®

Check for
updates

FPGA-Based Assessment of Midori
and GIFT Lightweight Block Ciphers

Carlos Andres Lara-Nino®)@®, Arturo Diaz-Perez
and Miguel Morales-Sandoval

)

CINVESTAV Tamaulipas campus, Victoria, Tamaulipas, México
clara@tamps.cinvestav.mx

Abstract. Lightweight block ciphers are today of paramount impor-
tance to provide security services in constrained environments. Recent
studies have questioned the security properties of PRESENT, which makes
it evident the need to study alternative ciphers. In this work we pro-
vide hardware architectures for Midori and GIFT, and compare them
against implementations for PRESENT and GIMLI under fair conditions.
The hardware description for our designs is made publicly available.

Keywords: Midori + GIFT - PRESENT - GIMLI - FPGA

1 Introduction

For years, the lightweight block cipher PRESENT [6] has been in the spotlight as
the most ideal solution for providing confidentiality under constrained environ-
ments. However, recent findings [5,11] call into question the security properties
of the scheme. It is clear that the study of alternatives which offer resilience
against birthday attacks and linear or differential cryptanalysis is necessary.

In 2015, a possible NIST standard for lightweight cryptography was first
mentioned. Over the course of two years NIST published a report detailing the
scope and state of the art in lightweight cryptography [10] and the standardiza-
tion works seem to be in progress. This hints to the fact that lightweight crypto-
graphic primitives are key components in the development of future technologies
and applications. Generating solid and reproducible implementation results and
benchmarking is undoubtedly primordial for any future standards.

In this work we evaluate hardware realizations of the cryptographic algo-
rithms Midori and GIFT, which are believed to be secure. We compare these
implementations against State of the Art architectures for GIMLI and PRESENT.
Our main contributions are:

1. Novel architectural designs for the Midori and GIFT block ciphers following
area-reduction strategies.

2. The first implementation results for GIFT and the first area-oriented results
for Midori in FPGA.

© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 745-755, 2018.
https://doi.org/10.1007/978-3-030-01950-1_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_45&domain=pdf
http://orcid.org/0000-0003-0333-2564
http://orcid.org/0000-0003-4432-5686
http://orcid.org/0000-0003-1702-8467

746 C. A. Lara-Nino et al.

3. All the proposed designs (VHDL) are available at https://www.tamps.
cinvestav.mx/~hardware/.

The rest of the paper is structured as follows. Section 2 describes the different
architectures for the selected lightweight algorithms, which are implemented and
evaluated. Section3 describes our experimental setup. Section4 presents our
findings. Section 5 concludes this work.

2 Methods

In this section we focus on encryption functions since these can be used to
encrypt and decrypt data under the CTR mode of operation [7]. We use 128-bit
key sizes for all the block ciphers.

For each lightweight block cipher we study its iterative and serial architec-
tures [8]. We define two types of serial architectures. The first type (serial-1)
targets a reduction in the number of 4-bit substitution boxes (SBOX) from n/4
to two. The second type of architecture (serial-2) seeks to reduce not only the
number of substitution boxes, but also the width of other transformations when
possible.

2.1 PRESENT

The PRESENT block cipher follows a Substitution-Permutation Network (SPN)
construction. It has a block size of 64-bit and supports key sizes of 80-bit and
128-bit. The specification for its encryption function is presented in [6].

We first study the basic implementation of the block cipher with 10 ports
of 8-bit described in [8]. That hardware realization of PRESENT requires 17
substitution boxes (SBOX), 77 XOR gates, and 192 Flip-Flops (FF). In regards
to latency, 16 cycles are required to input the plaintext and the cipher key, 31
cycles to encrypt the data, and 8 cycles to produce the output. In total this sums
55 cycles.

In the serial-1 architecture for PRESENT found in [8], the the main optimiza-
tion involves reducing the number of substitution boxes to two. The substitution
boxes used in the key generation are also removed and the number of XOR gates
is reduced. The trade-off is an increment in the number of cycles required to
encrypt the data. The implementation of this design requires 2 SBOX, 21 XOR
gates, and 192 FF. With this design 303 latency cycles are needed to encrypt a
data block.

The serial-2 PRESENT architecture under study is the one reported in [9].
In that design the main strategy was outlined as reducing the whole datapath
to 16-bit, which is a quarter of its block size. The hardware realization for this
design involves the use of 6 SBOX, 21 XOR gates, and 192 FF. The total latency
of the design is of 136 cycles.

https://www.tamps.cinvestav.mx/~hardware/
https://www.tamps.cinvestav.mx/~hardware/

FPGA-Based Assessment of Mid ori and GIFT Lightweight Block Ciphers 747

2.2 Midori

Midori is a lightweight block cipher “that is optimized with respect to the energy
consumed by the circuit per bit in encryption or decryption operation” [2]. This
block cipher operates over data blocks of 64 or 128 bits. A key size of 128-bit is
used in both versions of the algorithm. Midori also has an SPN structure.

The iterative architecture for Midori created in this work is presented in Fig. 1
(left). This design can describe both Midori-64 and Midori-128 realizations. It
follows the algorithm specification closely but uses 8-bit IO ports. In hardware,
this architecture requires 16 SBox (which are of 4-bit for Midori-64 and of 8-bit
for Midori-128), an n—bit transformation which can be simplified as n/2 XOR
gates (MixColumn), an n-bit XOR layer, 16 XOR gates for the key mechanism,
r — 2 16-bit round constants, and n + 128 FF. In total the iterative architectures
for Midori-64 and Midori-128 have a latency of 41 and 53 cycles, respectively.

plaintext key plaintext key plaintext key

g gt

ITi®
-

8 n d

h Key register ‘ Data register
g8
0
ey extrac =
yan
6

n
ShuffleCell

MixColumn

n /n

ciphertext ciphertext riext

Fig. 1. Iterative (left), serial-1 (center), and serial-2 (right) architectures for Midori-64
and Midori-128

Figure 1 (center) illustrates the serial-1 architecture created in this work for
Midori-64 and Midori-128. This version focuses on reducing the SBOX count.
For Midori-64, the SBox illustrated represents two 4-bit SBOX. For Midori-128,
eight 8-bit permutations are also allocated inside the SBox. These permutations
work together with two 4-bit SBOX to produce the output of the substitution
layer. Two of the four permutations are selected depending on the position in
the state of the data nibble being processed. The hardware realization of this
design uses two 4-bit SBOX, the n/2 XOR gates simplification of MixColumn,
an n-bit XOR layer, the 16 XOR gates used in the key generation, r — 2 16-bit
round constants, and 128 + n FF. This Midori-64 architecture has a latency of
169 cycles while the Midori-128 design requires a total of 373 cycles.

The serial-2 architecture developed in this work for Midori is shown in Fig. 1
(right). In this design the datapath width d is reduced to 16-bit for Midori-64
and 32-bit for Midori-128. In both cases the operations which can be serial-
ized are the substitution layer, the MixColumn step, and the key addition. The
n-bit permutation is performed during an extra cycle in the round. In order

748 C. A. Lara-Nino et al.

to achieve this design we modified the Midori algorithm so that the SubCell
and ShuffleCell operations are swapped. This allows pushing the ShuffleCell step
from the 7 iteration back to the ¢ — 1 iteration. From this, the serializable steps
of the algorithm are now grouped at the beginning of the round and can be
processed together in 4 cycles. The non serializable part is left at the end of
the round and performed in the extra cycle. The cost of this modification only
affects Midori-128 due to the 8-bit permutations used inside the SBox which
have to be shuffled. For implementing Midori-64 this design requires four 4-bit
SBOX, an 8 XOR gates version of MixColumn, 32 XOR gates, 14 16-bit round
constants, and 192 FF. The latency of this design amounts to 96 cycles. For
implementing Midori-128 the hardware requirements are four 8-bit SBox, a 16
XOR gates version of MixColumn, 48 XOR, gates, 18 16-bit round constants,
and 256 FF. A latency of 112 cycles is required to encrypt the data with this
architecture.

2.3 GQGIFT

The block cipher GIFT is said to be a direct improvement to PRESENT “that
provides a much increased efficiency in all domains (smaller and faster)” and also
patches security weaknesses of the latter. Two specifications of the algorithm
were presented in [3] for block sizes of 64 and 128-bit. A key size of 128-bit is
used in both versions of the algorithm.

The iterative architecture created for GIFT is presented in Fig.2 (left). This
design is a direct implementation of the specification with 8-bit IO ports. For
GIFT-64 or GIFT-128 the design requires n/4 4-bit SBOX, n/2+ 6 XOR gates, a
NOT gate, and n+ 134 FF. The latency for GIFT-64 is 52 cycles and the latency
for GIFT-128 is 72 cycles.

plaintext key

plaintext plaintext key

2 ¥

z
SBOX[SBOX|
T

S
5
T

ciphertext ciphertext ciphertext

Fig. 2. Iterative (left), serial-1 (center), and serial-2 (right, the value d equals n/4)
architectures for GIrT-64 and GIFT-128

Figure 2 (center) presents our serial-1 architecture for GIFT. This design uses
8-bit 10 ports and has a serialized application of the substitution layer based
on two 4-bit SBOX. The architecture illustrated describes both GIiFT-64 and
GIFT-128. In the case of GIFT-64 the implementation requires two 4-bit SBOX,

FPGA-Based Assessment of Mid ori and GIFT Lightweight Block Ciphers 749

38 XOR gates, a NOT gate, and 198 FF. For this version 276 latency cycles are
required. For GIFT-128, two 4-bit SBOX, 70 XOR gates, a NOT gate, and 262
FF are used. In this case the latency is of 712 cycles.

Our serial-2 architecture for GIFT, shown in Fig.2 (right), was created by
serializing the substitution, permutation, and key addition layers. The datapath
width d was adjusted to 16-bit for GIFT-64 and to 32-bit for GIiFT-128. The
reduction of the substitution layer is straightforward for GIFT. We used a regular
pattern found in the original permutation to reduce the permutation layer width
to a quarter of its original width. However, by using this reduction an additional
transposition of the state is required. Let us use a 2-D representation of the
state as described in [3]. The new reduced permutation will yield a transposed
version of the 2-D state, arranged in 16 n/16-bit nibbles. Thus, the additional
permutation is a shuffling of the state in 4-bit nibbles for GIFT-64 and 8-bit
nibbles for GIFT-128. This strategy is similar to that used in [9] for PRESENT.
The small permutation is applied on a serialized manner while the transposition
is applied over the state during an additional cycle. The round key also needs
to be shuffled to accommodate for this intermediate result. In order to serialize
the key addition step, we separated the addition of the keying materials and the
addition of the round constants. The keying materials are derived from the key
register, shuffled, and serialized, before being applied to the state. The round
constants are applied to the state during the additional cycle while the key
register is updated. Based on this architecture, the implementation of GIFT-
64 requires four 4-bit SBOX, 14 XOR gates, a NOT gate, and 198 FF. The
implementation of GIFT-128 uses eight 4-bit SBOX, 22 XOR gates, a NOT gate,
and 262 FF. The total latency for GIFT-64 and GIFT-128 is of 152 and 208
cycles, respectively.

2.4 GIMLI

GIMLI is a 384-bit permutation “designed to achieve high security with high
performance across a broad range of platforms”. According to its creators, this
permutation can be easily used to build high-security block ciphers. We have
included this algorithm into our review since its authors claim it was designed
for “energy-efficient hardware” and “compactness”. The specification for this
function is presented in [4]. Since the implementations provided in [4] do not
implement a block cipher, a secret key is not used.

In the iterative implementation for GIMLI provided in [4] a block size of
384-bit is used. The application of the parallel SP-box requires two 384-bit per-
mutations, 768 XOR gates, 256 AND gates, and 128 OR gates. The Big-Swap
and the Small-Swap can be seen as 384-bit permutations. Finally, 37 XOR gates
are used for the addition of the round constants. This architecture has a latency
of 120 cycles.

A serial-1 architecture for GIMLI was also retrieved from [4]. The main strat-
egy for reducing resources consists on serializing the application of the SP-box
layer. In this instance, 96-bit of the state are processed in parallel so that
four cycles are required for each application of the SP-box layer. The other

750 C. A. Lara-Nino et al.

transformations are applied to the state in a fifth cycle, which is present for half
of the rounds. The application of the serialized SP-box requires two 96-bit per-
mutations, 192 XOR gates, 64 AND gates, and 32 OR gates. The Big-Swap and
the Small-Swap can still be represented as 384-bit permutations and 37 XOR
gates are also used for the addition of the round constants. A latency of 204
cycles is required for this design.

2.5 Summary

Table1l provides a summary of the different architectures discussed in this
section.

Table 1. Summary of the different designs reviewed in this section

Label/Alg State (bits)Key (bits) Rounds/Ref |Arch. |Latency|Hardware resources
(cycles)
SBOX | Gates | Const. | FFs

C01 |PRESENT |64 128 31 [8] |Iterative|55 17 7 1 192
C02 [8] Serial-1 303 2 21 1 192
Co03 [9] |[Serial-2 (136 6 21 1 192
C04 |Midori-64 |64 128 16 Ours|Iterative|41 16 112 14 192
Co05 Ours|Serial-1 |169 2 112 14 192
C06 Ours|Serial-2 |96 4 40 14 192
C07 |Midori-128|128 128 20 Ours|Iterative|53 32 208 18 256
Co08 Ours|Serial-1 {373 2 208 18 256
C09 Ours|Serial-2 |112 8 64 18 256
C10 |GIFT-64 64 128 28 Ours|Iterative|52 16 39 0 198
C11 Ours|Serial-1 |276 2 39 0 198
C12 Ours|Serial-2 |152 4 15 0 198
C13 |GIFT-128 |[128 128 40 Ours|Iterative|72 32 71 0 262
C14 Ours|Serial-1 |712 2 71 0 262
C15 Ours|Serial-2 {208 8 23 0 262
C16 |GIMLI 384 - 24 [4] Iterative|120 0 1189 2 384
Cc17 [4] |Serial-l 204 0 325 |2 384

3 Experimental Evaluation

The different designs in Table 1 are used as configurations for our experimental
evaluation. The VHDL description for the PRESENT implementations is the one
used in [8] and [9]. The hardware descriptions for the different Midori and GIFT
architectures were created in this work. Lastly, the VHDL description for the
GIMLI architectures is the one used in [4].

All the configurations were implemented for the xc6slx16-3csg324 FPGA
using ISE Design Suite 14.2 and for the xc7al5t-1cpg236¢c FPGA using Vivado
Design Suite 2017.3 Version. The synthesis process was configured with Area as

FPGA-Based Assessment of Mid ori and GIFT Lightweight Block Ciphers 751

optimization goal in both instances. The use of RAM/ROM elements was dis-
abled for all the implementations. We provide Post-Place & Route area results
in terms of slices (SLC), Look-Up-Tables (LUT), and Flip-Flops (FF) for all the
configurations in the two implementation platforms.

In regards to performance, we report the total latency (LAT), the maxi-
mum achievable frequency (Fmax) from the Post-Place & Route report, the
runtime (Time), and the throughput (Thr) for each configuration. The through-
put was calculated for operational frequencies of 100 KHz and Fmax as Thr =
(state size x Freq)/LAT.

A power analysis for the xc6slx16-3csg324 FPGA was performed using the
Xilinx XPower Analyzer tool version 14.2 for operational frequencies of 100 KHz
and Fmax. The power estimations were obtained after place and route using
Xilinx XPower Analyzer 14.3 with HIGH overall confidence level. This analysis
used the Post-Place & Route Design file (ncd), a Physical Constraints file (pcf)
specific for the evaluation target, and a Simulation Activity file (saif) generated
from a Post-Place & Route simulation in Isim. The Simulation Run Time was
of 100 ms for all the 100 KHz instances and of 100 us for all the Fmax instances.
From this evaluation we report the quiescent and dynamic power for each design.
The power dissipation and the performance at 100 KHz and Fmax were then used
to calculate the energy consumption for each configuration.

We use three efficiency (EFF) metrics to evaluate the different configura-
tions. The first figure represents the relation between performance and area and
is given in Kbps per SLC. The second figure represents the relation between
energy and area and is given in uJ per SLC. Lastly, the third efficiency indicator
represents the relation between the energy spent and the bits processed and is
expressed in nJ per bit. These metrics are expected to indicate the prowess of
the configurations for different trade offs, which might be attractive for different
application scopes.

4 Results

The area and performance results for the implementations in the xc6slx16-
3csg324 FPGA are presented in Table 2. The results for the power analysis and
energy consumption calculations for the different configurations implemented
in the xc6slx16-3csg324 FPGA are provided in Table 3. The area results in the
xc7albt-1cpg236¢c FPGA are shown in Fig. 3.

4.1 Discussion

The iterative architectures presented for Midori and GIFT offer a good balance
between area and performance. While iterative implementations are generally
more efficient, serial architectures can be used in cases where further area reduc-
tion is needed.

The first type of serial architectures described (S1: reduction of the SBOX
count) offers a reduction in the hardware resources over the iterative architec-
tures for all the block ciphers reviewed. But the latency is the least favorable for

752 C. A. Lara-Nino et al.

Table 2. Area and performance results for the xc6slx16-3csg324 FPGA using opera-
tional frequencies of 100 KHz and Fmax.

Size (bits) Resources LAT Fmax Time (us) Thr (Mbps) EFF (Kbps/SLC)
State Key 10 DP|FF LUT SLC|(Cycles) (MHz) 100KHz Fmax 100KHz Fmax 100KHz Fmax

[§] C01 | 64 128 8 641|200 202 56 55 145.35 550 0.38 0.12 169.13 2.08 3020.24

PRESENT C02 | 64 128 8 8 (203 157 45 303 131.87 3030 2.30 0.02 27.85 0.47 618.99

[9] CO03| 64 128 16 16|201 220 61 148 159.21 1480 0.93 0.04 68.85 0.71 1128.65

Cipher Ref. Conf.

C04 | 64 128 8 641|200 356 118 41 166.17 410 0.25 0.16 259.38 1.32 2198.17
Midori-64 Ours C05 | 64 128 8 8 |203 262 109 169 141.56 1690 1.19 0.04 53.61 0.35 491.83
C06 | 64 128 16 16|202 268 96 96 157.80 960 0.61 0.07 105.20 0.69 1095.86
CO07 | 128 128 8 128|264 549 157 53 157.95 530 0.34 0.24 381.47 1.54 2429.75

Midori-128 Ours CO08 | 128 128 8 8 269 390 115 373 139.31 3730 2.68 0.03 47.81 0.30 415.72
C09 | 128 128 32 32|267 482 155 112 86.07 1120 1.30 0.11 98.37 0.74 634.64
C10 | 64 128 8 641|205 189 58 52 218.10 520 0.24 0.12 268.43 212 4628.17
GIFT-64 Ours CI1| 64 128 8 8 |209 151 44 276 225.53 2760 1.22 0.02 52.30 0.53 1188.56
Cl2 | 64 128 16 161|208 235 67 152 219.44 1520 0.69 0.04 92.40 0.63 1379.06
C13 | 128 128 8 128270 290 93 72 189.93 720 0.38 0.18 337.66 1.91 3630.75
GIFT-128 Ours C14 | 128 128 8 8 |275 286 81 712 144.15 7120 4.94 0.02 25.92 022 319.94
C15 | 128 128 32 32|273 256 66 208 217.63 2080 0.96 0.06 133.92 0.93 2029.16
C16 | 384 - 8 384|394 587 174 120 121.34 1200 0.99 0.32 388.30 1.84 2231.62
C17 | 384 - 8 32(397 493 164 204 148.88 2040 1.37 0.19 280.24 1.15 1708.76

GIMLI [4]

Table 3. Power and energy results for the xc6slx16-3csg324 FPGA using operational
frequencies of 100 KHz and Fmax.

Cipher Ref. Conf. POW@100KHz (mW) ENEQ100KHz EFFQ@100KHz [POW@Fmax (mW) ENEQFmax EFFQFmax
) '|Quiescent Dynamic (nJ) (nJ/SLC) (nJ/bit)|Quiescent Dynamic (nJ) (nJ/SLC) (nJ/bit)
Co1 21.51 0.50 12105.50 216.17 189.15 21.82 31.22 20.07 0.36 0.31
PRESENT (5] Co02 21.51 0.55 66841.80 1485.37 1044.40 21.68 17.48 89.98 2.00 1.41
[9] Co03 21.51 0.49 32560.00 533.77 508.75 21.89 37.67 55.37 0.91 0.87
Co04 21.51 0.50 9024.10 76.48 141.00; 22.00 48.36 17.36 0.15 0.27
Midori-64 Ours C05 21.51 0.48 37163.10 340.95 580.67 21.69 18.07 47.47 0.44 0.74
Co6 19.90 0.47 19555.20 203.70 305.55 20.14 24.72 27.29 0.28 0.43
cor 21.51 0.52 11675.90 74.37 91.22 22.28 75.15 32.69 0.21 0.26
Midori-128 Ours C08 21.51 0.49 82060.00 713.57 641.09 21.76 24.98 125.14 1.09 0.98
C09 19.90 0.53 22881.60 147.62 178.76 20.38 48.13 89.15 0.58 0.70
C10 21.51 0.49 11440.00 197.24 178.75 21.94 42.29 15.31 0.26 0.24
GIFT-64 Ours CI1 21.51 0.46 60637.20 1378.12 947.46 21.68 17.63 48.11 1.09 0.75
C12 19.90 0.46 30947.20 461.90 483.55 20.10 20.99 28.46 0.42 0.44
C13 21.51 0.49 15840.00 170.32 123.75 22.03 51.32 27.81 0.30 0.22
GIFT-128 Ours Cl14 21.51 0.48 156568.80 1932.95 1223.19 21.65 14.24 177.27 2.19 1.38
C15 19.90 0.46 42348.80 641.65 330.85 20.20 30.79 48.73 0.74 0.38
GIMLI [C16 21.51 0.58 26508.00 152.34 69.03 21.74 23.39 44.63 0.26 0.12
C17 21.51 0.57 4504320 274.65 117.30 21.73 21.99 59.91 0.37 0.16
700 —
[Flip-Flops ~
LTS 8

550
565

Slices

Artix-7 resources

N N N o) o) X} 2 %)) o)) o) %) %) PN\ N\
& O & 0‘\,@‘ LB D < 6’%“ o AT A% A s o
€ s (3 O S I I " ¥ o ¥ K e al
ST @t @t N\ 00;,\“‘ OQQ,\V“ JPC RN O a® S 0\3\0 o & o @ o &
(e} &)

Fig. 3. Area results of lightweight block ciphers using the xc7al5t-1cpg236¢c FPGA.
Results obtained after place and route

FPGA-Based Assessment of Mid ori and GIFT Lightweight Block Ciphers 753

every instance. The second type of serial architectures (S2: general reduction of
the datapath) offers better performance than the S1 type. The hardware profile
seems to vary from design to design. For PRESENT, the serial-2 architecture (C03)
appears to be ineffective compared to CO1 in the xc6slx16-3csg324 FPGA. How-
ever, the improvement for this design (C03) is palpable when implemented on
the xc7albt-1cpg236¢c FPGA. Other instances where the serial-2 architecture is
advantageous for area occur for Midori-64 and GIFT-128 in the xc6slx16-3csg324
FPGA and for Midori-64 in the xc7al5t-1cpg236c FPGA.

The iterative architectures consistently achieved the smaller energy consump-
tion figures. However, the second type of serial architectures dissipated the least
power for Midori and GIFT at low operational frequencies (100 KHz). While low
energy consumption is a desirable trait for extending the lifetime of battery-
powered applications such as WSN motes, low power dissipation is required in
passive devices such as RFID tags.

Even though high operational frequencies lead to increased power dissipation,
the execution times obtained from the frequency increment, and the resulting
energy consumption, are greatly improved. For throughput, the variation from
100 KHz to Fmax is generally of three orders of magnitude, which coincides with
the reduction of the execution time. The frequency increment causes the power
dissipation to double for all the configurations, but due to the delay reduction the
final energy consumption is also reduced three orders of magnitude for almost all
the configurations. This experiment presents evidence that constrained devices
can benefit from high operational frequencies, however, the application scope
shall ultimately dictate the operational frequency to be used.

From the results it is possible to note how small IO buffers can be a burden
for an implementation. It is known that most constrained devices can not afford
to implement wide interfaces. But if the IO width selected is too small, the port
interfacing will take longer than the data processing itself. This is more evident
with primitives with large block sizes such as Midori-128, GIFT-128 and GIMLI.

The efficiency results allow drawing specific comparisons among the different
configurations. From the performance per slice comparison it is possible to note
that the iterative architectures (C01, C04, C07, C10, C13, C16) are consistently
more efficient compared to the serial realizations. From this set, the iterative
implementations of the GIFT block cipher, in both 64 (C10) and 128 bits (C13)
instances, resulted to be the most efficient. The results are consistent for both
operational frequencies used.

In terms of energy per slice, the minimal energy expenditure per slice is
observed for the iterative realization of Midori-64 (C04) and Midori-128 (CO7).
The maximum energy per slice was observed for the serial architectures of GIFT
(C14) and PRESENT (C02), these designs both follow the approach of reducing
the number of substitution boxes in the design. In this case the behavior for
both operational frequencies is similar even though the difference of three orders
of magnitude is noticeable.

Both implementations for the GIMLI permutation (C16, C17) obtained the
smaller expenditures in the energy per bit efficiency results. These were followed

754 C. A. Lara-Nino et al.

by the iterative implementations of GIFT-128 (C13) and GIFT-64 (C10). The
same pattern can be discerned for both operational frequencies used.

4.2 Comparison with the State of the Art

In the literature we found one work which implements the Midori block cipher
in FPGA [1]. In that reference the authors propose fault-diagnosis schemes for
Midori-128 and compare them with the “Original Midoril28 Encryption” in an
xc7vx330t FPGA. Results in SLC, maximum frequency, power, and through-
put are provided for four Midori-128 implementations. Since a different FPGA
platform is used and not all the information is available (latency, synthesis cri-
teria) it is difficult to have a fair comparison. In regards to area, the imple-
mentations in [1] cost from 155 to 171 SLC while our designs for Midori-128
in the xc6slx16-3csg324 FPGA cost from 112 to 162 SLC. In performance, our
fastest implementation of Midori-128 can reach up to 433 Mbps while the range
in [1] is 42.52 to 47.41 Gbps. The power requirements for our designs range from
20.42 mW to 22.02 mW while the more modest design in [1] requires 340 mW.
Its clear that our implementations were created following different design goals.
While the results in [1] were obtained for improved security and high perfor-
mance, our implementations seek to provide low implementation size and energy
consumption.
No FPGA implementations for GIFT were found in our review.

5 Conclusions

In this paper we have studied cryptographic algorithms which can substitute
the use of PRESENT and might be considered for future standardization. Even
though the modern constructions are efficient, they can not improve the resource
requirements of PRESENT for secure state sizes.

We have provided lightweight hardware architectures for the Midori and
GIMLI block ciphers. The proposed designs exhibit varying trade-offs which can
be attractive for different applications. In order to increase the usability of our
work the hardware descriptions for these architectures are made public.

To the best of our knowledge, we have obtained the first FPGA results for
the GIFT block cipher and the first area-optimized implementations for Midori.

Acknowledgments. This work was supported by CONACyT under grant number
336750 and CINVESTAV. This work was also funded by “Fondo Sectorial de Investi-
gacién para la Educacion”, CONACyT México, through the project number 281565.

FPGA-Based Assessment of Mid ori and GIFT Lightweight Block Ciphers 755

References

10.

11.

Aghaie, A., Kermani, M.M., Azarderakhsh, R.: Fault diagnosis schemes for low-
energy block cipher Midori benchmarked on FPGA. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 25(4), 1528-1536 (2017)

Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon,
J.H. (eds.) ASTACRYPT 2015. LNCS, vol. 9453, pp. 411-436. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3_17

Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a small
present. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321—
345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_16
Bernstein, D., et al.. GIMLI : a cross-platform permutation. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 299-320. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4_15

Bhargavan, K., Leurent, G.: On the practical (in-)security of 64-bit block ciphers:
collision attacks on HTTP over TLS and OpenVPN. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pp. 456—
467. CCS 2016. ACM, New York (2016)

Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450-466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31

Dworkin, M.: Recommendation for block cipher modes of operation. Technical
report, NIST, Information Technology Laboratory, December 2001

Hanley, N., ONeill, M.: Hardware comparison of the ISO/IEC 29192-2 block
ciphers. In: 2012 IEEE Computer Society Annual Symposium on VLSI, pp. 57-62,
August 2012

Lara-Nino, C.A., Diaz-Perez, A., Morales-Sandoval, M.: Lightweight hardware
architectures for the present cipher in FPGA. IEEE Trans. Circuits Syst. I: Regul.
Pap. 64(9), 2544-2555 (2017)

McKay, K.A., Bassham, L., Turan, M.S., Mouh, N.: Report on lightweight cryptog-
raphy. Technical report, NIST, Information Technology Laboratory, March 2017
Zhang, G., Liu, M.: A distinguisher on PRESENT-like permutations with applica-
tion to SPONGENT. Sci. China Inf. Sci. 60(7), 072101 (2017)

https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/978-3-540-74735-2_31

	FPGA-Based Assessment of Midori and Gift Lightweight Block Ciphers
	1 Introduction
	2 Methods
	2.1 Present
	2.2 Midori
	2.3 Gift
	2.4 Gimli
	2.5 Summary

	3 Experimental Evaluation
	4 Results
	4.1 Discussion
	4.2 Comparison with the State of the Art

	5 Conclusions
	References

