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Abstract. In CHES’15, Yang et al. proposed a family of lightweight
block cipher SIMECK which combines the good designs of SIMON and
SPECK. In this paper, we analysis the properties of the round function
of SIMECK, and eliminate the repeated use of rotational independence
judgment condition in Liu’s algorithm that proposed in FSE’17, con-
structing the partial difference distribution table with limited Hamming
weight of input difference to improve the search results. We get new dif-
ferentials of 14/21/27 rounds for SIMECK32/48/64 which can provide
higher probability than previous results, and find a new 28 rounds dif-
ferential for SIMECK64. We also get new 13/21/27 rounds linear hulls
with higher square correlation for SIMECK32/48/64, and we find new
14/22/28 rounds linear hulls for SIMECK32/48/64, which are the best
linear hulls of SIMECK as far as we know. With the application of the
new distinguishers and combination with the dynamic key-guessing tech-
niques, we mount key recovery attacks on SIMECK variants, which can
reduce the computational complexity and/or data complexity.
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1 Introduction

With the development of the Internet of Things, the security issues in the IoT
application systems are getting more and more attention. The cryptographic
primitives are the basic components of a security application. The research of
lightweight cryptographic algorithms aims at protecting the application secu-
rity for these terminal devices with limited resources. In recent years, various
lightweight block ciphers have been proposed, such as: PRINCE [10], PRESENT
[9], TWINE [21], SIMON [5], SPECK [5], SIMECK [23], RECTANGLE [25],
GIFT [4], etc.

In 2017, authors of SIMON cited the latest researches of cryptanalysis and
gave the explanations on the security of SIMON, but still did not give their own
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results of SIMON’s security analysis [6]. At SAC’17, AlTawy et al. proposed a set
of permutation algorithm sLiSCP that based on SIMECK for lightweight sponge
cryptographic primitive, used in the sponge framework to construct authenti-
cated encryption, stream cipher, MAC and hash function [2].

At present, there are three mainstream methods to search for the differen-
tial/linear distinguishers of SIMON/SIMECK, which are the mixed integer linear
programming (MILP) based technique adopted by Sun et al. [20], the SAT/SMT
solver method for satisfaction problem solving adopted by Kölbl et al. [12,13],
and the Matsui’s branch and bound automated search algorithm adopted by
Abed et al. [1], Biryukov et al. [8], and Liu et al. [14]. In the MILP method
of Sun et al., the non-independece of the input differences are not considered
yet. At CRYPTO’15, Kölbl et al. derived the differential propagation relation-
ship for SIMON-like round function, but it takes much time for the SAT/SMT
solver to find the optimal differential trails in the large block size variants of
SIMON. At FSE’14, Abed et al. firstly searched for the possible output differ-
ence corresponding to the input difference in the SIMON-like round function,
and took into account the dependence of the input differences on the bitwise
AND operation, but they did not find the optimal differential trails. Biryukov
et al. introduced the concept of pDDT, and applied the Matsui’s approach to
the ARX cipher by using the threshold search method, but by the limitation of
the heuristic search methods they used, the optimal differential trails are may
not obtained. At FSE’17, Liu et al. separately considered the independence and
dependence of the inputs of the bitwise AND operation, and they introduced the
concept of small block size DDT of bitwise AND operation with independenct
inputs, constructing the possible output difference space corresponding to an
fixed input difference with a large block size. But in the search algorithm, they
reused the independence condition, which will lead more computational efforts.
Differential and linear analysis for SIMECK and SIMON are similar. Based on
the explicit formula for the differential and linear propagation probability of
SIMON-like round function, the optimal differential and linear trails to achieve
the security bounds of each variants of SIMON and SIMECK were searched out
in [14,15]. For SIMECK32/48/64, the optimal differential trails cover 13/19/25
rounds, and the optimal linear trails also cover 13/19/25 rounds, respectively. In
the previous works, the differentials and linear hulls obtained are based on the
optimal trails that do not exceed the security boundary, but the differentials and
linear hulls based on lower potential trails are not considered. For SIMECK, the
probability of the 14/21/27 rounds differentials and the linear square correlation
of the 13/21/27 rounds linear hulls are not tight enough.

For the key recovery attacks, 19/26/33 rounds on SIMECK32/48/64 were
attacked by differential cryptanalysis in [13], and 22/28/35 rounds were attacked
by dynamic key-guessing technique in [17]. However, the differentials that used
to attack SIMECK in [13] and [17] are both 13/20/26 rounds, respectively. Intu-
itively, with the application of differentials with longer rounds and higher prob-
ability, the key recovery attack on SIMECK may need less complexity.
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In [18], 13/20/26 rounds linear hulls were used to mount the 23/30/37 rounds
key recovery attack on SIMECK32/48/64. However, the squared correlation of
the linear hulls they used in the attack are derived from the previous differentials,
which are estimated values and not tight enough yet. There are also some other
analysis results on SIMECK worth attention under different cryptanalysis model,
such as the linear cryptanalysis [3], zero correlation linear cryptanalysis [24], and
distinguishing attack [19].

Our Contributions. In this paper, we further investigate the differential and
linear propagation properties of the non-linear bitwise AND operation of the
round function of SIMECK. We propose improved efficient algorithms to find
the possible output differences of nonzero probabilities with a fixed input dif-
ference, eliminating the repeated use of the independence judgment condition
in Liu’s algorithm, and constructing a partial difference distribution table with
Hamming weight less than a set threshold. We get 14/21/27 rounds differentials
for SIMECK with higher probability than the previous works, and find a new
28 rounds differential for SIMECK64. Simultaneously, we get 13/21/27 rounds
linear hulls with higher square correlation for SIMECK32/48/64 respectively.
And the 14/22/28 rounds linear hulls for SIMECK32/48/64 we find are the best
linear hulls so far. We improve the key recovery attack on SIMECK and reduce
the computational complexity and/or data complexity. The 29-round differential
attack on SIMECK48 is the longest so far.

Outline. This paper is organized as follows. In Sect. 2, we give the notations used
in this paper. In Sect. 3, we give improved efficient algorithms to search for the
possible nonzero probability output differences with fixed input difference. And
we construct all the possible valid input mask space by using the base vectors of
input mask introduced in [15]. In Sect. 4, we apply the obtained differentials to
key recovery attacks on all variants of SIMECK for reducing the computational
complexity and/or data complexity, as listed in Table 5. Conclusions are given
in Sect. 5.

2 Preliminaries

2.1 Notations

The main notations used in this paper are shown in Table 1.
Let P (α, β) be the probability of a given input difference α propagate to a

given output difference β, which is defined as

P (α, β) = 2−n · #{x : f(x) ⊕ f(x ⊕ α) = β}.

Let f(x) : Fn
2 → F

n
2 be a vectorial boolean function on n bits with the input

mask α and output mask β, we denote by g(α, β) =
∑

x∈F
n
2
(−1)α·x ⊕

β·f(x), and
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Table 1. The notations used in the following paper.

Notation Description of the notation

⊕ bitwise XOR

∧ bitwise AND

∨ bitwise OR

x ≪ i rotate x to the left by i bits

(xi, xi−1) the 2n-bit input state of round i, for 1 ≤ i ≤ r

xj the jth bit of x, 0 ≤ j ≤ n − 1

Δx the difference of x ⊕ x′

rki−1 the n bits subkey of round i, for 1 ≤ i ≤ r

g(α, β) = ε · 2n for all x ∈ F
n
2 . Hence, the square correlation of α propagate to

β, we denote by

C2(α → β) = ε2 =
(

g(α, β)
2n

)2

.

Under the Markov’s assumption, the probability of a differential (or linear)
trail is the product of the probability of each round. Let α be the input difference,
and β is the given output difference after r rounds, then the probability of the r-
round differential is the sum of all r-round differential trails with the same input
and output difference. Similarly, the square correlation of the r-round linear hull
is the sum of all r-round linear trails with the same input and output mask.

2.2 Description of SIMECK

The SIMECK family has 3 variants: SIMECK32/64 (32 rounds), SIMECK48/96
(36 rounds) and SIMECK64/128 (44 rounds). They share the same rotational
constant set (a, b, c) = (0, 5, 1), with which SIMECK32/48/64 to achieve full
diffusion needs 8/9/11 rounds respectively as investigated in [13]. In this paper,
we denote the input states of round i by (xi+1, xi). The state transformation
function of SIMECK can be presented as xi+1 = (xi ≪ a) ∧ (xi ≪ b) ⊕ (xi ≪
c) ⊕ xi−1 ⊕ rki−1. Let xi+1 = f(xi) ⊕ xi−1 ⊕ rki−1, we generally call f(x) the
round function of SIMECK. The differential and linear propagation in the round
function of SIMECK is shown in Fig. 1.

3 Automatic Search Algorithm for Differentials and
Linear Hulls of SIMECK

3.1 The Properties of SIMECK Round Function

The bitwise AND operation is the only non-linear component in the SIMECK
round function, we first study its differential and linear propagation properties.
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Fig. 1. The differential and linear propagation of the round function of SIMECK.

Table 2. The probability propagation relationship of bitwise AND operation.

α β γ P (γ = 0) P (γ = 1)

0 0 0 1 0

0 1 x 1/2 1/2

1 0 y 1/2 1/2

1 1 x ⊕ y ⊕ 1 1/2 1/2

Property 1. Let x, x′, y, y′, α, β, γ ∈ {0, 1}, f(x, y) = x ∧ y, and x = x′ ⊕ α,
y = y′ ⊕ β, γ = f(x, y) ⊕ f(x′, y′), so α, β, γ have the probability propagation
relationship in Table 2. Hence, when P{(α, β) → γ} �= 0 is satisfied, if and only
if α ∧ β ∧ γ = 0 is satisfied [1].

According to the definition of differential probability, let α, β, γ be the n
bits XOR difference, and x, x′, y, y′ ∈ F

n
2 , f(x, y) = x ∧ y, and x = x′ ⊕ α,

y = y′ ⊕ β, γ = f(x, y) ⊕ f(x′, y′), the probability of two n bits inputs lead to
one n bits output is the product of the n probabilities of bitwise operation. As
P{(α, β) → γ} = 2−2n · #{(x, y)|f(x, y) ⊕ f(x ⊕ α, y ⊕ β) = γ}, which implies
the following lemma.

Lemma 1. Let α, β, γ be the n-bit XOR difference, and x, x′, y, y′ ∈ F
n
2 ,

f(x, y) = x ∧ y, and x = x′ ⊕ α, y = y′ ⊕ β, γ = f(x, y) ⊕ f(x′, y′), then

P{(α, β) → γ} =
{

2−wt(α∧β), if α ∧ β ∧ γ = 0;
0, else.

Where wt(α) denotes the Hamming weight of the vector α ∈ F
n
2 , the 0

represents an all-zero vector of n bits, and correspondingly 1 represents an all-
one vector of n bits. When one of the inputs of the bitwise AND is rotated r
bits to the left(or right), i.e. f(x, y) = x ∧ (y ≪ r), it is easy to get

P{(α, β) → γ} =
{

2−wt(ᾱ∧β≪r), if ᾱ ∧ (β ≪ r) ∧ γ = 0;
0, else.
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If the two input values of bitwise AND are mutual rotational dependent of
each other, i.e. let x, x′, α, β ∈ F

n
2 , x = x′ ⊕ α, f(x) = x ∧ (x ≪ r), and

β = f(x) ⊕ f(x ⊕ α), then the differential probability is

P{α → β} = 2−n · #{x|f(x) ⊕ f(x ⊕ α) = β},

then

P{α → β} = 2−n · #{x|x ∧ (α ≪ r) ⊕ α ∧ (x ≪ r) ⊕ α ∧ (α ≪ r) ⊕ β = 0},

and let

Lα,β(x) = {x ∧ (α ≪ r) ⊕ α ∧ (x ≪ r) ⊕ α ∧ (α ≪ r) ⊕ β = 0}
be a set of equations with variable x, where α, β ∈ F

n
2 as parameters. By solving

the number of solutions of x, considering these 2n equations with the relation-
ship between (α, β), Kölbl et al. derived the explicit formula of the differential
probability propagation relationship between input and output difference [12].
Therefore, there is an equivalent relationship as shown in Theorem1. Similarly,
the linear square correlation can be defined in Theorem2 [12].

Theorem 1. Let α, β be fixed n-bit XOR differences, x ∈ F
n
2 , x′ = x ⊕ α, and

f(x) = x ∧ (x ≪ r), β = f(x) ⊕ f(x′), define variables u = (α ≪ r) ∨ α, and
v = α ∧ (α ≪ r) ∧ (α ≪ 2r), so the differential propagation probability of the
bitwise AND with two inputs mutual rotational dependent is

P{α → β} =

⎧
⎨

⎩

2−n+1, if α = 1, and wt(β) ≡ 0 mod 2;
2−wt(v⊕u), if α �= 1, and β ∧ v = 0, and (β ⊕ (β ≪ r)) ∧ u = 0;
0, else.

Theorem 2. Let α, β be an input and an output mask, f(x) = x ∧ (x ≪ r),
where x ∈ F

n
2 , and the set Uβ is defined by Uβ = {x|(β ∧ (x ≪ r)) ⊕ ((β ∧

x) ≫ r) = 0}, the dimension of Uβ is d = dim Uβ, and U⊥
β is the orthogonal

complement space of Uβ. Hence, the squared correlation calculation of f(x) that
α propagate to β can be denoted by

C2(α, β) =

⎧
⎨

⎩

2−n+2, if β = 1, and α ∈ U⊥
β ;

2−n+d, if β �= 1, and α ∈ U⊥
β ;

0, else.

Corollary 1. Let α, β be fixed n-bit XOR differences, x, x′ ∈ F
n
2 , x′ = x ⊕ α,

f(x) = x ∧ (x ≪ r), and β = f(x) ⊕ f(x′), so the probability P (α → β) is
only related to the value of the input difference α, and the differential probability
corresponding to each valid output difference β is equivalent. And the number of
valid output differences is equal to 1/P{α → β}, where P{α → β} �= 0.

Corollary 2. Let {Δx1,Δx0} be the 2n-bit input XOR difference, {Δxi+1,Δxi}
is the 2n-bit output XOR difference of i round differential of SIMECK2n, and the
probability is P . There exist other n−1 differentials with similar probability, the
input difference and output difference can be constructed as {Δx1 ≪ j,Δx0 ≪
j} and {Δxi+1 ≪ j,Δxi ≪ j} respectively, for j ∈ [1, n − 1].
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3.2 Improved the Differentials of SIMECK Variants

When the inputs of the bitwise AND are independent of each other, i.e. let
f(x, y) = x ∧ y, the DDT can be constructed directly according to Lemma 1,
as shown in Algorithm 1. If the inputs of the bitwise AND are mutually rota-
tional dependent, i.e. let f(x) = x∧ (x ≪ r), the difference distribution table of
bitwise AND can be deduced by Theorem 1. Algorithm 2 constructs the nonzero
probability difference distribution table of the bitwise AND with inputs rota-
tional dependent. When the block size n is not too large, generally when n ≤ 16,
the difference distribution table (DDT) generated by it can be storaged feasibly.
The storage size of the DDT of the bitwise AND operation with input rotational
dependent can be reduced from 22n to 2n · O, when n=16, O ≈ 28.62.

Algorithm 1. Given two m-bit input difference α, β, constructing the nonzero
probability difference distribution table DDTm(α, β).
1: for each α, β = 0 to 2m − 1 do
2: cnt = 0;
3: for γ = 0 to 2m − 1 do
4: if γ ∧ (α ∧ β) = 0 then
5: beta[α||β][cnt + +] = γ;
6: end if
7: end for
8: p[α||β] = 1/cnt;
9: end for

When the inputs of the bitwise AND are mutually rotational dependent and
the block length is larger than 16 bits, it will be difficult to store the large DDT
produced by Algorithm2 directly. We are inspired by Liu et al., in order to reduce
the storage complexity, consider the independent and dependent conditions of
the inputs separately. Firstly, assuming that the inputs are independent of each
other, referring to Algorithm1, a large block of blocksize n can be splited into
several small blocks with m bits length each, and the possible output differences
corresponding to the fixed input difference are reconstructed by the output of
small blocksize DDT whose inputs are mutually independent. For example, the
blocksize of a cipher is 2n = 64, let m = 8 in Algorithm 1, the input of round
function with n = 32 bits length can be splited into four 8-bit blocks, then for
each block just lookup the DDT produced by Algorithm1, and then recombine
the 4 sets of 8-bit possible output difference which construct the 32 bits length
possible output differences. Secondly, verifing whether the recombined output
differences are valid possible output differences with nonzero probability or not
through the judgment condition in Theorem1, and considering the constraints of
output difference and input inter dependence. Here, for filtering out the possible
output differences of nonzero probability, we eliminate the repeated use of input
independent condition (i.e. β ∧ (α ∨ α ≪ r) = 0) in Liu’s algorithm. Thirdly,
considering the increasement in the Hamming weight of the input difference α,
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Algorithm 2. Computing the difference distribution table DDTn(α) when the
inputs are mutually dependent.
1: p[2n] = {0}, β value[2n][ ] = {0}, β num[2n] = {0};
2: for α = 0 to 2n − 2 do
3: u = α ∨ α ≪ 5;
4: v = α ∧ α ≪ 5 ∧ α ≪ 10;
5: for β = 0 to 2n − 1 do
6: if (ū ∧ β) ∨ (v ∧ (β ⊕ β ≪ 5)) = 0 then
7: β value[α][β num[α]] = β;
8: β num[α] + +;
9: end if

10: end for
11: p[α] = 1/β num[α];
12: end for
13: let α = 2n − 1;
14: for β = 0 to 2n − 1 do
15: if wt(β) ≡ 0 mod 2 then
16: β value[2n − 1][β num[2n − 1]] = β;
17: β num[2n − 1] + +;
18: end if
19: end for
20: p[2n − 1] = 1/β num[2n − 1];
21: return p[ ], β value[ ];

the probability of the corresponding output difference decrease, shown in [7,14].
When the Hamming weight of the input difference increases, the upper bound
of the probability of the round function will also decrease, which lead to the
Matsui’s pruning condition in the search procedure will not be satisfied mostly.
The output differences and probabilities corresponding the low Hamming weight
input difference are used frequently. Inspired by the concept of partial difference
distribution table introduced by Biryukov et al. [8], we can just precompute and
store the difference distribution table corresponding to the input difference with
low Hamming weight, where the Hamming weight is less than a certain threshold.
When the input difference Hamming weight is smaller than the set threshold,
just look up the precomputed table, otherwise, calculating the possible output
difference from PODn(α) in Algorithm 3.

To search for the differentials of SIMECK, we firstly employ the Matsui’s
branch-bound search approach similar to [14] for finding the optimal differential
characteristics(trails). Try to search for longer rounds of differential trails that
exceed security bound with limitting the Hamming weight of the input difference
according to the differential probability upper bound of the input Hamming
weight [7,14]. Afterward, we fix the input difference α and output difference β to
find enough amount of trails, and statistic the probability of all trails. In order to
effectively search for trails as much as possible within a feasible time, we limit the
search range of probability weights(− log2(p)) from wtmin to wtmax. And wtmin is
the probability weight of the differential characteristic, wtmax is the probability
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Algorithm 3. Given a n-bit input difference α, computing the set PODn(α) of
possible output differences β with nonzero probability.
Input: α ∈ F

n
2 , n = mt;

1: p = 0, β value[ ] = {0}, β num = 0;
2: if α �= 2n − 1 then
3: let X=α,Y =α ≪ 5;
4: divide X = {xt−1, ...x0}, Y = {yt−1, ...y0}, xi, yi ∈ F

m
2 ;

5: for i = 0 to t - 1 do
6: lookup DDTm(xi, yi); //Computed by Algorithm 1.
7: βi[cnti] = beta[xi, yi][cnti] ∈ {0, 1}m

8: end for
9: for each β := {βt−1[cntt−1]||...β0[cnt0]} do

10: if (β ⊕ β ≪ 5) ∧ (α ∧ α ≪ 5 ∧ α ≪ 10) = 0 then
11: β value[β num + +] = β;
12: end if
13: end for
14: else
15: for β = 0 to 2n − 1 do
16: if wt(β) ≡ 0 mod 2 then
17: β value[β num + +] = β;
18: end if
19: end for
20: end if
21: p = 1/β num;
22: return p, β value[ ];

weight of the minimal probability that be limited. In the first two rounds of the
search process, using the left and right part of the input difference as the inputs
of round function. During the branch search process of differential trails of 3
to r − 1 rounds, searching the possible output differences corresponding to the
input difference by lookup table generated by Algorithm4, when the Hamming
weight of input difference is less than H. Otherwise utilizing the Algorithm3 to
generate the possible output differences. In the process of the middle rounds, we
use Matsui’s branch pruning condition wt(p1)+wt(p1)+ ...+wt(pi)+wt(pr−i) ≤
wtmax as the stop condition, when the probability of searched truncated path
is larger than the set value, remove it in advance. Even so, there are still some
trails in the front r −1 round maybe satisfying the brach pruning condition, but
when multiplied by the differential probability of the last round, the probability
weight will larger than the limited wtmax, while they are also propagate to the
same output difference of the differential. In our statistical approach, these part
trails with lower probability are also counted. Probability weight marked by
* in Table 3 means there are some trails with lower probability than the set
probability weight wtmax be counted. The differential probability is calculated

by P =
wtmax∑

w=wtmin

#trails[w] × 2−w.
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Algorithm 4. Pre-calculating and store the partial difference distribution table
PDDTn,H(α) with Hamming weight less than H.
1: for wt(α) = 0 to H do
2: PODn(α);
3: β[α][ ] ← β value[ ];
4: p[α] = p;
5: end for

Table 3. The Differentials of SIMECK variants.

Cipher Rd Δin Δout wtmin wtmax Prob #Trails Ref

SIMECK32 13 0,2 2,0 38 52 2−28.91 1846518 [18]

13 8000,4011 4000,0 36 49 2−27.28 / [13]

14 1,800A 4,8002 / / 2−31.64 / [14]

14 2,15 8,5 36 57 2−31.63 8065284 This paper

14 0,2 4,2 40 53 2−30.90 1678405 This paper

SIMCEK48 21 20000,470000 50000,20000 / 100 2−45.65 / [13]

21 1,800002 800002,1 / / 2−45.28 / [14]

21 2,5 5,2 52 73 2−45.18 34899905 This paper

SIMECK64 26 0,4400000 8800000,400000 / 121 2−60.02 / [13]

27 0,10 5,2 / / 2−61.49 / [14]

27 0,11 5,2 70 89* 2−60.75 32649265 This paper

28 0,11 A8,5 74 93* 2−63.91 617703755 This paper

For a differential of i rounds, take the output difference of the ith round
as the input difference of (i + 1)th round, according to Algorithm3, one more
round can be extended by check the number of output difference. For every
valid possible output difference of (i + 1)th round, probability of the new i + 1
round differential can be calculated by Corollary 1. The obtained differentials for
SIMECK is shown in Table 3, in which the number of possible output difference
corresponding to the output difference of the 13-round differential (0x0, 0x2 →
0x2, 0x0) used in [17] of SIMECK32 is 4. Hence, there exists 14 rounds differential
of probability at least 1

4 × 2−28.91, the input difference of it is (0x0, 0x2) and
the output difference is one of {(0x4, 0x2), (0x6, 0x2), (0x44, 0x2), (0x46, 0x2)},
and the searched experimental result of the probability is 2−30.90. In addition,
the result of 27/28 round differential of SIMECK64 that also confirmed the
guesswork of Corollary 1. Additionally, we also searched out some differentials
that follow Corollary 2, such as the 14-round differential (2, 15) → (8, 5), which is
the rotational pair of (1, 800A) → (4, 8002) that rotated 1-bit to the left for each
half state1. More differentials can be constructed from Table 3 by the Corollary 2,
for example, the 14-round differential of SIMECK32 implies ((0, 2) → (4, 2)) ⇒
((0 ≪ j, 2 ≪ j) → (4 ≪ j, 2 ≪ j)), j ∈ [1, 15] with the similar probability
that larger than 2−30.90. And the derivation process for SIMECK48/64 is similar.
The obtained 14/21/27 rounds differential of SIMECK32/48/64 are the best so
far, meanwhile, the 28-round differential of SIMECK64 is the longest so far.

1 The reason why the experimental result of the probability is higher than that of [14]
is because of more trails are counted.
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Algorithm 5. Using the non-zero base vectors of α to construct the space of
all vaild possible α.
Input: Nonzero vectors of y[i] construct the bases of U⊥

β , i ∈ [0, n − 1].
1: αnum = 0, α[ ] = {0}, z[ ] = {0}, j = 0;
2: for i = 0 to n − 1 do
3: if y[i] �= 0 then
4: z[j] = y[i];
5: j + +; //Record the number of non-zero base vectors.
6: end if
7: end for
8: αnum = 2j ;
9: for k = 0 to αnum − 1 do //Construct each valid α.

10: for t = 0 to j − 1 do
11: if (k ∧ (1 
 t)) �= 0 then
12: α[k] = α[k] ⊕ z[t];
13: end if
14: end for
15: end for
16: return αnum, α[ ];

3.3 Improved the Linear Hulls of SIMECK Variants

In [15], an automatic search algorithm to search for the optimal linear trails of
SIMON and SIMECK are proposed. They gave an algorithm to find the base
of all possible input masks α ∈ U⊥

β in Theorem 2. By using the base vectors of
α, we can construct all the possible valid input masks by Algorithm5. Then,
we use the method in [15] and search for longer round linear trails with the
square correlation exceed the security boundary. Take the input and output
mask of the trails as that of the linear hull, and we limit the search scope by the
lower bound of the square correlation (−log2C

2(α, β)). Also, setting the branch
pruning condition wt(p1) + wt(p1) + ... + wt(pi) + wt(pr−i) ≤ wtmax as the stop
condition. By using the longer round linear trails with square correlation exceed
the security boundary, the new longer round linear hulls are found in Table 4.
The 14/22/28 rounds linear hulls of SIMECK32/48/64 are the longest linear
hulls so far2.

4 Key Recovery Attack on Round Reduced SIMECK

In 2014, Wang et al. proposed dynamic key-guessing techniques in differential
attack on SIMON [22], and then these techniques had also been used to achieve
linear hull attack on SIMON at FSE’16 [11]. The differential and linear hull
attack on SIMECK with dynamic key-guessing techniques are the most efficient
method until now [17,18]. Hence, by applying the new differentials obtained, we

2 All experiments code are runned on a PC with Intel� CoreTM i7-2600
CPU@3.40GHz × 8.
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Table 4. The Linear hulls of SIMECK variants.

Cipher Rd Γin Γout wtmin wtmax Potential #Trails Ref

SIMECK32 13 2,0 0,2 40 / 2−30.91 1846518 [18]

13 11,0 2,15 / / 2−29.43 / [15]

13 22,0 4,2A 32 38* 2−28.11 876 This paper

14 800A,1 8008,4004 36 42* 2−31.90 1456 This paper

SIMECK48 20 280000,100000 200000,100000 / / 2−45.66 / [18]

21 800002,1 1,800002 / / 2−46.30 / [15]

21 880002,1 1,800002 52 64* 2−44.48 352999 This paper

22 800000,1 200000,500001 56 68* 2−47.68 1326121 This paper

SIMECK64 26 440000,0 400000,200000 / / 2−62.09 / [18]

27 11,0 8,14 / / 2−61.14 / [15]

27 22,0 10,28 70 86* 2−59.79 27489363 This paper

28 80000001,5 0,40000004 74 88 2−63.67 9103911 This paper

try to get some new results for the key recovery attacks on SIMECK variants.
And for the attack on SIMECK with the new linear hulls obtained, better results
with less complexity may also occur combining with dynamic key-guessing tech-
niques in linear hulls attack. Even so, we leave it as subsequent researchs because
the attack process is too cumbersome, it is recommended to refer to [11] for the
process details of using linear hulls for key recovery.

4.1 Dynamic Key-Guessing in Differential Attack

In [17,22], the dynamic key guessing technique was introduced to the differ-
ential attack on SIMON and SIMECK. By observing the round function of
SIMECK, the bit-transformation relationship of it is denoted by follows. Let
xi = {xn−1

i xn−2
i · · · xj

i · · · x0
i }, xj

i ∈ {0, 1}, there have,

xj
i+1 = xj

i ∧ xj−5
i ⊕ xj−1

i ⊕ xj
i−1 ⊕ rkj

i−1.

The bits relationship of the differential propagation of the SIMECK round
function is expressed as follows:

Δxj
i+1 = Δxj

i ∧ xj−5
i ⊕ xj

i ∧ Δxj−5
i ⊕ Δxj

i ∧ Δxj−5
i ⊕ Δxj−2

i ⊕ Δxj
i−1

and the plaintext bits xj
i and xj−5

i involved secret subkey bits for i ≥ 2.

xj
i = xj

i−1 ∧ xj−5
i−1 ⊕ xj−1

i−1 ⊕ xj
i−2 ⊕ rkj

i−1

xj−5
i = xj−5

i−1 ∧ xj−10
i−1 ⊕ xj−6

i−1 ⊕ xj−5
i−2 ⊕ rkj−5

i−1

As the choosen plaintexts are known, considering Δxj
i and Δxj−5

i as param-
eters under different values, and discussing the number of subkey bits satisfy the
equations. When some subkey bits are determined, which can reduce the number
of the remaining subkey bits that need to be exhaustive searched.
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If (Δxj
i ,Δxj−5

i ) = (0, 0), Δxj
i+1 = b, b ∈ {0, 1}, when Δxj−2

i ⊕ Δxj
i−1 �= b,

the differential propagation relationship of round function is not satisfied, this
condition can be used to filter out the wrong plaintext pairs in the first and last
round. When Δxj−2

i ⊕ Δxj
i−1 = b, the bit differential propagation relationship

can not be used for determining subkey bits, so (rkj
i−1, rk

j−5
i−1 ) ∈ F

2
2 with 4

solutions. And if (Δxj
i ,Δxj−5

i ) = (0, 1), (1, 0) or (1, 1), then (rkj
i−1, rk

j−5
i−1 ) have

only 2 solutions. After appending r0 rounds forward and r1 rounds backward,
generate the extended path with sufficient bit conditions, from which the related
subkey bits for each sufficient bit condition can be solved by whether to satisfy
the equations.

4.2 Applying the Differentials to Key Recovery Attack on SIMECK
Variants

In [17,22], to extend the differential path according to the rules that the out-
put differences of AND operation is 0, if and only if its input differences are
(0,0), otherwise set the output difference of AND operation to * as uncertain
bit. However, the rotational dependence of the input differences of AND oper-
ation is not considered in these previous works. To extend the differential path
with adding r0 round forward and r1 round backward, we use the nonzero prob-
ability outputs produce by Algorithm3. In the data collection phase, there are
Qr0 possible plaintext differences in the set {ΔP }, which will lead to at least 1
input difference Δin of the r-round truncated differential that be appended r0
round forward. There are Qr1 possible ciphertext output differences in the set
{ΔC}, which can be deduced from 1 output difference Δout of the r-round trun-
cated differential that be appended r1 round backward. The number of possible
plaintext difference Qr0 is less than the plaintext pairs in each data structure
constructed in [22]. Selecting one plaintext X, then the plaintexts set {X ⊕ΔP }
obtained by Qr0 XOR additions which can yield Qr0 plaintext pairs which lead
to at least one input difference Δin. Choosing 2t arbitrary plaintext X, for exam-
ple X ∈ {0, 1}t, then we can get 2t × Qr0 plaintext pairs that lead to 2t paris
with intermediate state in (r1)th round with Δin. Since the set of ciphertext dif-
ferences resulting from the output difference of choosen differential, there exists
conditions that some bit positions of the ciphertext difference are fixed, which
can be used to filter out the invalid plaintext differece in {ΔP }, so does the
invalid plaintexts, and then check the remaining ciphertext belong to {ΔC} or
not, which can reduce the storage complexity.

For SIMECK32/64, similarly to the attack in [17], we use the 14-round differ-
ential Δin : 0x0000 0002 → Δout : 0x0004 0002 with the probability of 2−30.90

in Table 3, and extended 4 rounds forward and 4 rounds backward of it to mount
the key recovery attack against the 22 rounds of SIMECK32/64. The extended
differential path with sufficient bit conditions listed in Table 6.

In the data collection phase, we choose 232 plaintexts, with 232 × Qr0 ≈
232+21.3 = 253.3 times XOR addition, 253.3 plaintext pairs can be get, which will
lead to 232×p = 232−30.90 ≈ 2.14 right pairs occured in average. For the choosen
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Table 5. Comparison of Differential Cryptanalysis on SIMECK.

Cipher Total Rounds Diff. Rounds Diff. Prob Attacked Rounds Time Data Ref

SIMECK32 32 13 2−27.28 19 240 231 [13]

13 2−29.64 22 257.9 232 [17]

14 2−30.90 22 254.3Aa + 256Eb 232 This paper

SIMECK48 36 20 2−43.65 26 262 247 [13]

20 2−43.65 28 268.3 246 [17]

21 2−45.18 29 277.04A + 283.14E 247 This paper

SIMECK64 44 26 2−60.02 33 2115 263 [13]

26 2−60.02 35 2116.3 263 [17]

27 2−60.75 35 290.6A + 2105.5E 262 This paper
a ‘A’ represents a XOR addition operation.
b ‘E’ represents an encryption of attacked rounds

Table 6. Extended Differential Path of 22-round SIMECK32 with sufficient conditions.

Rd Input difference of each round represented in bits Qr0

0 0,0,0,*,*,0,0,*,*,*,0,1,*,*,*,*,0,0,*,*,*,0,*,*,*,*,*,*,*,*,*,* 2589180

1 0,0,0,0,*,0,0,0,*,*,0,0,1,*,*,0,0,0,0,*,*,0,0,*,*,*,0,1,*,*,*,* 5638

2 0,0,0,0,0,0,0,0,0,*,0,0,0,1,*,0,0,0,0,0,*,0,0,0,*,*,0,0,1,*,*,0 68

3 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,*,0,0,0,1,*,0 4

4 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 1,0 1

4-18 Δin : 0x0000 0002 → Δout : 0x0004 0002 Qr1

18 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 1

19 0,0,0,0,0,0,0,0,*,0,0,0,1,*,*,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 4

20 0,0,0,*,0,0,0,*,*,*,0,1,*,*,*,0,0,0,0,0,0,0,0,0,*,0,0,0,1,*,*,0 176

21 0,0,*,*,*,0,*,*,*,*,1,*,*,*,*,0,0,0,0,*,0,0,0,*,*,*,0,1,*,*,*,0 34336

22 0,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,0,0,*,*,*,0,*,*,*,*,1,*,*,*,*,0 30906788

plaintext pairs, after 232×(Qr0 +1) ≈ 253.3 times (r0+r+r1) rounds encryption,
using the fixed 6 bits of the ciphertext difference as conditions to filter out the
wrong pairs with 247.3 pairs left in approximately. Then use the {ΔC} as the
filter oracle, 247.3/

Qr1
≈ 247.3−24.85 = 222.45 pairs remained and should be stored

in table T.
Considering the recovery of 4 consecutive rounds of subkeys, by partial

decrypt the last four round, there are totally 35 bits of rk10,15
21 , rk0,5,9−11,14,15

20 ,
rk10,15

19 , rk0,4−5,8−11,13−15
18 involved in the 18 bit conditions in the 18 to 22 rounds.

Create a list of counters for the 35 subkey bits, and solve the 18 bit condition
equations with each pairs remained in T. If the candidate subkey bits matches
the equations then increment the counter. The counter associated with the can-
didate subkey bits has the highest count value.

For the data complexity, there requires 232 plaintexts, and 3 tables of {ΔP },
{ΔC} and T with 221.3 + 224.85 + 222.45 ≈ 226.3 storage size. The computa-
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Table 7. Extended Differential Path of 29-round SIMECK48 with sufficient conditions.

Rd Input difference of each round represented in bits Qr0

0 00000000*0************** 0000000***************** ≈ 229.41

1 00000000000*0*0****1**** 00000000*0************** 950080

2 0000000000000000*0*01*0* 00000000000*0*0****1**** 1156

3 000000000000000000000101 0000000000000000*0*01*0* 16

4 000000000000000000000010 000000000000000000000101 1

4-25 Δin : 0x000002 000005 → Δout : 0x000005 000002 Qr1

25 000000000000000000000101 000000000000000000000010 1

26 0000000000000000*0*01*0* 000000000000000000000101 16

27 00000000000*0*0****1**** 0000000000000000*0*01*0* 1156

28 00000000*0************** 00000000000*0*0****1**** 950080

29 0000000***************** 00000000*0************** ≈ 229.41

tional effort contains the XOR addition, encryptions, filtering phase, subkey bits
guessing, and the brute-force search phase. The computational time complexity
Ct = (232 × 221.3)A + (232 × (221.3 + 1))E + ((253.3)A + (247.3)A) + (2 · 222.45 ·
235 · 4

22 )E +264−35E ≈ 254.3A+256E. Here, ‘A’ represents a XOR addition oper-
ation and ‘E’ represents the encryption operation of attacked rounds. For the
calculation of the success probability, we refer to the theory in [22], the success
probability equals to 1 − Poisscdf(s, λr), where s = 
λr� is the number of hits
that no more than right pairs λr, and Poisscdf(s, λr) is the probability density
function of Poisson distribution. Hence, we can get the success probability is
73% for the attack on SIMECK32.

For SIMECK48/96, we use a 21-round differential Δin : 0x0002 0005 →
Δout : 0x0005 0002 with the probability of 2−45.18 in Table 3, and add 4 rounds
forward and 4 rounds backward of it to mount the key recovery attack against
the 29 rounds of SIMECK48/96. The extended differential path with sufficient
bit conditions listed in Table 7.

We choose 247 plaintexts, with 247 × Qr0 ≈ 247+29.41 = 276.41 times XOR
addition, 276.41 plaintext pairs can be get, which will lead to 247−45.18 ≈ 3.53
right pairs occured in average. After 247 × (Qr0 + 1) ≈ 276.41 times encryption
for all pairs, we use the fixed 16 difference bits in the last round to filter out
most part of wrong pairs with 260.41 pairs left. Then use the {ΔC} as the filter
oracle, 260.41−29.41 = 231 pairs remained and should be stored in table T. Create
counters for the candidate 54 subkey bits rk9,11−23

27 , rk4,6,8−23
26 , rk1,3−23

25 involved
in the last 4 rounds, and solve the 32 bit condition equations with each pairs
remained in T. For the data complexity, there requires 247 choosen plaintexts,
and 229.41+229.41+231 ≈ 231.5 storage size for {ΔP }, {ΔC} and table T is needed.
And for the computational effort, there needs Ct = (276.41)A + (276.41)E + ((2 ·
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Table 8. Extended Differential Path of 35-round SIMECK64 with sufficient conditions.

Rd Input difference of each round represented in bits

0 0000000000000000**00***0****1*** 000000000000000***0*************

1 00000000000000000*000**00***01** 0000000000000000**00***0****1***

2 0000000000000000000000*000**001* 00000000000000000*000**00***01**

3 00000000000000000000000000010001 0000000000000000000000*000**001*

4 00000000000000000000000000000000 00000000000000000000000000010001

4-31 Δin : 0x00000000 00000011 → Δout : 0x00000005 00000002

31 00000000000000000000000000000101 00000000000000000000000000000010

32 000000000000000000000000*0*01*0* 00000000000000000000000000000101

33 0000000000000000000*0*0****1**** 000000000000000000000000*0*01*0*

34 0000000000000000*0************** 0000000000000000000*0*0****1****

35 000000000000000***************** 0000000000000000*0**************

Qr0 ≈ 228.6,363076,1156,16,1 for Rd.= 0,1,2,3,4,respectively

Qr1 1,16,1156,950080,≈ 229.41 for Rd.= 31,32,33,34,35,respectively

276.41)A + (2 · 260.41)A) + (2 · 231 · 254 · 4
29 )E + 296−54E ≈ 277.04A + 283.14E, and

the success probability is 78%.
For SIMECK64/128, we use the 27-round differential Δin:0x00000000

00000011 → Δout:0x00000005 00000002 with the probability of 2−60.75 in
Table 3, by appending 4 rounds on the top and 4 rounds at the bottom,
and extend it to mount the key recovery attack against the 35 rounds of
SIMECK64/128. The extended dfferential path of the 35 rounds SIMECK64/128
is listed in Table 8. Choosing 262 plaintexts, we can get 290.6 plaintext pairs with
290.6 XOR additions, and 262−60.75 ≈ 2.13 right pairs occured in average. For all
choosen plaintext pairs, there need 290.6 encryptions of 35 rounds which lead to
258.6 pairs left, and then use the {ΔC} as the filter oracle, 229.19 pairs stored in
table T. There are 78 bits of rk9,11−31

34 , rk4,6,8−31
33 , rk1,3−31

32 can be guessed. There
requires 262 choosen plaintexts for data complexity, and storage complexity is
228.6+229.41+229.19 ≈ 230.7 for {ΔP }, {ΔC} and table T. For the computational
complexity, there needs Ct = (290.6)A + (290.6)E + ((258.6)A + (229.19)A) + (2 ·
229.19 · 278 · 4

35 )E + 2128−78E ≈ 290.6A + 2105.5E, and the success probability is
73%.

5 Conclusions

In this paper, we analyzed the differential and linear propagation properties of
the bitwise AND operation with inputs mutually independent or dependent, and
improved efficient algorithms by constructing the partial difference distribution
table for bitwise AND operation. We searched out new differentials and linear
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hulls for SIMECK, which are the best results as far as we know. We applied our
differentials to the key recovery attack on SIMECK and less complexity required
while compared to previous differential attack.
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