
Simau: A Dynamic Privilege Management
Mechanism for Host in Cloud Datacenters

Lin Wang1,2, Min Zhu1,2, Qing Li1,2(B), and Bibo Tu1,2

1 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China

{wanglin1993,zhumin,liqing,tubibo}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. Nowadays, a majority of cyber-attacks are associated with
the insider threats owing to improper privileges management. Though
a number of access control mechanisms have been carried out, the
insider threats are continuously increasing. In cloud, however, the phys-
ical machines of datacenters are still exposed to danger. Without the
trusted hosts as the foundation, any further measurements for virtual
machines are in vain. In this paper, we introduce Simau: a mechanism
that constrains the privileges of root on each host in the cloud. It deploys
a decision engine in user-space to support the variable security poli-
cies. The scope of Simau covers both kernel-space and user-space. Under
Simau, once a system administrator logs into a host, he has only the
least privileges to finish his missions and all his requests for privileged
operations are determined by Simau. The experiments at last show good
performance of our mechanism.

Keywords: Insider threats · Root privileges · Privilege management
Host · Cloud · Security

1 Introduction

With the popularity of cloud computing, the organizations who have transferred
their local services to cloud datacenter are increasing. There is no doubt that
the security of cloud datacenter draws a considerable attention. Cloud Security
Alliance (CSA) published Cloud Computing Top Threats in 2016, pointing out
that the breaches caused by improper access control are ranked the second [14].
Usually, the tragedy is caused by a worker who gains the privileges more than
what he should have. Additionally, the security of hosts is the central premise of
any security-related topic in a cloud datacenter. No protection for the hosts, no
security for virtual machines. In conclusion, it is significant to apply appropriate
privilege management to physical servers in cloud.

There are several circumstances when the cloud datacenters are posed to
danger. Firstly, multifarious work of employees causes privileges abuse inad-
vertently. Moreover, once attracted by interests, the system administrator who
c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 721–731, 2018.
https://doi.org/10.1007/978-3-030-01950-1_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_43&domain=pdf


722 L. Wang et al.

grants the total control rights over the system may copy confidential archives
out or remove the database, causing immeasurable damage. Furthermore, the
maintenance workers are often delegated with root privileges when asked to
troubleshoot or upgrade. Finally, there are attacks targeted for the root privi-
leges like social engineering against administrator’s password.

Existing work has separated privileges in hosts through the combination of
Linux Security Module (LSM) [1] and SELinux [11]. LSM is an integrated struc-
ture mediating access to the kernel’s internal objects through hooks. SELinux is
a successful application for LSM that implements a kind of Mandatory Access
Control (MAC) in the kernel. However, to protect hosts from insider threats, we
need a dynamic privilege management mechanism which assigns the privileges
on-demand. The decision logic of SELinux is fully implemented in the kernel.
As the result, though SELinux is equipped with several kinds of strategies, they
should be perceived as immutable without code recompilation. Furthermore, the
hooks of LSM is fixed, which is not enough flexible. Apart from some impor-
tant objects under the protection of LSM, there are some prominent executions
which are independent of any objects, or it is hard to find a clear range of entities
attached to them. To manage this kind of operations, we have to define custom
hooks. For example, “To install or uninstall software”, it seems that the objects
are the files related to the software while, in fact, it is not easy to identify all
files and directories associated with the software so that it is impossible to bind
pertinent data items to the procedure. In that case, we can insert a hook to the
installer to block the unauthorized operation, while LSM is unable to support
the custom hooks.

This paper introduces Simau which actualizes dynamic privileges manage-
ment for the hosts in cloud datacenters. Simau precludes the unauthorized pro-
cess from performing privileged operations by inserting hooks that spread over
the whole system. Certainly, the hooks of Simau in a host are not something of a
novelty. Nevertheless, upon this foundation, Simau provides autonomy—it sup-
ports user-defined hooks. It not only supports the reuse of LSM hooks to protect
kernel objects but also has the ability to implant tailor-made hooks to satisfy
different demands, as well as in user-space. Simau isolates decision-making from
enforcement point by deploying a decision engine in user-space so that the secu-
rity policies can vary as required and lead to the alteration of execution result
in hooks timely. These policies can be operated by remote controller or local
administrators and are carried into effects immediately.

Our contributions in this paper are:

1. We propose a dynamic privilege management mechanism for hosts in cloud
datacenters that takes effect on both kernel-space and user-space.

2. We deploy a decision point in user-space that dominates the decision timely
according to varied policies.

3. We devise a method of inserting user-defined hooks to kernel on-the-fly with-
out such great pains by livepatch.

The rest of the paper is arranged as follows: in the next section, we state
the background, including an overview of Simau and threat model. Then, we



A Dynamical Privilege Management Mechanism 723

introduce the design principles of Simau in Sect. 3. In Sect. 4 we depict the tech-
nical details of our prototype system. Experiment in Sect. 5 reveals the perfor-
mance of our mechanism. The related work and conclusion are in Sects. 6 and 7
respectively.

2 Threat Model

In a typical cloud datacenter environment, the physical servers admit remote
users and occasionally local maintenance. Simau that is distributed in each phys-
ical machine receives and enforces commands from controller. The controller is
deployed in a central machine, keeping connection with each server host.

Trust Computing Base (TCB) is used for Simau to boot all components into
a trusted initial state. We assume that Simau runs in a healthy environment
with TCB, including secure hardware and operating system, as well as the built-
in security mechanisms. The components of Simau are well protected by some
process protection measurements [9,10]. For the controller, we assume that the
administrator of the controller is not allowed to operate on hosts locally and he
will not be in collusion with one who may have the local access to hosts.

Given such a premise, our threat model is a single bad behaved employee
who may perform some important operations on the hosts in a cloud datacenter,
such as a service manager who has the right to start or stop a couple of crucial
services, a system administrator who gains the root privileges on a certain host,
or storekeeper and cleaner who has the opportunity to access physical machines.
The employee may wield his power in wrong time, abuse his right or take the
advantages of his job, as a result, cause great loss to an organization.

As a typical instance, a third-party maintenance worker is asked to upgrade
software for an organization. In a traditional way, he may gain the administrator
password and wield root privileges because he has to operate on some important
directories. By this way, the worker obtains the additional rights that far more
than he needs. He may plant a malware into the kernel, or steal the information
asset through portable devices. If Simau, the worker will be assigned the privi-
lege of installer only. He can neither insert kernel modules nor load the devices
because Simau will refuse his requests.

3 Design

In this section, we introduce the design principles of Simau. Figure 1 shows the
main components of Simau and the interactions among them. There are four
main parts as the dash denotes: Policy Administration Point (PAP), Policy,
Policy Decision Point (PDP) and Policy Enforcement Point (PEP). We will give
the anatomy of each of them.



724 L. Wang et al.

ComandCarrier
MqClient

librabbitmq.so
FileEditorPAP

RulePolicy

AuthServerPost-Handler RuleLoaderPDP

Subject in User-space

libsimau.so

Transfer-Module

Subject in Kernel-spacePEP

D-BUS
netlink

Controller Security Administartor

Fig. 1. Simau Architecture

3.1 Policy Administration Point and Policy

PAP is the interface for remote controller and local administrator to edit Rule
files. MqClient which is an implementation of Message Queue is responsible for
connection with controller. It receives messages from controller, parses them and
passes the instructions to CommandCarrier to enforce the instructions on Rule
files. The instructions are usually related to add a new rule, modify an existed
one, or delete some rules. FileEditor in PAP refers to the common editor like
vim. Security Administrators can carry local maintenance work out via editing
the Rule files with the editors directly.

Policy is the security strategy we apply to our system. It exists in the form
of rules set regulating how Simau performs.

3.2 Policy Decision Point

PDP is a central component where the decision logic is fully actualized. It
has interactions with both Rule files and PEPs. Post-Handler, AuthServer, and
RuleLoader are the main parts. RuleLoader loads the rules from Rule files when-
ever a modification of files is detected. AuthServer makes a decision on every



A Dynamical Privilege Management Mechanism 725

request according to the rules. The form of request is similar to the rule that
can be regarded as the binding of a set of requests plus the effect upon them.
For example, “Reading a file that is created on 2017-9-1” is a typical request
and “Reading the files that are created after 2017-8-26 is not allowed” is a rule.
The primary jobs of decision-making are searching and matching. In this case,
the request is matched to the rule and a negative value will be returned.

Post-handler offers an obligation mechanism for Simau. That is, some extra
processes are supported after modification detected on Rule files to enforce the
new policies. RuleLoader acts as the monitor to stare at the Rule files here.
AuthServer becomes conscious immediately whenever new rules are loaded and
it invokes a proper post-handler to perform some extra duties if any. For example,
a rule reading “Log-in is allowed from 8 am to 5 pm.” has an impact on the users
who try to visit the system, rather than the online users, which is apparently
irrational. The right way is that we kick out the illegal online users when the
time is up so that we put all users under the control of Simau. In this case, when
AuthServer is aware of the appending or alteration of rules related to log-in, it
invokes the corresponding post-handler immediately to check whether the online
users are in their valid time. This obligation mechanism can function as a “ruler”
to make sure that every entity obeys our policies.

3.3 Policy Enforcement Point

PEP acts as the gateway to a privileged operation. It exists in a process in the
form of a Simau-hook. subject is a process under the control of Simau with a
served Simau-hook. Our hook separates the subject into two parts: one is the
meaningful portion that we place control on, another is the unprivileged one.
The meaningful portion often refers to functions or steps that directly have
impacts on the outcome of procedures. If these functions were stepped over, the
original procedure would fail. Simau-hook makes the “meaningful portion” be
ignored if the subject is unauthorized no matter what other privileges it has been
delegated by other mechanisms. Because implementation details of kernel-space
and user-space are different, the subjects are segregated into user-space subjects
and kernel-space subjects.

The Transfer-Module is designed for subjects in kernel-space and it works as
a coordinator between AuthServer and subjects. For the Simau-hook of subjects
in kernel-space, since it has to be inserted into kernel, it is inevitable to modify
the code. The purpose of Transfer-Module is to share part of the responsibility
and decrease the workload of adjustment. As is known to all, the communica-
tion with user-space in kernel is not an easy task. Without Transfer-Module,
the new code will make the original segment long and convoluted. After allevi-
ating the burden, Simau-hooks in kernel are only responsible for two necessary
functions: communication with Transfer-Module which in kernel and collection
some information for request constructing. It is obvious that to communicate
with Transfer-Module which is written as a Loadable Kernel Module(LKM) is
simpler than that with AuthServer.



726 L. Wang et al.

3.4 Workflow

A subject will be trapped in the place where the Simau-hook serves. Under the
impact of Simau-hook, the Simau authorization is carried out. If the subject is
authorized, it would be allowed to continue, otherwise, it would go to fail. Note
that Simau can coexist with other mechanisms like ACL or DAC. The combined
policy of them is negative-override which means if any of them gains a negative
value, the subject would go to fail.

The arrows in Fig. 1 indicate the workflow during an authentication. When
the process arrives at a PEP, it generates an access request including the action
identity and other collected elements that help match the right rule. For PEPs
in kernel, the request is passed to Transfer-Module by a direct function call.
Once the Transfer-Module receives the access request, it reconstructs it in a
formal way and sends it to AuthServer through netlink. For PEPs in user-space,
the request is forwarded to AuthServer by D-Bus [16]. AuthServer searches the
matching rules for the request sequentially and the matching rule’s answer will
be returned. If there is no outcome for the request after scanning all the rules,
a failed value is returned. As soon as the final decision is obtained, AuthServer
returns the result to Transfer-Module or to PEPs in user-space directly. Finally,
PEP gets the reply and enforces it.

Another flow that has an association with AuthServer is the interaction with
a post-handler. Once Rule files are modified through PAP, either alteration or
appending, AuthServer will be informed by RuleLoader immediately and post-
handler is activated to perform its duty if provided.

4 Implement

According to our design principle, we realize a prototype of the system. In this
section, we will give the technical details of main components. The last part is
a demonstration of our prototype system.

4.1 Communication

The method we use in communication with a remote controller is message queue.
The message-oriented middleware protocol is Advanced Message Queuing Proto-
col (AMQP) [17]. MqClient realizes both message queue consumer and publisher
based librabbitmq.so. librabbitmq.so is an open-source C-language AMQP client
library.

The interplay between AuthServer and Subjects is of paramount importance
during an authentication. To provide service for subjects in both user-space
and kernel-space, we apply two Inter-Process Communication (IPC) methods—
D-Bus and netlink. D-Bus is for subjects in user-space. AuthServer will expose
its authorization API on D-Bus. The subjects can lunch a call to AuthServer
and get a reply from it through the bus. Netlink, as well as the Netlink socket
family, is a Linux kernel interface used for IPC between user-space and kernel-
space. As depicted above, a Transfer-Module is designed for sharing the load



A Dynamical Privilege Management Mechanism 727

of Simau-hooks in subjects of kernel-space. When it is initialized, it registers a
special protocol via which Transfer-Module and AuthServer can communicate
with each other.

4.2 Hooks

PEP is inserted in a process in the form of a Simau-hook. If a program in user-
space is going to use Simau, it has to invoke Simau authentication functions
explicitly in code. One approach is to add the appropriate Simau-related func-
tions in source code and recompile the program. The other effective way relies on
the extensibility of the program. If the program has interfaces for custom binary
in some crucial points, such as the point where Linux-PAM(Pluggable Authen-
tication Modules for Linux) [18] is deployed, we can realize the Simau-related
functions in them too. Otherwise, it is impossible to use Simau. Despite this,
for user-space, to insert PEP is not a tough task because coding in user-space is
free and easy compared with that in kernel-space. Hence the kernel-space is our
main concern.

Fig. 2. Patch function structure in kernel-space

To plant PEP into kernel code escalates complexity of coding. To recompile
or rebuild kernels unsuitable when reconstruction is not allowed. After all, for
some operating systems, the source code is not available and it is also unwise
to take great pains to install a software. As it is known to all, many patch
methods have been actualized in kernel. For example, Livepatch, as the name
indicates, is a small piece of code “sewn” on kernel to cover the original one.
Figure 2 is the principle diagram. To be vivid, combining theory with livepatch,
we call the original kernel code Source Function (SF), and the covering code
Invasive Function (IF). The black arrows show the mechanism for live-patch
itself. The patch plants a jump instruction as a tamp at the very beginning of



728 L. Wang et al.

every function, namely SF in our picture, the destination of which is the first
instruction of IF. When the process runs into the SF, the jump instruction is
executed immediately after setting the runtime environments. Then, the next
construction to be executed is redirected to the IF. The runtime environments,
like stack or heap, however, are that of SF, because this jump can be perceived
as the conditional branch in a sequential piece of code of if. When the process
runs into if, there are two paths to jump to and has nothing to do with the
runtime environments. So that, when the process runs into return in the IF, the
address that invoked the SF is returned as if the IF were the invoked function.

The orange arrows are the flow of our mechanism. The code of PEP is written
in IF. When the process is redirected to the IF under the force of patch, the PEP
will perform its duty, to collect some elements etc. The communication method
we used in kernel-space is the calling of the external function and synchronization
primitive. Then, after receiving a message from Transfer-Module, the PEP will
enforce the result commands. If it is authorized, the process will go to the next
instruction of jump in the SF and the SF is processed as the way it is. Note that,
the SF discarding the first instruction is taken as a complete function to be
invoked here. That is, a function call happens and the new runtime environment
for the SF without jump is set. Hence SF will be back to IF under the action of
return in the last. Otherwise, if it not authorized, the SF is skipped completely
and the process goes to the next instruction right after authorization, as the
black arrow from “No”. Finally, the IF is returned with an error code indicating
the failure of this function. The operation will be redirected to error treatment
program. In this way, we deploy the PEP into kernel without such much cost.

5 Experiment

In this section, we measure the load that brings about by the Simau-hook. The
experiments are carried in a test-server (Linux 4.4.0-87-generic, dual-core 64-bit
Intel Core i5-3470 at 3.20 GHz, with 6MB/core cache and 2 GB memory).

We examine the running time of an authorized process with Simau-hook
in both user-space and kernel-space. Log-in is for the test in user-space. Since
Simau-hook has been inserted into PAM authentication management procedure,
the running time of PAM authentication is examined. We test the spending time
of PAM authentication management with Simau-check and record the average
value which is shown in Table 1. As shown in the second column, PAM authen-
tication management with Simau-check spends 6.095e−3 s on average. Likewise,
we record the time spent without Simau-check in the third column.

LKM is for the test in kernel-space. We examine the spending time of com-
mand insmod and rmmod respectively. Similarly, we have calculated the average
time out. Time delta in Table 1 reveals that the cost of Simau-check is negligible
because all of them are no more than 1e−3 s which a human being can hardly
feel about.



A Dynamical Privilege Management Mechanism 729

Table 1. Performance results of Simau

Action with Simau-check(s) without Simau-check(s) Time delta(s)

Log in 6.095e−3 5.892e−3 2.03e−4

Insert module 1.924e−4 1.540e−4 3.84e−5

Remove module 1.870e−4 1.553e−4 3.17e−5

6 Related Work

The popular solutions to defend against insider threats are Access Control Mech-
anism [2,7,8,20] and the various variants of them [3]. However, all of them pay
attention to user-space with complicated policies. SELinux [11] are mechanisms
in kernel-space based on LSM [1] but it is not flexible enough because it takes
great pains to change security policies. CAP [4] and LandLock [6] implements
an explicit function to alter policy but it is limited to a single process. AppAr-
mor [21], known as a simple version of SELinux, aims to constrain a process
with limited resources. In contrast, Simau provides global control for each host
instead of a single process.

Container [5], Jails [12] and Zone [13] are intended for providing a isolated
area to confine privlieges. There is no doubt that they are not suitable for admin-
istration because the user has a limited perspective of the whole system.

TOMOYO Linux [22] and other security OS [23] proposed a new kind of OS
or OS module to manage the privileges of user and process. Simau, on the other
hand, does not require to recompile the kernel or replace OS.

7 Conclusion

We propose a dynamic privilege management mechanism for hosts in cloud dat-
acenters. Our mechanism supports user-defined hooks to block processes and
takes effects in both kernel-space and user-space. We deploy decision engine
in user-space to actualize the variable security policies that can be altered on-
demand. We further make a study on some important operations and try to
regulate them under Simau. The experiment proves the ability of our mecha-
nism. Finally, since it offers a programmable access control for hosts and realizes
the separation of the control panel and action, Simau has great compatibility
with the software-defined techniques.

Software-defined infrastructure (SDI), for example, brings many new
approaches for managing, monitoring, etc. within clouds [15]. It breaks the
restrains of the hardware-centric infrastructure, establishing a flexible and scal-
able fundamental structure. Simau can be one of the feasible technique that
provides the enable support for SDI. We expect that Simau could play his sig-
nificant role in the future.



730 L. Wang et al.

Acknowledgement. We would like to thank the anonymous reviewers for their
insightful comments and suggestions. This work was supported by the National Key
Research and Development Plan of China under grant No. 2016YFB0801002.

References

1. Wright, C., Cowan, C., Morris, J., Smalley, S., Kroah-Hartman, G.: Linux security
module framework. In: Ottawa Linux Symposium, vol. 8032, pp. 6–16 (2002)

2. David, F., Richard, K.: Role-based access controls. In: Proceedings of 15th NIST-
NCSC National Computer Security Conference, vol. 563 NIST-NCSC, Baltimore
(1992)

3. Rajkumar. P.V., Sandhu, R.: POSTER: security enhanced administrative role
based access control models, pp. 1802–1804 (2016)

4. Hallyn, S.E., Morgan, A.G.: Linux capabilities: making them work. In: Linux Sym-
posium, vol. 8 (2008)

5. Shalev, N., Keidar, I., Weinsberg, Y., Moatti, Y., Ben-Yehuda, E.: WatchIT: who
watches your IT Guy?. In: Proceedings of the 26th Symposium on Operating Sys-
tems Principles, pp. 515–530: ACM (2017)

6. Landlock: programmatic access control. https://landlock.io/
7. Lindqvist, H.: Mandatory access control. Master’s thesis in Computing Science,

Umea University, Department of Computing Science, SE-901, vol. 87 (2006)
8. Li, N.: Discretionary access control. In: van Tilborg, H.C.A., Jajodia, S. (eds.)

Encyclopedia of Cryptography and Security, pp. 353–356. Springer, Boston (2011).
https://doi.org/10.1007/978-1-4419-5906-5

9. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptology ePrint Archive,
vol. 2016, p. 86 (2016)

10. Azab, A.M., et al.: Hypervision across worlds: real-time kernel protection from the
arm trustzone secure world. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pp. 90–102. ACM (2014)

11. McCarty, B.: SELinux: NSA’s Open Source Security Enhanced Linux. O’Reilly,
Newton (2005)

12. Kamp, P.-H., Watson, R.N.: Jails: confining the omnipotent root. In: Proceedings
of 2nd International SANE Conference (2000)

13. Price, D., Tucker, A.: Solaris zones: operating system support for consolidating
commercial workloads. In: LISA, vol. 4, pp. 241–254 (2004)

14. Cloud Security Alliance: Cloud Computing Top Threats in 2016, Cloud Security
Alliance, Top Threats Working Group, February 2016

15. Gu, G., Hu, H., Keller, E., Lin, Z., Porter, D.E.: Building a security OS with
software defined infrastructure. In: Proceedings of the 8th Asia-Pacific Workshop
on Systems, p. 4. ACM (2017)

16. D-Bus. https://www.freedesktop.org/wiki/Software/dbus/
17. Vinoski, S.: Advanced message queuing protocol. IEEE Internet Comput. 10(6),

87–89 (2006)
18. Samar, V.: Unified login with pluggable authentication modules (PAM). In: Pro-

ceedings of the 3rd ACM Conference on Computer and Communications Security,
pp. 1–10. ACM (1996)

19. Linux Programmer’s Manual CAPABILITIES(7). http://man7.org/linux/man-
pages/man7/capabilities.7.html

https://landlock.io/
https://doi.org/10.1007/978-1-4419-5906-5
https://www.freedesktop.org/wiki/Software/dbus/
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html


A Dynamical Privilege Management Mechanism 731

20. Ferraiolo, D., Chandramouli, R., Kuhn, R., Hu, V.: Extensible access control
markup language (XACML) and next generation access control (NGAC), pp. 13–24
(2016)

21. AppArmor wiki. https://wiki.ubuntu.com/AppArmor
22. TOMOYO: A Security Module for System Analysis and Protection (2018). http://

tomoyo.osdn.jp/
23. Santos, N., Rodrigues, R., Ford, B.: Enhancing the OS against security threats

in system administration. In: Narasimhan, P., Triantafillou, P. (eds.) Middleware
2012. LNCS, vol. 7662, pp. 415–435. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-35170-9 21

https://wiki.ubuntu.com/AppArmor
http://tomoyo.osdn.jp/
http://tomoyo.osdn.jp/
https://doi.org/10.1007/978-3-642-35170-9_21
https://doi.org/10.1007/978-3-642-35170-9_21

	Simau: A Dynamic Privilege Management Mechanism for Host in Cloud Datacenters
	1 Introduction
	2 Threat Model
	3 Design
	3.1 Policy Administration Point and Policy
	3.2 Policy Decision Point
	3.3 Policy Enforcement Point
	3.4 Workflow

	4 Implement
	4.1 Communication
	4.2 Hooks

	5 Experiment
	6 Related Work
	7 Conclusion
	References




