shortfall in prac-
tical situations where the event schema is not known a priori and events may
have many possible case identifiers.

This paper addresses the problem of monitoring the business process using
event data generated from independent systems. These events are available at
different levels of granularity and more than one event can correspond to a busi-
ness activity. Therefore, the first step towards process monitoring is the identi-
fication of event attributes that can serve as identifiers for cases and activities.
We propose a semi-automatic approach for constructing system-spanning traces
from a pool of events. Input to the approach is a set of heterogeneous events.
We assume that these events contain data that are relevant for monitoring, but
no prior knowledge of the event schema. Guided by these assumptions, the app-
roach proposes identifiers for events and relations that are relevant for process
monitoring. Thus, we position our contribution as a preprocessing technique to
identify potentially interesting perspectives for the analysis of event logs. In par-
ticular, this research helps companies select attributes for creating event logs
that can be analyzed with process mining techniques.

The rest of the paper is structured as follows. Section 2 illustrates the problem
inspired from a real world telecommunications provides scenario, and elaborates
on the state of the art. Section 3 introduces our approach to identify relevant
events and attributes that can serve as identifiers. Section 4 evaluates our app-
roach against an industry use case. Section 5 concludes the paper.
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2 Background

In this section we elaborate on the addressed problem and related work.

2.1 Problem Illustration and Motivation

An international telecommunication provider has different sales channels to its
customers. A sale channel defines a way in which customers can interact with
the provider. There are two types of interactions: (i) direct interaction, when
the customer contacts the provider directly, and (ii) indirect interaction, when
the customer contacts the provider through partners or intermediaries. In order
to handle these interactions, the company has developed a solution that relies
on a middleware to connect systems from the provider and its partners. Figure 1
illustrates the architecture in the Fundamental Modeling Concepts (FMC) nota-
tion1. The middleware operates as a bridging layer that enables communication
among IT systems from the different parties. Up to a limited period of time, it
is possible to access historical events by means of queries. Given the different
technologies involved, these queries usually return heterogeneous events.

Sales 
Channels

Channel 2

Point of 
Sales

Channel 1

Web Browser App Dealer Portal

Backend Services
Promotions 

Service CRM System Document 
Management System

Data 
Warehouse

Middleware Third Party 
Middleware
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Fig. 1. Middleware bridging events from different systems

Let us illustrate the related challenges by the help of a simplified example.
Figure 2 shows a typical ordering process from practice in the Business Process
Model and Notation (BPMN). The process starts when an order is received by
the order handling system and consists of two phases: (i) place order and (ii)
confirm order. In the first phase an order is received from the client. A client is
a software agent used by the customer, e.g., a web browser, a smartphone appli-
cation or another third party system (cf. Figure 1). After a number of successful
validity checks, the order is finally accepted. In the second phase, a confirmation

1 http://www.fmc-modeling.org.

http://www.fmc-modeling.org
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of the identity of the customer is expected. For instance, the identity confirma-
tion can is carried out using web identification. Upon notification of successful
customer identification, the order is further processed and confirmed. This con-
cludes the ordering process.

Traces of the process are scattered across the systems that serve the different
activities of the process. Because all the events are routed by the middleware, it
is possible to collect these traces by querying the architecture and obtaining a
set of middleware events. These middleware events are wrappers for other more
fine granular events intended to reach the various systems connected. Given
the different provenance of the events it is hard to have full knowledge on the
database schemata of each of the source systems. Therefore, it is a challenge to
understand whether an event is semantically meaningful for process monitoring.

Fig. 2. A typical two step ordering process.

Table 1 shows a simplified excerpt of middleware events at a specific time
interval. For illustration purposes we report only eleven attributes. In practice
the number of attributes can grow up to more than forty attributes per event.
In this case, we have the following: (i) Event is a friendly event name; (ii) id
is a unique identifier given by the middleware; (iii) mTrId is transaction id
representing a session in the middleware, i.e., a number of activities executed
by the middleware for a specific request; (iv) payload carries data about the
original event in different formats, e.g., JSON data from forms, SOAP XML from
remote procedure calls, etc.; (v) timestamp reports the time the event appeared
in the middleware; (vi) sysId may contain the name of the system that generated
the event or the system that is intended to consume it; (vii) inMethodName
contains the name of a specific method in one of the connected systems intended
to consume this event; (viii) outMethodName contains the name of a specific
method in one of the connected systems that produced this event; (ix) uName
is an attribute that identifies the name of the user that is performing an action
in the system, such as for instance requesting a new SIM card; (x) oName is the
name of owner of the credit card requested for the payment.

As shown in Table 1, in practice events lack an explicit notion of case identi-
fier and there might be multiple candidates that can be used. While it is true that
some attributes can be checked in the documentation, it requires cumbersome
coordination effort to obtain such documentation from all the partners. More-
over, in many practical settings documentation is often missing or outdated.
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Although it is hard to automatically extract the business process from these
data, yet, monitoring the business process is crucial. Therefore, it is useful to
proceed in a schema agnostic way to support the engineer for a first classification
of the attributes.

In the light of these considerations, we formulate the challenge as “RQ:
how to semi-automatically identify attributes that can serve as case or activity
identifier?”. Note that the steps of a customer journey across the systems can be
observed from different perspectives. For instance, depending on what attribute
is chosen as a case identifier, it is possible to observe either the different journeys
of a customer or the various customers for each journey in the systems landscape.
In this sense, the problem of finding case identifiers is dual to the problem of
selecting activity identifiers. Therefore, it can be assumed orthogonality between
activities and cases in the way they partition the event space.

Table 1. An excerpt of events and their attributes managed by the middleware. The
number of attributes in the real case is more than forty.

Event id trId mTrId payload timestamp
e1 By FE7 MA1 JSON Data 2017-11-30 12:35:27.003
e2 B0 FE7 MA2 JSON Data 2017-11-30 12:35:27.065
e3 u8 FE7 MA3 SOAP XML 2017-11-30 12:35:27.353
e4 vB FE8 MA1 SOAP XML 2017-11-30 12:35:27.456
e5 vD FE8 MA2 SOAP XML 2017-11-30 12:35:27.488
e6 vG FE8 MA3 SOAP XML 2017-11-30 12:35:27.497
e7 Os FE9 MA1 SOAP XML 2017-11-30 12:35:27.575
e8 Vi FE9 MA2 SOAP XML 2017-11-30 12:35:27.575
e9 Ox FE9 MA3 Text 2017-11-30 12:35:27.615

Event system uName oName inMethod outMethod . . .
...gniredro/ipa/boBboB1s1e

e2 Alice Bob /api2/ordering . . .
...smorPqeRecilAerialC2s3e

e4 s2 Claire Alice ReqProms ReqProms . . .
...vloSkcehCecilAerialC2s5e
...vloSkcehCecilAerialC2s6e

e7 s3 Bob Bob QueryTarifs QueryTarifs . . .
e8 s3 Claire Alice RegCustomer . . .
e9 s3 Claire Alice ProcIdRes ProcIdRes . . .

2.2 Related Literature

The problem has been addressed in the literature from different angles. Existing
approaches can be classified into two main areas: (i) process mining research
and (ii) database research. In the first category, a similar problem was tack-
led in [15,19]. Specifically, these two works consider the same problem setting
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but they only assume two attributes, namely id and message. In this work, we
assume that it is possible to distinguish different attributes, although schema
information is missing. Differently from the mentioned works, we abstract case
and activity indicators. This provides a step beyond the simple identification of
atomic, disjunctive and conjunctive correlation-conditions. Other approaches in
this area rely on the use of process mining [2] techniques to reconstruct a pro-
cess model from event logs [18,20]. Because these techniques work with “flat”
event logs, i.e., unaware of the granularity and multidimensionality of the events,
efforts were made on how to create flat event logs from multidimensional data.
This case is supported by practical scenarios where business events are stored
in several tables of relational databases. Often, these data are stored by humans
and therefore the log quality is low. Work from [6] tackles this problem by finding
correlations and case identifiers among events. The problem of event granularity
has been especially tackled in [4,5,14]. As a result a many-to-many mapping
technique was defined that is able to recognize business activities from groups of
fine granular events based on time distance. In further work [3], event matching
is tackled my mining declarative rules from the model and the log. The problem
of discovering subprocesses has been treated in [9]. Here, the authors develop a
technique to discover the process model including subprocesses, instead of flat
model for as is analysis. The problem is also related to multi-instantiation of
sub-processes. The work in [21] tackles such a problem for process discovery and
conformance checking purposes.

Efforts from the database area also have links to processes. In [7], the authors
propose an approach based on describing event logs with annotations of a con-
ceptual model of the data. The technique takes as an input (i) an ontology
in the Web Ontology Language (OWL) language; (ii) an Ontology-based Data
Access (OBDA) mapping specification; (iii) and the schema annotations specify-
ing cases and events [8]. The output consists of an event log in the XES format.
This technique helps with automatic obtaining a customized view on the process.
As a drawback, knowledge about the schema is necessary.

This paper is also related to foreign-key extraction. Work from [17] tackles
this problem in the context of extracting the artifact lifecycle from multidimen-
sional events. They identify table importance based on entropy of its attributes.
However, the approach does not tackle event granularity issues. The last related
stream of research regard the use of Natural Language Processing (NLP) to iden-
tify process cases and activities. Contributions in this group the have focused
on process discovery. In [1] a model is discovered from group stories. Work from
[11] reaches 77% of accuracy in reconstructing process models from text. In [16]
legacy systems code is analyzed to infer business process rules and activities.
The work of [10] uses NLP to aid the extraction of artful processes from knowl-
edge workers emails. This body of contribution indeed suggests that valuable
process insights can be obtained from unstructured data. In our setting, this is
particularly useful when dealing with messages or payload of events. Differently
from NLP works, we work with semi-structured data, i.e. our data can (roughly)
be represented in tabular format, but the schema in unknown.
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In light of the described literature, we focus on the gap of semi-automatically
identifying case and activity candidates.

3 Engineering Approach for Process Monitoring

Next, we present the approach for addressing the problem.

3.1 Approach Overview

We devise a three step approach to produce flat event logs. Figure 3 illustrates
this approach, which takes as input a pool of heterogeneous events and proceed
as follows.

Event pool

Approach
started

Preprocess
Event Pool

Discover the
Business
Process

Case and Activity
Candidates

Process Model

Process model
discovered

Heterogeneous
events

Identify Cases
and Activities

Fig. 3. Overview of the approach for extracting the business process

Step 1. Preprocess Event Pool. In this step, we extract the heterogeneous
events from the middleware. Because these events contain diverse attributes,
they need to be further processed and pooled together in such a way that they
can be analyzed automatically. This includes enriching existing events with
new attributes extracted from their payload data. A high number of events
is generated in real-world scenarios. Therefore filtering techniques must be
taken into account to rule out events that we do not want to monitor.

Step 2. Identify Cases and Activities. In this step, a mapping from events
to activities is established. Note that business activities are not unequivocally
represented in the event log. In fact, the problems of granularity and multi-
plicity between events and activity must be taken into account [5]. The input
of this step is an enriched log with labeled cases. The output is a set of pairs
that represents what can be considered as cases and activities.

Step 3. Discover the Business Process. In this step, the approach exploits
the results of the previous steps to show a business process model. In par-
ticular, this step combines the case identifier, activity and timestamp for
constructing an event log. The log is then converted to XES and a process
mining algorithm is used for discovering the process.
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3.2 Preliminaries

Next, we formalize the preliminary concepts required by our technique. We for-
mally define heterogeneous events from multiple systems passing through the
same channel as pool of events.

Definition 1 (Pool of Events, Attribute). Let E be the universe of all
events. A pool of events PL ⊆ E is a set of recorded events in the process.
Each event e ∈ PL has attributes. Let AN be a set of attribute names. For any
event e ∈ PL and n ∈ AN , #n(e) is the value of attribute n for event e. If an
event e does not contain an attribute n, then #n(e) =⊥.

Events also contain data, which are referred to as payload. That is, for each
event e ∈ PL, the payload is an attribute p such that #p(e) �=⊥ where p ∈ AN ,
contains additional information about the event. Moreover, we assume that every
event has a timestamp attribute ts ∈ AN such that #ts(e) marks the time e
occurred in the middleware. Our definition of events pool does not have a notion
of a case identifier. We assume that the data is recorded from different systems,
and there is no unique case connected to events. Hence, the goal is to identify
the most suitable case identifier among the attributes.

Every run of a process instance is a finite sequence of events, also known as
trace σ ∈ PL∗, where PL∗ is the set of arbitrary length traces. For example,
σ1 = 〈e1, e2, e3, e4〉 is a trace constituted by a sequence of four events. In our
problem setting there may be different ways in which events form a trace. We
assume that events can be grouped into traces if there is a relation among them.
Given that we have no prior knowledge on the data schema, we do not enforce
the choice of any particular attribute for grouping events into traces.

Events in the middleware are produced as a result of activities that happen
at business process level. An activity corresponds to the execution of a certain
task that is business relevant. Examples of activities are Query Tariffs, Check
Payment, Register Customer, and so on. We consider an N:1 mapping between
the events and activities, i.e., for each business activity one or more events may
occur in the middleware. Given this relation, it is possible to construct a log
from activities by matching events onto activity traces. The challenge is to find
a mapping M : PL → A from the pool of events to the set of activities A. That
is, we aim to find a surjective function m as defined in Eq. 1 for that establishes
this mapping.

∀a ∈ A,∃e ∈ PL : a = m(e) (1)

Activities can be executed in many different orders. For process monitoring,
we are interested into sequences of activities that may represent a full end-to-end
execution of one process instance.
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3.3 Approach

With the definitions presented above, we describe the steps for identifying case
and activity attributes and extracting the business process.

Identifying Case and Activity Candidates. As discussed in Sect. 2.1, we
assume that cases and activities almost partition the space of events orthog-
onally. Unquestionably, this assumption leaves out situations where activities
appear multiple times within a case (e.g., rework loop). Nevertheless, we are
interested at having a first characterization of process variants. Therefore we
focus only on business processes where activities are unique within a case.

A characteristic of cases is that they uniquely identify traces (i.e., set of
activities). At the same time, many activities usually belong to a case, i.e.,
many singular activities are labeled with the same case identifiers. Therefore, if
we consider a sequence of attribute values in a trace of events #σ = 〈#1, . . . ,#n〉
then we must find at least i, j for which #i = #j . This condition states that case
identifiers must be non unique. For an attribute A, we measure its repetitiveness
as the fraction of unique values over the cardinality of all possible values of the
attribute.

Rep(A) = 1 − |uniq(A)|
|#A|

For example, given A = (1, 2) and B = (b, b), then Rep(A) = 1 − 2/2 =
0 whereas Rep(B) = 1 − 1/2 = 0.5. This observation allows us to filter out
attributes like the timestamp or other identifiers that are introduced by the
middleware but do not represent business relevant information. For instance,
timestamps present a low level of repetitiveness in a log.

Repetitiveness alone is not sufficient for determining case identifier attributes.
In fact, attributes which do not have low level of repetitiveness are not necessarily
case or activity candidates. We refer to these attributes as noise. One example is
the attribute score = None for all events, or attributes that only contain empty
values. We can filter out these type of attributes by relying again on the almost
orthogonality condition between case identifiers and activities. More specifically,
to overcome erroneous inclusion of noise, we consider pairs of events which have
high individual repetitiveness but a low pairwise repetitiveness, as follows.

Given a sequence of attributes, we compute the pairwise repetitiveness (a.k.a.
co-repetitiveness) with Algorithm 1. The algorithm takes as input the whole set
of attributes and returns the set PWR of all pairwise repetitiveness scores.
Because the number of attributes in our problem setting is high, we use this
measure to sort the attributes in increasing order of co-repetitiveness, namely
Sort(PWR). Candidate attributes Ac for case identifier are those who belong
to a pair ranked on top Sort(PWR) and score a high Rep(Ac).
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Algorithm 1. Computing pairwise repetitiveness
Input: An event pool PL, where AN is the set of its attribute names
Result: A set PWR = {(ai, aj , r)} where ai,aj are attribute, r is their

co-repetitiveness
1 PWR ← 0;
2 forall the e in PL do
3 forall the (i, j) such that i �= j, with ai, aj ∈ AN do
4 Vi ← #ai

(e) ; /* get all values for attribute name ai */
5 Vj ← #aj

(e) ;
6 r ← 1 − |Vi∩Vj |

max(|Vi|,|Vj |) ;
7 PWR ← PWR ∪ {(ai, aj , r)};
8 end
9 end

A corner case of this method is represented by attribute pairs that consis-
tently assume the same values. For example, let us consider A, B with #A =
(a, a) and #B = (a, a). Algorithm 1 would return as result PWR = {(A,B, 1)},
but A, B represent the same information. In order to overcome this problematic
case, we restrict the search to those attributes which do not have extreme repet-
itiveness. Thus, we penalize the both high and low values by comparing the co-
repetitiveness by computing the mean value between the individual repetitions
of the attributes. Therefore, we select the pairs r, rA,B , where r was calculated
by Algorithm 1 and rA,B = Rep(A)+Rep(B)

2 . Ideally, the best candidate has a low
value of r and a high value of rA,B . If we consider the couples in a Cartesian
space, the optimal point has coordinates Opt = (0, 1). This entails, that the best
candidates for being case-activity identifier pairs are the geometrically closest to
the optimum, i.e., they minimize the Euclidean distance δOpt = ‖Opt−(r, rA,B)‖.
The choice of one or another case identifier with similar low distance δOpt defines
different perspectives on the business process.

Discovering the Process. In Sect. 3.3 we identified pairs that are candidate for
being cases and activities. This final step is concerned with extracting a process
model out of the event pool PL. This is performed by labeling which attributes of
the event pool are cases and which are activities, and order them by timestamp.
There are generally multiple candidate pairs returned by the aforementioned
step. Thus, the challenge is to select the correct candidate. However, the set of
possible candidates can be restricted to a small number of elements, through the
usage of a customizable parameter κ, resulting in a set of pairs can be manually
inspected. The κ attributes that were identified as relevant can contain other
information that can be exploited by process mining algorithms, such as [12,
13]. At this point we have identified the cases, the activities, the timestamps
and additional information. Thus, we can generate a log file and apply process
discovery.
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3.4 Example

Here, we see an example of how the method works in practice. For our purpose
let us consider the subset of attributes A = {trId, mTrId, timestamp, uName,
oName} from Table 1.

First, we compute the case and activity candidates. For all the attributes
trId, mTrId, timestamp, uName, oName we compute Rep(a), a ∈ A. The
results are Rep(trId) = 0.67, Rep(mTrId) = 0.67, Rep(timestamp) = 0,
Rep(uName) = 0.67, Rep(oName) = 0.78. Note, that attribute timestamp
as it was detected as timestamp because it has no degree of repetitiveness. Thus,
we can already exclude timestamp from the case identifier candidates.

Table 2. Pairwise repetitiveness PWR (i.e. co-repetitiveness) and mean co-
repetitiveness r computed for the example case

trId mTrId timestamp uName oName
trId

PWR, r
- , - (0.00, 0.66) (0.00, 0.33) (0.33, 0.66) (0.44, 0.72)

mTrId
PWR, r

(0.00, 0.67) - , - (0.00, 0.33) (0.44, 0.66) (0.44, 0.72)

timestamp
PWR, r

(0.00, 0.33) (0.00, 0,33) - , - (0.00, 0.33) (0.00, 0.38)

uName
PWR, r

(0.33, 0.66) (0.44, 0.72) (0.00, 0.33) - , - (0.66, 0.72)

oName
PWR, r

(0.44, 0.72) (0.44, 0.72) (0.00, 0.38) (0.66, 0.72) - , -

*

*

The next step is to compute the co-repetitiveness set, as from Algorithm 1
and obtain the set PWR. We report the values r ∈ PWR corresponding to
each pair in the row PWR of Table 2. Likewise, we also compute the average
co-repetitiveness rAi,Aj

for all the pairs of attributes and report the result as r
next to PWR in the same row of the table.

We have finally obtained a set of points r, r of the Cartesian space. For each
point we compute the Euclidean distance δOpt to the optimum point Opt = (0, 1).
In our example, the couple (trId,mTrId) scores the lowest distance from Opt,
i.e., δOpt(trId,mTrId) = 0.33 (cf. couple marked with an asterisk ∗ in Table 2).
This means that the attributes trId, mTrId are candidates for being one the
case identifier and the other the activity identifier.

4 Evaluation: Industry Use Case

In this section we evaluate our approach against real world data. In particular,
we aim at showing the applicability and usefulness of our approach to support
selection of case and activity identifiers.
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4.1 Experimental Setup and Dataset

We used our approach on the ordering process scenario described in Sect. 2.1. The
reference process model is the one shown in figure to Fig. 2, and it describes in a
coarse-grained fashion how the process is supposed to be executed. Mechanisms
to query events from the middleware were already in place. In particular, we
retrieved the data exploiting the search engine Elaticsearch2. The output was
presented in the JSON3 format. Afterwards, the different events were grouped
together and transformed as in Table 1.

Next, we describe the dataset used for in our evaluation. To extract the pro-
cess data, we used knowledge about the start and end events. Then we proceeded
by querying for all the start events in a specific day. For each start event, we
followed several related events and made a new query in the middleware for
each of them. This procedure led to systematically obtaining all related events,
including several end events.

We extracted 8042 low-level event data concerning the ordering process. Note
that this is already a considerable amount of data as we focus on the event
attributes. In fact, similar results were obtained even with a smaller portion of
data. After collecting all the events and building the event pool, we obtained a
total number of 41 attributes. The data collection was stored in CSV files which
were then also manually checked for parsing errors. Note that, despite their
reference to a known start event, the events may and usually cover more than
the ordering process. Also, due to the fact that some processes may take weeks
before reaching the final state, we are aware that the traces may be incomplete.
The aim is to show the applicability of our method and that we can identify
meaningful candidates.

4.2 Results

In this section we show the results of applying our approach to the dataset. We
proceed following the approach step by step. To this end, we implemented a
proof-of-concept prototype4 using Python and R.

Case and Activity Candidates. Fig. 4a shows the results of the repetitiveness
computed for each attribute. Already at this stage events that are not case or
activity candidates can be filtered out. In fact, time the attributes timestamp
and id have a repetitiveness close to 0. Figure 4b plots the relation between
pairwise mean repetitiveness and the co-repetitiveness of attribute pairs. The x-
axis represents the repetitiveness of each pair, whereas the y-axis represents the
mean value between the individual repetitiveness degree of each attribute of the
pair. The optimal point Opt = (1, 0) is colored in black, the points with a lower
distance δOpt are colored with darker tonality, and the red ellipsis represents the
top candidates that score the lowest δOpt.

2 https://www.elastic.co/products/elasticsearch.
3 https://www.json.org.
4 open source in https://github.com/s41m1r/case-and-activity-identification.

https://www.elastic.co/products/elasticsearch
https://www.json.org
https://github.com/s41m1r/case-and-activity-identification
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Fig. 4. Results of the approach

We picked the top κ = 10 candidate for case and activity. These were the
following couples: {(trId, payload), (payload, host), (outMethodName, payload),
(outMethodName, mTrId), (payload, cacheState), (cacheKey, payload), (cacheS-
tate, payload), (payload, inDirection), (payload, inInterface), (inDirection, pay-
load), (inInterface, payload)}. Because our approach is agnostic about the mean-
ing of the attributes, we relied on domain knowledge to select attributes that are
more meaningful. As a result, the couple (outMethodName, mTrId) was chosen
as the best candidate, with mTrId being chosen as the case and outMethodName
as the activity.

The company could confirm that mTrId and outMethodName were indeed key
attributes representing respectively a transaction case (i.e., a sequence of actions
taken by the customer) and a method called by a service task that implemented
the activity. Therefore, the resulting business represents a user transaction per-
spective on the business process, with each activity being represented the action
of the user.

Discovered Process Model. In this step we build an event log including the
couple (outMethodName, mTrId). The timetamp that was identified in the pre-
vious phase in Sect. 3.3. In addition, we also included the top most relevant
attributes that were connected to outMethodName and mTrId. In particular,
we found other attributes like inMethodName and sort which were candidates
for alternative activity and timestamp, respectively. More specifically, we ana-
lyzed the attribute ranges for the most relevant attributes that were identified
previously. We report them in Table 3.

Figure 5 shows the resulting business process that was mined using the Celo-
nis5 process mining tool. The outcome showed that the process is similar to
the one presented in Fig. 2, with the real process having a higher number of
activities. In particular, Celonis showed that there were 13 cases in our event
log and that happy path is constituted by the sequence of activities ReqProms,
QueryTarifs, ValidateAddress, RegCustomer.

5 https://www.celonis.com/.

https://www.celonis.com/
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Fig. 5. End-to-end business process mined with Celonis
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Table 3. Attribute ranges

Attribute id timestamp trId outMethodName tags0
Range 20 digits 1511996925852 FE 1de0ea5d qAdConsent response

unique 1511996925917 FE 213dc19d checkSolv backend
values 1511996926244 FE 239bc992 RegCustomer client

1511996926335 FE 3039d556 /api/ordering request
[cont.] [cont.] [cont.] [cont.]

Levels 835 805 28 12 5
Attribute host payload mTrId inMethodName [cont.]
Range ip address 29 JSON objects MA 1ZBLJVV2 validatePayment

189 XML objects MA 4YcwwtvU checkSolv
346 SOAP messages MA 75FDzegp RegCustomer

MA 9USSsx8Y /api2/ordering
[cont.] [cont.]

Levels 4 564 31 12

Discussion. We identified the top candidate for case id and activity. In the
top ranking there were also the outMethodName, inMethodName and mTrId.
These one were also chosen by the company to implement their own process
monitoring tool. The development process monitoring tool also exploits domain
knowledge in order to understand whether an events signifies the start or an end
of an activity. As a result they were able to map 8 activities over 9 for process
monitoring.

Limitations of the approach are related to the quality of data. Given their
diverse provenance, the preprocessing step is crucial for eliminating noise and
further causes of parsing mistakes. The case and activity identification step of
the approach is useful for identifying case-activity pairs. However, it supports
no semantic and relies on expert domain knowledge. Lastly, the quality of the
model resulting from the last step depends on the process mining algorithm.

5 Conclusion

In this work, we tackle the problem of monitoring business processes from event
data which lack a case notion. The scenario is present in industry where events
from different systems are pooled together. Process monitoring in these scenarios
the discovery of the process. We proposed an approach to preprocess the data
to solve the heterogeneity problem, and detect cases-activity candidate pairs.
We use this information to build an event log and apply a process mining algo-
rithm to obtain a process model. Our approach is suitable for real case scenarios
where the event provenance is diverse and no event schema is know a priori. The
approach is customizable by the domain engineer and can provide the top κ case-
activity identifier candidates. In future work, we aim at improving the approach
towards dealing with automatically detecting granularity between events and
business activities, the discovery of causal dependencies, and the visualization
of links between event pairs.
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