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Abstract. The first CCA secure public key encryption (PKE) on the
learning parity with noise (LPN) assumption was invented by Döttling
et al. (ASIACRYPT 2012). At PKC 2014, Kiltz et al. gave a simpler
and more efficient construction, where a double-trapdoor technique was
introduced to handle the decryption queries in game simulation. Dif-
ferent from the technique, we build in the standard model the CCA
secure PKE on a variant of Extended Knapsack LPN problem (which
is provably equivalent to the standard LPN problem). We abstract out
an ephemeral key from the LPN assumption, which can then be used
to encrypt the underlying plaintext when equipped with several typi-
cal classes of cryptographic primitives. Thanks to these techniques, the
decryption queries can be correctly answered (yet without relying on a
double-trapdoor mechanism) during security reduction from LPN. The
resulting simple proposal appears more modular and efficient.

Keywords: Post quantum cryptography · Low-noise LPN
Extended Knapsack LPN

1 Introduction

In cryptography and learning theory, the Learning Parity with Noise (LPN)
problem has become a well-known problem. The two versions of LPN have been
pointed out to be polynomially equivalent [10]. The decisional one with param-
eter 0 < μ < 1/2 (noise rate), m = poly(n), n ∈ N posulates that (A, 〈A, s〉 + e)
is pseudorandom given A (i.e., computationally indistinguishable from uniform
randomness), where A ∈ {0, 1}m×n, s ∈ {0, 1}n are chosen uniformly at random,
e ∈ {0, 1}m is distributed to Bm

μ , (i.e., concatenation of m independent copies of
the Bernoulli distribution Bμ such that Pr[Bμ = 1] = μ), 〈·, ·〉 denotes the inner
product of two vectors and ‘+’ denotes the XOR operation. The computational
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version assumes that it is computationally infeasible to find out the random
secret binary vector s ∈ {0, 1}n from those noisy linear samples.

LPN Hardness. The computational LPN problem is deemed as a well-known NP-
complete problem “decoding random linear codes” [2], which makes LPN be a
promising candidate for post-quantum cryptography. Furthermore, the simplic-
ity of LPN makes it more suitable for weak-power devices (e.g., RFID tags) than
other post-quantum candidates such as LWE [17]. The best known algorithms
for solving constant noise (noise parameter 0 < μ < 1/2) LPN problem require
2O(n/ log n) time and samples [4,12]. When given only polynomially many poly(n)
samples, the time complexity goes up to 2O(n/ log log n) [13], and even 2O(n) when
given only linearly many O(n) samples [14,19]. Under low-noise rate i.e., the
noise rate μ = O(n−c) (typically c = 1/2), the best LPN solvers need only
2O(n1−c) time when given O(n) samples [3,19].

1.1 Related Work

PKE with CPA security. Retrospectively, Alekhnovich [1] constructed the first
CPA-secure public-key encryption scheme from low-noise LPN (i.e., noise rate
μ = 1/

√
n). Inspired by the schemes of Regev [17] and Gentry et al. [9], Döttling

et al. proposed an alternative one [8]. The work of Yu and Zhang [20] in 2016
made a breakthrough in solving the open problem of constructing public-key
primitives based on constant-noise LPN problem. In their IND-CPA scheme,
they used a variant assumption called LPN on Squared-Log Entropy and gave a
tight requirement of secret key’s distribution.

PKE with CCA security. IND-CCA security [16] is one of the strongest known
notions of security for public-key encryption schemes. Döttling et al. [8] con-
structed the first CCA-secure PKE scheme from low-noise LPN by using the
correlated products approach of [18]. But the complexity of that scheme was
hundreds of times worse than Alekhnovich’s scheme. Kiltz et al. [11] gave a more
efficient CCA-secure construction by means of the techniques from LWE-based
encryption in [15] with some technical changes. Specifically, they used a double-
trapdoor mechanism, together with a trapdoor switching lemma so that there
is always an available trapdoor to answer the decryption queries in game simu-
lation. In [20], Yu and Zhang constructed the first constant-noise LPN problem
based CCA-secure scheme which uses a tag-based encryption technique.

1.2 Our Contributions

In this work, we propose a simple and efficient PKE scheme which is IND-
CCA secure from low-noise LPN . We build a neat construction with noise rate
μ ≈ O(

√
1/n).

With an IND-CPA secure private-key scheme and a collision resistant hash
function H we plug the H(c1, c2, s,Ht) into Enc′

k(m) where k = H(c1, c2, s,Ht)
becomes a secret key of the Enc′ algorithm of an IND-CPA-secure private-key
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scheme Π′. Intuitively, based on the indistinguishability of LPN samples, it holds
that the scheme is IND-sTag-CCA secure (see Definition 4) and can be efficiently
transformed into a CCA-secure encryption scheme [5,11,20].

2 Preliminaries

2.1 Notations and Definitions

We use capital letters (e.g., X,Y ) for random variables and distributions, stan-
dard letters (e.g., x, y) for values. Vectors are used in the column form and
denoted by bold lower-case letters (e.g., a). We treat matrices as the sets
of its column vectors and denote them by bold capital letters (e.g., A). For
a binary string x, |x| refers to the Hamming weight of x. We use Bμ to
denote the Bernoulli distribution with parameter μ, i.e., Pr[Bμ = 1] = μ,
Pr[Bμ = 0] = 1 − μ, while Bn

μ denotes the concatenation of n independent
copies of Bμ. For n, � ∈ N, Un (resp., U�×n) denotes the uniform distribution
over {0, 1}n (resp., {0, 1}�×n) and independent of any other random variables
in consideration. X ∼ D denotes that random variable X follows distribution
D. We use s ← S to denote sampling an element s according to distribution
S. For random variables X and Y , the statistical distance between them is
defined by Δ(X,Y ) = 1

2 ·
∑

x |Pr[X = x] − Pr[Y = x]|. If for probability ensem-
bles X = {Xn}n∈N and Y = {Yn}n∈N, Δ(Xn, Yn) ≤ negl(n) holds, then X and
Y are called statistically indistinguishable, denoted by X

s∼ Y . If for any PPT
distinguisher D, |Pr[D(Xn) = 1] − Pr[D(Yn) = 1] ≤ negl(n)| holds then X and
Y are called computationally indistinguishable, denoted by X

c∼ Y .

Collision Resistant Hash Function. A hash function family H = {H : X →
Y} is collision resistant if for any PPT adversary A, it satisfies that Advcr

H,A(n) =

Pr[H $← H, (x, x′) $← A(H) : H(x) = H(x′) ∧ x �= x′] ≤ negl(n).

2.2 Learning Parity with Noise

Definition 1 (Learning Parity with Noise). The decisional LPNn,m,μ

problem is hard if for every m = poly(n) we have (A, A · s + e) c∼ (A,b)
where A ∼ Um×n, s ∼ Un, e ∼ Bm

μ and b ∼ Um while the secret length is
n and the noise rate is 0 < μ < 1/2. The computational LPNn,m,μ prob-
lem is hard if for every m = poly(n) and every PPT algorithm D we have
Pr[ D(A, A · s + e) = s ] = negl(n) where A ∼ Um×n, s ∼ Un and e ∼ Bm

μ .

Definition 2 (Knapsack LPN-KLPN). The knapsack LPN problem is hard
if for m > n samples we have (A, Aᵀt) c∼ (A, b) where A ∼ Um×n, t ∼ Bm

μ ,
b ∼ Un.

With a standard hybrid argument technique, we have results on the �-fold
LPN and �-fold KLPN that (A,AS + E) c∼ (A,B1) where A ∼ Um×n,S ∼
Un×�,E ∼ Bm×�

μ and B1 ∼ Um×�; (A,TᵀA) c∼ (A,B2) where A ∼ Um×n,T ∼
Bm×�

μ and B2 ∼ U�×n.
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Definition 3 (Extended Knapsack LPN-EKLPN). The Extended Knap-
sack LPN problem is hard if for m > n samples we have (A,Aᵀt, e, tᵀe) c∼
(A,b, e, tᵀe) where A ∼ Um×n,b ∼ Un, t, e ∼ Bm

μ .

Lemma 1. Assume that the Extended Knapsack LPN problem is hard then we
have (A,Aᵀt, e, tᵀe) c∼ (A,Aᵀt′, e, tᵀe).

Proof. From Definition 3 we have (A,Aᵀt, e, tᵀe) c∼ (A,b, e, tᵀe). From Def-
inition 2 we have (A, Aᵀt′) c∼ (A, b) where A ∼ Um×n, t, t′, e ∼ Bm

μ .
By combining these two equations, we immediately obtain (A,Aᵀt, e, tᵀe) c∼
(A,Aᵀt′, e, tᵀe).

The Extended Knapsack LPN to standard LPN problem reduction can be
referenced to [7].

3 CCA Secure PKE from Low-Noise LPN

In this section, we construct a CCA-secure PKE from low-noise LPN problem.
Technically, we construct a tag-based PKE against selective tag and chosen
ciphertext attacks from LPN, which can be transformed into a standard CCA-
secure PKE by using known techniques [5,11,20].

3.1 Tag-Based Encryption

A tag-based encryption (TBE) scheme with tag-space T and message-space M
consists of three PPT algorithms T BE = (KeyGen,Enc,Dec). The randomized
key generation algorithm KeyGen takes the security parameter n as input, out-
puts a public key pk and a secret key sk, denoted as (pk, sk) ← KeyGen(1n).
The randomized encryption algorithm Enc takes pk, a tag t ∈ T , and a plaintext
m ∈ M as input, outputs a ciphertext C, denoted as C ← Emc(pk, t,m). The
deterministic algorithm Dec takes sk and C as inputs, outputs a plaintext m, or
a special symbol ⊥, which is denoted as m ← Dec(sk, t, C). For correctness, we
require that for all (pk, sk) ← KeyGen(1n), any tag t, any plaintext m and any
C ← Enc(pk, t,m), the equation Dec(sk, t, C) = m holds with overwhelming
probability.

We consider the following game between a challenger C and an adversary A.

Init. The adversary A takes the security parameter n as input, and outputs a
target t∗ to the challenger C.

KeyGen. The challenger C computes (pk, sk) ← KeyGen(1n), gives the public
key pk to the adversary A, and keeps the secret key sk.

Phase 1. The adversary A can make decryption queries polynomial times for
any pair (t, C), with a restriction that t �= t∗, and the challenger C returns
m ← Dec(sk, t, C) to A accordingly.

Challenge. The adversary A outputs two equal length plaintexts m0,m1 ∈
M. The challenger C randomly chooses a bit b∗ $← {0, 1}, and returns the
challenge ciphertext C∗ ← Enc(pk, t∗,mb∗) to the adversary A.
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Phase 2. The adversary can make more decryption queries as in Phase 1.
Guess. Finally, A outputs a guess b ∈ {0, 1}. If b = b∗, the challenger C outputs

1, else outputs 0.
Advantage. A’s advantage is defined as Advind−stag−cca

T BE,A (1n) def= |Pr[b = b∗]− 1
2 |.

Definition 4 (IND-sTag-CCA.) We say that a TBE scheme T BE is IND-
sTag-CCA secure if for any PPT adversary A, its advantage is negilible in n.

3.2 The Construction

Our TBE scheme T BE is constructed by using the following parameters and
building blocks. Let k be the security parameter, n = Θ(k2), m ∈ Z such that
m ≥ 2n. A constant 0 < c < 1

6 (recall that we set 6c < α < 1) defining:
The Bernoulli parameter μ =

√
c/m and the bounding parameter β = 2

√
cm

to check consistency during decryption. A generator matrix G ∈ Z
m×n
2 of a

binary linear error-correcting code C = C(G) and has efficient decode algorithm
DecodeG correcting up to αm errors (we refer to [11] for details about error-
correcting code). Let the tag-space T = F2n . We use a matrix representation
Ht ∈ {0, 1}n×n for finite field elements t ∈ F2n [5,6,11] such that H0 = 0, Ht is
invertible for any t �= 0, and Ht1 +Ht2 = Ht1+t2 . A family of collision resistant
hash functions H := {H : Zm

2 × Z
m
2 × Z

n
2 × Z

n×n
2 → Z

�
2}. Let Π′ = (Enc′,Dec′)

be a private-key encryption scheme for messages m ∈ {0, 1}�′
(�′ � n, say

�′ = 128 typically). We present the construction of T BE = (KeyGen,Enc,Dec)
with message space {0, 1}�′

in Fig. 1.

(pk, sk) $← KeyGen(1k) : c
$← Enc(pk, t,m) : //m ∈ {0, 1}�′

, t ∈ F2n m ← Dec(sk, t, c) :

A $← Um×n. Parse pk = (A,B). Parse sk = T.

T $← Bm×m
μ . s $← Un. Parse c := (c1, c2, c3).

B := TA. e1
$← Bm

μ . y := c2 − Tc1.

T′ $← Bm×m
μ . Hts = b := DecodeG(y).

Return pk := (A,B), c1 := As+ e1. Compute s = H−1
t b, and check whether

sk := T. c2 := (GHt +B)s+T′e1. | c1 − As︸ ︷︷ ︸
e1

| ≤ β ∧ | c2 − (GHt +B)s
︸ ︷︷ ︸

T′e1

| ≤ αm
3 .

k = H(c1, c2, s,Ht). If yes, compute k = H(c1, c2, s,Ht),

c3 := Enc′
k(m). m = Dec′

k(c3), otherwise let m =⊥.

Return c := (c1, c2, c3). Return m.

Fig. 1. IND-sTag-CCA secure T BE from low-noise LPN
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3.3 Correctness

Lemma 2 (Chernoff Bound [11,20] ). For any 0 < μ < 1 and any δ > 0, we

have Pr[|Bm
μ | > (1 + δ)μm] < e

−min(δ,δ2)
3 μm, in particular, for δ = 1 Pr[|Bm

μ | >

2μm] < e−μm/3.

Obviously, for the chosen e1
$← Bm

μ , the Chernoff Bound yields: Pr[|e1| >

β
︸︷︷︸
=2μm

] < e−μm/3 = 2−Θ(
√

m).

Theorem 1 (Correctness). Let parameters be chosen as in our construction
then with overwhelming probability over the choice of the public and secret keys
and for all m ∈ {0, 1}�′

, Dec(sk, c) outputs m correctly over c ← Enc(pk,m).

Proof. The scheme’s correctness requires the following:

1. |(T′ − T)e1| ≤ αm (to let DecodeG reconstruct s from y = c2 − Tc1).
2. |c1 − As| ≤ β ∧ |c2 − (GHt + B)s| ≤ αm

3 .

For the decryption algorithm we require that the Hamming weight of the inner-
product of a matrix T $← Bm×m

μ and a vector e1
$← Bm

μ is upper bounded by
1
3αm with overwhelming probability. We firstly analyze the inner-product of a

vector t $← Bm
μ and the vector e1

$← Bm
μ whose Hamming weight is at most β

described as above. Since |e1| ≤ β, a necessary condition for tᵀe1 = 1 is that
t[i] = 1 for at least one of the i’s where e1[i] = 1. By a simple XOR-Lemma, it
holds that μ′ = Pr[tᵀe1 = 1] ≤ βμ = 2c.

By the Chernoff Bound (1) and with δ = α/(3μ′) − 1 (where μ′ ≤ 2c < α/3)

Pr
[
|Te1| > 1

3αm
]

= Pr [|Te1| > (1 + δ)μ′m] < e
−min(δ,δ2)

3 μ′m.
Since δμ′ = α/3−μ′ ≥ α/3−2c > 0 and δ = α/(3μ′)−1 ≥ α/(6c)−1 > 0 are

lower bounded by constants and therefore Pr
[
|Te1| > 1

3αm
]

< e
−min(δ,δ2)

3 μ′m =
2−Θ(m).

Finally, in the ciphertext of our construction we have |c1 − As| = |e1| ≤
β ∧ |c2 − (GHt + B)s| = |T′e1| ≤ 1

3αm holds with overwhelming probability
1 − 2−Θ(

√
m). In the decrption operation, y = c2 − T · c1 = (GHt + B) · s +

T′e1 −T(A · s + e1) = GHt · s+ (T′ − T) · e1 it is sufficient to bound the error
item |(T′ − T)e1|. It holds that |(T′ − T)e1| ≤ |T′e1| + |Te1| ≤ 2

3αm < αm.
Therefore, the decoding-procedure DecodeG will successfully recover s.

In all, the message m can be decrypted with overwhelming probability. ��

3.4 Security

Theorem 2. Assume that the LPN problem is hard, H is a collision resistant
hash function and Π′ is an IND-CPA-secure private-key encryption scheme then
our TBE scheme T BE in Fig. 1. is IND-sTag-CCA secure.
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Proof. Let A be any PPT adversary that can attack our scheme T BE with
advantage ε. We show that ε must be negligible in n. We continue the proof by
using a sequence of games, where the first game is the real game, while the last is
a random game in which the challenge ciphertext contains one component from
an IND-CPA secure private-key encryption. Thus if A can win in the last game
he breaks the IND-CPA secure private-key encryption as well which violates
the assumption. The security of T BE can be established by showing that A’s
advantage in any two consecutive games are negligibly close.

Game 1. This is the IND-sTag-CCA experiment. The challenger C honestly
runs the adversary A with the security parameter k and obtains a target tag t∗

from A. Then, it simulates the IND-sTag-CCA security game for A as follows:

KeyGen. First uniformly choose a collision resistant hash function H
$← H and

matrices A $← Um×n, T $← Bm×m
μ . Then, compute B = TA ∈ {0, 1}m×n.

Finally, C sends pk = (A,B) to the adversary A, and keeps sk = T to itself.
Phase 1. While receiving a decryption query c = (t, (c1, c2, c3)) from adversary

A, the challenger C directly returns ⊥ if t = t∗. Otherwise it first computes
y = c2−T·c1 = (GHt + B)·s+T′e1−T(A · s + e1) = GHt ·s+(T′ − T)e1.
Then the challenger reconstructs b = Hts from the error (T′ − T)e1 by
using the error correction peoperty of G and computes s = H−1

t b. Then
the challenger C checks that whether it satisfies that |c1 − As| ≤ β ∧ |c2 −
(GHt + B)s| ≤ 1

3αm. If yes it computes k = H(c1, c2, s,Ht),m = Dec′
k(c3)

otherwise lets m =⊥. Finally it returns m to A.
Challenge. After receiving two equal length plaintexts m0, m1 ∈ {0, 1}�′

from

the adversary A, the challenger C first randomly chooses a bit b∗ $← {0, 1},

and s $← Un, e1
$← Bm

μ ,T′ $← Bm×m
μ . Then, it calculates c∗

1 := As + e1 ∈
{0, 1}m, c∗

2 := (GHt∗ + B)s + T′e1 ∈ {0, 1}m,k = H(c∗
1, c

∗
2, s,Ht∗) ∈

{0, 1}�, c∗
3 := Enc′

k(mb∗) ∈ {0, 1}�′
, and returns the challenge ciphertext

(c∗
1, c

∗
2, c

∗
3) to the adversary A.

Phase 2. The adversary can make more decryption queries and the challenger
C responds to A as in Phase 1.

Guess. Finally, A outputs a guess b ∈ {0, 1}. If b = b∗, the challenger C outputs
1, else outputs 0.

Let Wi be the event that C outputs 1 in Game i for i in {1, 2, 3}.

Game 2. This Game is identical to Game 1 except that the challenge phase is
changed as follows:

Challenge. After receiving two equal length plaintexts m0, m1 ∈ {0, 1}�′
from

the adversary A, the challenger C first randomly chooses a bit b∗ $← {0, 1},

and s $← Un, e1
$← Bm

μ . Then, it calculates c∗
1 := As + e1 ∈ {0, 1}m, c∗

2 :=
(GHt∗ + B)s + Te1 ∈ {0, 1}m,k = H(c∗

1, c
∗
2, s,Ht∗) ∈ {0, 1}�, c∗

3 :=
Enc′

k(mb∗) ∈ {0, 1}�′
, and returns the challenge ciphertext (c∗

1, c
∗
2, c

∗
3) to the

adversary A.
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Lemma 3. |Pr[W1] − Pr[W2]| ≤ negl(n)

Proof. The only difference between Game 1 and Game 2 is that C replaces c∗
2 :=

(GHt∗ + B)s+T′e1 in Game 1 with c∗
2 := (GHt∗ + B)s+Te1 in Game 2. Next,

we introduce a sequence of games {Game1,i}i∈[0,m] between Game 1 and Game
2 to replace T′ in the c∗

2 row by row. Firstly, we define T = (t1, · · · , tm)ᵀ,T′ =
(t′

1, · · · , t′
m)ᵀ.

- Game1,i, i ∈ [m]. This game is a hybrid of Game 1 and Game 2: the challenger
C replaces t′ᵀ

i with tᵀ
i in c∗

2 during the challenge phase and keeps the remain-
ing rows as in Game1,i−1. Let Game1,0 be Game 1. Obviously, Game1,m is
identical to Game 2.

It suffices to show that |Pr[W1,i] − Pr[W1,i−1]| ≤ negl(n) for any i ∈ [m]. The
hardness of the EKLPN problem ensures that the probability for adversary A to
distinguish Game1,i from Game1,i−1 is negligible. Otherwise we can construct an
algorithm B to solve EKLPN problem. Precisely, B is constructed by simulating
Game1,i or Game 1,i−1 for A. B is given a quadruple (A, (t̄ᵀ

i A)ᵀ, e1, z̄i), where
z̄i is either t̄ᵀ

i e1 or t̄′ᵀ
i e1. B’s behavior is as follows.

KeyGen. B picks H
$← H, Ti = (t1, · · · , ri, · · · , tm)ᵀ and then B sets B =(

Aᵀt1, · · · , Aᵀt̄i , · · · ,Aᵀtm

)ᵀ
. Finally, B sends pk = (A,B) to the adver-

sary A, and keeps sk = Ti to itself. Note that the ith row in Ti is chosen
randomly and the ith row in B is independent of it.

Phase 1. While receiving a decryption query c = (t, (c1, c2, c3)) from adver-
sary A, B directly returns ⊥ if t = t∗. Otherwise it first computes y =
c2 − Ti · c1 = (GHt + B) · s + T′e1 − Ti(A · s + e1) = GHt · s +⎛

⎜
⎜⎜⎜⎜⎜
⎝

0
...

(t̄ᵀ
i − rᵀ

i )As
...
0

⎞

⎟
⎟⎟⎟⎟⎟
⎠

+

⎛

⎜
⎜⎜⎜⎜⎜
⎝

(t′ᵀ
1 − tᵀ

1)e1

...
(t′ᵀ

i − rᵀ
i )e1

...
(t′ᵀ

m − tᵀ
m)e1

⎞

⎟
⎟⎟⎟⎟⎟
⎠

︸ ︷︷ ︸
Δi

, Hts = Decode(y).

Let y = GHts + Δi, where |Δi| ≤ 2
3αm + 1 < αm, DecodeG also can handle

correct s from y. Then B checks that whether it satisfies that |c1 − As| ≤
β ∧ |c2 − (GHt + B)s| ≤ 1

3αm. If yes it computes k = H(c1, c2, s,Ht),m =
Dec′

k(c3) otherwise lets m =⊥. Finally it returns m to A. Therefore, the
decryption oracle can behave correctly.

Challenge. After receiving two equal length plaintexts m0, m1 ∈ {0, 1}�′

from the adversary A, B first randomly chooses a bit b∗ $← {0, 1}, and

s $← Un, e1
$← Bm

μ . Then, it calculates c∗
1 := As + e1 ∈ {0, 1}m, c∗

2 =

(GHt∗ + B)s +
(
eᵀ
1t1, · · · , eᵀ

1ti−1 z̄i , eᵀ
1t

′
i+1 · · · , eᵀ

1t
′
m

)ᵀ
∈ {0, 1}m,k =

H(c∗
1, c

∗
2, s,Ht∗) ∈ {0, 1}�, c∗

3 := Enc′
k(mb∗) ∈ {0, 1}�′

, and returns the chal-
lenge ciphertext (c∗

1, c
∗
2, c

∗
3) to the adversary A.
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Phase 2. The adversary can make more decryption queries and B responds to
A as in Phase 1.

Guess. Finally, A outputs a guess b ∈ {0, 1}. If b = b∗, B outputs 1, else
outputs 0.

If z̄i = t̄′ᵀ
i e1, then B simulates the behavior of the challenger in Game1,i−1

exactly. Hence, Pr[W1,i−1] = Pr
[
B(A, (t̄ᵀ

i A)ᵀ, e1, t̄
′ᵀ
i e1) = 1

]
.

If z̄i = t̄ᵀ
i e1, then B simulates the behavior of the challenger in Game1,i

exactly. Hence, Pr[W1,i−1] = Pr [B(A, (t̄ᵀ
i A)ᵀ, e1, t̄

ᵀ
i e1) = 1].

Therefore, for i ∈ [m], we have |Pr[W1,i−1] − Pr[W1,i]| ≤ negl(n).

Game 3. This Game is identical to Game 2 except that the challenger C replaces
B = TA with B′ = B − GHt∗ ∈ {0, 1}m×n in the key generation phase.

Lemma 4. Pr[W3] = Pr[W2].

Proof. The only difference between Game 2 and Game 3 is that C replaces
B = TA in Game 2 with B′ = B − GHt∗ in Game 3. This means that the
public key in Game 3 has the same distribution in Game 2. Thus we have
Pr[W3] = Pr[W2].

Game 4. This Game is identical to Game 3 except that the challenger C replaces
c∗
1 = As+ e1 ∈ {0, 1}m with c∗

1 = u ∈ {0, 1}m in the challenge phase. Note that
in Game 2, c∗

2 = (GHt∗ + B)s+Te1 = GHt∗s+Tc∗
1. Therefore, in Game 3 we

have c∗
2 = (GHt∗ + B′)s + Te1 = Tc∗

1.

Lemma 5. | Pr[W4] − Pr[W3] | ≤ negl(n).

Proof. Since the only difference between Game 3 and Game 4 is that C replaces
c∗
1 = As + e1 ∈ {0, 1}m in Game 3 with c∗

1 = u ∈ {0, 1}m in Game 4, we can
construct a distinguisher D that distinguishes the distributions (A,A · s+e) and

(A,u) (where u $← Um) with advantage adv(n) (assuming that A distinguishes
3 and Game 4 with non-negligible adv(n)), contradicting the assumption. Thus
we have | Pr[D(A,A · s + e)] | − | Pr[D(A,u)] | = | Pr[W3] | − | Pr[W4] | =
adv(n), which contradicts the assumption. This means that we have | Pr[W3] |−
| Pr[W4] | ≤ negl(n).

Lemma 6. Pr[W4] = 1
2 + negl(n).

Proof. This lemma follows from that the challenge ciphertext (c∗
1, c

∗
2) in game

4 is uniformly distributed. From A’s view, s is perfectly hidden since c∗
1 is uni-

formly distributed. The collision resistant hash function implies that it’s nearly
impossible for A to guess k correctly. Combining with the IND-CPA secure
private-key encryption scheme it ensures that the advantage of the adversary A
is negligible.

Note that the security requirement of private-key encryption scheme Π′ is
IND-CPA secure, for example an one-time pad scheme, since the replacement of
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the pseudorandomness with randomness makes the challenge ciphertext perfectly
random thus it is impossible for adversary to guess correctly with probability
more than 1/2. Meanwhile it answers the decryption queries correctly. In all,
we have Pr[W1] = 1

2 + negl(n), such that ε = negl(n). Thus we complete the
proof.
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12. Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006).
https://doi.org/10.1007/11832072 24

https://doi.org/10.1007/978-3-642-22792-9_42
https://doi.org/10.1137/S009753970544713X
https://doi.org/10.1137/S009753970544713X
https://doi.org/10.1007/978-3-642-03356-8_11
https://doi.org/10.1007/978-3-662-46447-2_27
https://doi.org/10.1007/978-3-642-34961-4_30
https://doi.org/10.1007/11761679_6
https://doi.org/10.1007/978-3-642-54631-0_1
https://doi.org/10.1007/11832072_24


766 H. Cheng et al.

13. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem. In: Chekuri, C., Jansen, K., Rolim,
J.D.P., Trevisan, L. (eds.) APPROX/RANDOM -2005. LNCS, vol. 3624, pp. 378–
389. Springer, Heidelberg (2005). https://doi.org/10.1007/11538462 32

14. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
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