
PCA: Page Correlation Aggregation
for Memory Deduplication in Virtualized

Environments

Min Zhu1,2, Kun Zhang1,2(B), and Bibo Tu1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{zhumin,zhangkun,tubibo}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

Abstract. To intelligently share limited memory across VMs in IaaS
cloud, content-based page sharing (CBPS), like KSM, is utilized to
greatly reduce the memory footprint of VMs. CBPS merges same-content
pages into a single copy. However, it introduces some serious cross-
VM covert channel threats. Besides, it has heavy overhead due to vast
otiose operations, such as page comparisons and checksum calculations,
when detecting page sharing opportunities. In this paper, we propose a
novel memory deduplication approach called page correlation aggrega-
tion (PCA), which can efficiently reduce otiose operations. Meanwhile
defends covert channels. One key idea of PCA is to divide VMs’ pages
into several sets, since pages with similar attributes have the great-
est possibility with the same content. In PCA, the pages of VMs are
firstly divided into different groups according to VMs’ attributes. In each
group pages are further separated into different classifications based on
their access permissions. Thus page comparisons are restricted to the
same classification for sharing. The other is that PCA introduces a ded-
icated cache to mitigate the latency of COW (Copy- On-Write) used for
conducting covert channels. We have conducted a prototype on KSM,
one popular CBPS technique. Our experimental results show that PCA
reduces otiose operations about 40%, and can effectively resist covert
channels.

Keywords: Covert channel · Secure memory deduplication
Page classification · KSM

1 Introduction

In IaaS (Infrastructure as a Service) clouds, the available memory size has
become one of major bottlenecks to run more virtual machines (VMs) on a
single machine. In this scenario, however, there is plenty of redundant data,
resulting in lower utilization and higher hardware costs. To alleviate it, mem-
ory deduplication is proposed to detect and eliminate redundant memory pages.
c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 566–583, 2018.
https://doi.org/10.1007/978-3-030-01950-1_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_33&domain=pdf


PCA: Page Correlation Aggregation for Memory Deduplication 567

A typical representative is content-based page sharing (CBPS) [2–4] that is trans-
parently implemented in hypervisor layer, such as VMware vSphere, Xen and
KVM etc. If multiple memory pages have the same content, CBPS only reserve
a single copy for these so-called deduplicated pages in a copy-on-write (COW)
way. When a deduplicated page is written, a new page is re-created with a copy.
Many work [7,13] has shown virtualized environments have a large amount of
memory can be condensed, especially for VMs running similar applications or
OSes.

However, CBPS introduces a new security threat: covert channels, which
can extract and transmit data from co-located VMs exploiting additional access
delays caused by COW for deduplicated pages. In this way, standard security
measures, such as access control and data audit, are bypassed. Covert channels
indeed pose realistic and serious threats to information security in the cloud [23–
32]. For example, a hundred bytes of credit card can be secretly stolen less than
30 s, even a thousand bytes of a file can be stealthily trafficked within 3 min [31].
However, covert channels cause negligible CPU and memory utilization, so it’s
hard to be detected in a cloud of heavy workloads. Moreover, it is robust against
environmental noises than cache based covert channel [21,22]. Therefore, covert
channels become ideal choices for secret data transmissions.

CBPS also has performance interference [11,12]. Since CBPS manages mem-
ory pages of VMs indiscriminately and globally, for each candidate page it needs
to be compared with a large number of otiose pages repeatedly to detect its shar-
ing opportunities, which induces plenty of otiose page comparisons and check-
sum calculations (so-called otiose operations), which take up the main run-time
consumption of CBPS (over 60%). The induced CPU overhead will degrade the
performance of VMs. As the number of comparisons increases, the CPU overhead
increases correspondingly. And as the increasing capacity of mergeable memory,
the comparisons expand proportionally, which makes the situation worse.

In this paper, we propose an efficient and secure memory deduplication app-
roach called page correlation aggregation (PCA), which highly aggregates VM’s
pages based on correlative page properties. In PCA, VMs are divided into dis-
parate groups based on their attributes (e.g. OS types), because inter-VM shar-
ing is very low with different VM attributes. Further, according to page access
permissions, pages of each group are divided into different classifications, since
these pages have a higher possibility with the same content. PCA depends on
VM introspection (VMI) to obtain VM attributes and access permission. Thus, a
candidate page is only compared with pages in its classification and group, which
reduces otiose operations. In addition, this feature prohibits covert channels if
the receiver and sender are separated into different groups. Memory contents of
one group are securely protected from another group. To prevent covert channels
within the same group, an intuitive approach would be to add noise to obfus-
cate the specific covert-channel information. Based on this idea, PCA provides
a dedicated cache to reserve deduplicated pages, so as to mitigate the write
latency when occurring COW on deduplicated pages. By doing this, the receiver
may consider the received bit as ‘1’ due to low write latency, whereas the actual
transmitted bit is ‘0’.



568 M. Zhu et al.

We have implemented a prototype in Kernel Samepage Merging (KSM), one
widely used implementation of CBPS. PCA is guest-transparent due to the use of
VMI. We evaluated it through several benchmarks. The results show that PCA
is efficient and practical. Although our current implementation is performed on
KSM, PCA can be applied to any CBPS instances due to its generality. Actually,
PCA also works for deduplicating native processes.

Overall, we have made the following contributions:

– We propose a novel memory deduplication approach for covert channels
defense and otiose operations reduction assisted by VMI.

– We employ the inter-VM grouping and intra-group classification mechanism
to efficiently reduce otiose comparisons. Page sharing is performed just in the
same classification of the same group.

– We provide a dedicated cache for writable deduplicated pages to mitigate the
write latency by adding timing noise when occurring COW.

– We implement PCA based on KSM in a real experimental system. The exper-
imental results show that PCA is able to reach its effectiveness.

The rest of this paper is structured as follows. Section 2 presents the necessary
background. Section 3 details its design and implementation. Section 4 presents
the analysis of PCA in terms of security and efficiency. Section 5 surveys related
work of page sharing and covert channel. Section 6 concludes this paper.

2 Background and Threat Model

In this section, we describe some necessary background including the basic prin-
ciples of KSM, and CBPS-based covert channel, which will help motivate our
solution. And then the threat model and assumptions are discussed.

KSM: KSM, one implementation of CBPS in KVM, exists as a kernel thread
in the host OS (Operating System) and periodically scans advised anonymous
pages to merge identical pages. When a VM starts, Qemu invokes madvise call
to advise its memory as mergeable. KSM manages pages by two red-black trees:
stable tree and unstable tree. The stable tree stores already shared pages
with write-protected, also named KSM pages. The unstable tree records the
candidate pages that don’t change frequently.

The content of pages is the index of the two trees for node search and insert.
As shown in Fig. 1, in each scan round, a candidate page is firstly compared with
pages in the stable tree. If there is a match, the candidate page is merged with
it. Otherwise, its checksum will be recalculated before searching in the unstable
tree, because KSM does not merge frequently changed pages. If the calculated
checksum differs from the previous recorded one, KSM updates the checksum
and continues with the next candidate page. Otherwise, if there is a match in
the unstable tree, the candidate page is merged and added into the stable tree,
while the matched page is purged from the unstable tree. If no match is found,
the candidate page is only inserted into the unstable tree. Wherever a match



PCA: Page Correlation Aggregation for Memory Deduplication 569

Global Stable Tree

Physical 
Memory

1. Scan pages

Global Unstable Tree

2. Search the identical 
page  in stable tree

C
om

parisons

C
om

parisons

KSM Liner Scanner 4. Search the identical 
page  in unstable tree

VMs' Memory 
with Advised

Fig. 1. The KSM overview for memory sharing.

is found, the page table entries of deduplicated pages are replaced by the KSM
page with write-protected. After a full scan, the unstable tree is rebuilt since its
pages content may be changed during the scan.

Covert Channel Attack: CBPS can be used to perform cross-VM covert chan-
nels to observe or transmit data because a COW page fault on deduplicated pages
incurs measurable access latency than no COW. To transmit data, a program is
required to run on the victim as the data sender. However, this requirement does
not reduce their usefulness, since current OS is fragile and vulnerable, attackers
are able to compromise the victim.

A successful covert channel attack needs four steps, as shown in Fig. 2. First,
the sender and receiver load a certain amount of memory pages with identical
content, for example reading a same file with memory alignment. Note, in this
step, self-reflection should be avoided. Next, the sender encodes the information,
e.g., writing certain pages. We make each page represent one bit of data. For
instance, an unmodified page indicates bit 0 and a modified one denotes bit 1.
If we want to transmit 10110010, the sender should modify the 1st, 3rd, 4th and
7th pages. Then, the sender and receiver need to wait for the eight pages being
merged. Finally, the receiver writes all the eight pages and records their write
access latency. At the receiver side, a long access time indicates 0, otherwise 1.
The receiver can easily infer the transmitted data is 10110010.

Threat Model: We assume the attacker and victim are separate VMs co-
resident on the same server. The attacker can compromise the target VM through
multiple attack vectors. Thus she can stealthily place the ‘sender’ in the victim
VM, which may be a spy program for filling pages with data that are expected
to find in the victim’s memory. We also assume an active adversary model, in
which the sender and receiver are cahoots. We assume the hypervisor, VMI tools
and hardware are trusted. The introspected data structures cannot be modified
by attackers, which is common to most existing VMI-based solutions [5,6].



570 M. Zhu et al.

Receiver VM (VM2)

Host Memory Shared pages

Sender VM (VM1)

1 10 1 0 0 1 0
File

2
L S SS LLS L

1Modify page (encoding) 1Load file into 
memory

Test write time (decoding)4

3 Merge page 
via CBPS

Fig. 2. To build a covert channel attack

3 Design and Implementation

In this section, we firstly introduce a highlight overview of PCA. Then we dis-
cuss how PCA classifies the pages of VMs, maintains the deduplicated pages to
counter covert channels, and processes deduplication hints.

3.1 Overview

We have designed PCA with KSM as an example to clarify our approach. PCA
includes two main mechanisms. One is “VM grouping and page classification”,
which places pages that have much higher probability with the same content
together, while pages with different content are divided. This mechanism is used
to reduce the KSM overhead. Incidentally, covert channels of inter-group VMs
are prevented. The other is “KSM cache”, which adds system noise for covert
channels between intra-group VMs.

Figure 3 shows its architecture, which consists of four main components:
(1) Page Permission Collector (PPC), (2) KSM Cache, (3) Grouping Manager
(GM), and (4) Classification Manager (CM). PPC is used to capture the access
permission of each candidate page from the guest OS by VMI-based interfaces,
especially write access permission. Because pages with write access permission
not only affect page sharing opportunities, but also may be used by covert chan-
nels. KSM cache maintains the private information of each deduplicated page:
once a page is merged, it is inserted into the KSM cache. While the reconstructed
KSM includes two parts: the GM and CM. The GM is in charge of dividing VMs
into groups according to the VMs’ attributes. The duty of CM is to aggregate
pages into different classifications based on page access permissions collected by
PPC. Once system startup, the components are enforced and complement each
other, which will be discussed in the following sections.

3.2 VM Grouping and Page Classification

Most of previous work is focus on how to detect more sharing opportunities,
but they have overlooked the KSM own loss properties due to otiose operations
in global trees. To solve this problem, the pages of VMs should be divided into



PCA: Page Correlation Aggregation for Memory Deduplication 571

Host Kernel

Reconstructed KSM

Page Permission Collector

Guest VM

Grouping Manager

LibVMI-based Interface

Classification Manager

KSM Cache

OS kernel

Guest Memory

Guest VM
OS kernel

Guest Memory

Guest VM
OS kernel

Guest Memory
Kernel Data StructuresOther 

Applications

KSM Cache Tree KSM Cache LRU List

Group Control

Classification  Control

Page Permission BufferVM Introspection Module

Kernel Data Structures Kernel Data Structures

Shared Memory

User-level Interface

Fig. 3. The PCA architecture implemented with KSM

different sets to shrink looking up scope. While the division should meet the
following two conditions: (1) pages with high probability to have same content
should be divided into the same set, and vice versa. (2) the distribution of sharing
potentials among sets should be balanced, because unbalanced division may still
include a lot of otiose operations.

Grouping the VMs. The reason for grouping the VMs is the amount of redun-
dant pages of inter-VM can be as low as 5%, but as high as 60% according to
instances of the guest OS type and workloads [7]. For example, if several VMs
run the same guest OS with same workloads their memory pages have a high
possibility with equal content. Based on this fact, VMs can be divided into sev-
eral groups. Accordingly, each global red-black tree is divided into multiple small
trees, called G-trees. Thus, each group has a dedicated stable G-tree and unsta-
ble G-tree. A candidate page is only searched and compared within its G-trees.
As the amount of tree nodes decreases, otiose operations are greatly reduced,
while page sharing opportunities only have a slight variation. Besides, since the
runtime of identification is saved, PCA can detect page sharing efficiently.

To support VM grouping, we mainly provide two ways. First, some options
(user-level interfaces) are provided to customers. When renting VMs, they can
use these interfaces to specify their VM’s workloads or security level. To achieve
this, we extend the Qemu parameters for VM creation. This symbiotic manner
can explicitly assist the provider to group VMs more accurate, and is fit for
confidential scenarios, in which each VM has a security level. Another way is
grouping the VMs based on their potential sharing opportunities. In this way,
VMs are proactively grouped during their startup by analyzing their disk image
or obtaining their guest kernel structures via VMI-based detection module.

To support multiple groups, we modify the KSM algorithm to break the
global trees into multiple G-trees, and extend some additional structures. Dur-
ing startup, each VM is initialized with a group tag (called GID) according to
its attributes. In the current prototype, the GID is attached to the mm struct
structure of each VM process. For each group, we defined a group node



572 M. Zhu et al.

Table 1. The page classifications in each group

Classification Classification ID Description

Unused pages 0x000 The pages is not used by anyone

Kernel read-only pages 0x001 Pages is only readable in kernel space

Kernel read-write pages 0x010 Pages is writable in kernel space

User read-only pages 0x011 Pages mapped only readable in user space

User read-write pages 0x100 Pages is mapped writable in user space

structure, which obtains this group’s private information, such as GID, ksm scan
variable, tree root of G-trees and our introduced KSM cache etc. When func-
tion ksm madvise() is invoked, the GID is retrieved for obtaining which group
the VM belongs to. Thus, each VM’s mm struct structure is registered to the
ksm scan of its group. Thus, each group has its own registered mm struct list.
By doing so, every page to be scanned should reference its GID first to choose
its corresponding G-trees. Since each page has its private rmap item structure,
we can speed up the search in G-trees by bounding page’s GID into the address
field of its rmap item structure.

To save the cost of CPU and memory, we use a single thread as KSM (ksmd)
to manage all groups. Since KSM is a linear scanner, to treat every group fairly
every group has a weight value based on its sharing opportunities. At first, the
weight is initialized by the ratio of the total memory of each group and total
memory of mergeable. During runtime, the weight will be recounted by the
shared pages of each group at the end of each round. The following formula is
used to calculate the number of pages that should be scanned for each group,
where N is the number of pages to be scanned per scan round, which is specified
by the administrator.

PerGroupScannedPages = N× PerGroupSharedPages

TotalSharedPages
(1)

Classifying the Advised Pages. We further discover that the sharing possi-
bility between two pages of the same access permissions is more than those of
not. For example, pages mapped to binary file will not be merged with pages of
stack. Pages with most sharing are heap, shared library and page cache, which
validates page access permission based classification is practicable. Thus, we fur-
ther divide G-trees of each group into multiple classification trees (GC-trees) to
improve KSM more effective.

To classify memory footprints of the VM into several classifications, we uti-
lize VMI to obtain the page access permissions. During the page scan, PPC
dynamically captures the access permissions for each candidate page, and pages
with similar permissions are gathered into the same classification. In the current
implementation, we defined five static page classifications as listed in Table 1.
Therefore, each G-tree will be divided into five local GC-trees. That means
each classification has a stable GC-tree and an unstable GC-tree. Since pages of



PCA: Page Correlation Aggregation for Memory Deduplication 573

different classifications are cross-distribution, we need to obtain the access per-
missions in real time. For performance optimization, we provide a buffer in PPC
for getting the access permission more rapidly. Each time access permissions of
ten pages are obtained from the guest OS. In doing so, otiose operations are
reduced, which will decrease the runtime to detect the same proportion share-
able pages compared to traditional KSM. Thus, the scanner possesses more time
to detect short-lived page sharing opportunities. In some case, new page sharing
opportunities may be detected, which will be shown in Sect. 4.

Discussion. Except efficiency improvement, security is another advantage for
grouping and classification. If the sender and receiver of a covert channel may
be separated into different groups, thus the covert channels will be completely
prevented without reducing the benefits of memory deduplication.

Since current KSM does not consider page access permission, the attacker’s
writable pages can be merged with pages of victim’s application code to detect
target vulnerable application [23,25]. However, this situation cannot happen
in PCA, since PCA has classified pages into different classification based on
their access permissions. Besides, page classification provides a prerequisite for
defending intra-group covert channels.

3.3 KSM Cache

The extreme countermeasure for covert channels is to forbid the pages of the
sender and receiver to be merged, like our VM grouping. But if the sender and
receiver are arranged in a same group, what should we do? The best way is to
distinguish the pages employed by covert channels from others. However, it is
challenging and may be impossible. We adopt another direction that pages used
by covert channels are allowed to merge, but with some additional efforts to
reduce the difference of write access time between deduplicated and KSM pages.
For this purpose, we introduce KSM cache, which disturbs the receiver to decode
the transmitted data by mitigating the write latency of COW. Thus, PCA can
mitigate or even prevent covert channels between VMs in any cases.

In our design, each group has a dedicated KSM cache that is used for storing
the deduplicated pages. Note, we only cache pages with writable access permis-
sion used to build covert channels. When two identical pages are detected, we
do not free the duplicated page immediately. Instead we move it from the stable
GC-tree to KSM cache, as shown in Fig. 4. Thus we can find a copy of the dedu-
plicated pages as quickly as possible when a COW occurs, without requiring a
new copy of the KSM page.

To implement KSM cache, we have chosen two kinds of data structures to
store the cached pages with low overhead: a red-black tree (kcache tree) and a
LRU (least recently used) linked list (kcache list). Duplicated pages are man-
aged by the kcache tree whose node includes PFN (page frame number), hva
(host virtual address), child nodes, mm struct of deduplicated pages, and a list
containing the VM identity etc. During tree search and insertion, there is no
checksum and byte-for-byte content comparisons. So it is lightweight compared



574 M. Zhu et al.

In Each Group

Memory Buddy 
System of Host OS

KSM cache
kcache tree

COW page fault 
on KSM page

Page Classification Collector

kswapd

kcache LRU list

Page is Writable

kcached thread

Fig. 4. The KSM cache architecture

to the KSM trees. The time complexity of the insert, delete and search opera-
tions is O(log n) in both average and worst-case. Besides, duplicated pages are
maintained in a global kcache list for releasing them in a unified manner.

We have extended KSM to incorporate our KSM cache through a suite of
hooks embedded in KSM. During KSM initialization, the KSM cache interfaces
are mounted to the hooks. Like KSM, KSM cache is carried out as a kernel
module that executes as a kernel thread, named kcached. Thus, since each group
has its own data structures, kcached can manage the KSM cache group by group.

The aim of memory deduplication is to reduce the consumption of physical
memory, so we must timely release the cached pages from the KSM cache. There
is a tradeoff between the residence time of the duplicated page in KSM cache and
the available memory freed by KSM. The longer the deduplicated pages reside
in the KSM cache, the more security is ensured, and the less available memory is
gained. To keep a better balance between available memory capacity and security,
KSM cache is allowed to free its captured pages in three conditions. The first
one is when a COW page fault occurs on a KSM page. In this case, we first find
whether there is a match with the fault host virtual address and its VM identity
in the KSM cache. If so, we directly map the matched page to this fault host
virtual address. Thus, we avoid recreating a new copy. If not, the general COW
process is followed. The second one is that we use the kcache list to periodically
release a certain amount of outdated pages. Due to the natural characteristics
of the LRU list, we will always process the oldest pages first. To better defend
the covert channels, we add a random probability to the kcache list, in which
outdated pages are freed randomly. We can therefore prevent the covert channels
with justifiable overhead. Meanwhile keep the benefit of memory deduplication.
The last one is when the system memory is insufficiency. We extend the memory
deallocation to reclaim the pages of our KSM cache.

3.4 VMI-Based Memory Deduplication Scanner

Combing the above techniques, we implement a VMI-based memory deduplica-
tion scanner, using semantic information of VM’s memory footprints. Figure 5
shows how the pages are organized in PCA. VMs’ pages are first organized into



PCA: Page Correlation Aggregation for Memory Deduplication 575

KVM / KSM

Physical memory

Group-2
VM5VM6

VMs' Memory
VM3 VM4 VM5 VM6

Page Permissions Collector

Other Applications
App1 App2 VM4

Group-1
VM2VM1

Unused KRO KRW URO URW

Unused KRO KRW URO URW

VM3

VM1 VM2

Group Manager
Group Policies

Classification Manager
Page Permissions

ST ST ST ST ST

UST UST UST UST UST
Unused KRO KRW URO URW

Unused KRO KRW URO URW

ST ST ST ST ST

UST UST UST UST UST

Fig. 5. Dividing VMs’ pages into different sets

different groups by G-trees. In each group, pages are classified by GC-trees. Dur-
ing grouping and classification, PCA needs to get the guest OS internal state.
For simplicity, we take advantage of LibVMI [20] to achieve these. To reduce
interaction, the VMI tool is divided into two parts: a LibVMI-based user appli-
cation and a kernel module. They interact with each other through a shared
memory mapped to a character device file (see Fig. 3).

To arrange VMs into proper group, we get their OS type, version and work-
loads during their startup. To classify the pages of each group, the scanner
requires to know the access permission of pages in guest OS. To obtain these,
we firstly translate the candidate page’s host virtual address into guest physical
address (GPA) through the structure kvm memory slot. Then through VMI tool
we can get the page structure array of guest OS, like vmemmap or mem map.
Thus, we can get the page structure in this array indexed by GPA. After that,
we can learn whether this page is used via the mapcount field. If the value is
−1, this page isn’t used. Otherwise, if the mapping field of the page structure is
not empty, we can get the anon vma or address space structure. In this struc-
ture, we can get the access permissions. Otherwise, this page is used by kernel.
According to its virtual field, we can know its access permissions. Note, except
kernel code and module code, other pages are considered to be writable.

Figure 6 shows PCA’s flowchart. In each periodic scan, the KSM thread gets
a candidate page, it firstly gets the GID from the GM. Then obtains the CID
(classification ID) from CM. Thus, it can locate its local trees. Like KSM the
candidate page will be searched in its stable GC-tree and then in its unstable
GC-tree. The difference is that when a match is found, the deduplicated page
is inserted into the kcache tree and kcache list. After finishing each scan round,
all unstable GC-trees need to be rebuilt in the next scan round. KSM cache also
needs to be freed periodically based on its kcache list.



576 M. Zhu et al.

Fig. 6. The work-flow of PCA.

4 Evaluation

In this section, we firstly run the following benchmarks in VMs to show the
effectiveness of PCA. Then we present its defense against covert channels and its
overhead of preliminary evaluation. Our experiments are performed on a server
with 4 2.6 GHz Intel Xeon E7 processors and 16 GB memory. Each processor has
8 physical cores. The server runs CentOS-6.5 virtualized by KVM with Linux-
3.18.1. While VMs run CentOS-6.5 with Linux-2.6.38.

– Kernel Build: we compile the Linux kernel-3.18.1 in VMs. We begin this after
the stable sharing opportunities are detected.

– Web Service: we run the Apache httpd server in VMs. We test the ab [38]
benchmark with a local webpage.

– Bonnie++: we use bonnie++ [39] tool to do the hard disk benchmarking.
The test file size is 2 times of the VM’s memory.

4.1 Deduplication Effectiveness

We were particularly interested in seeing how does PCA work on merging pages
compared to original KSM. To verify this, we have tested different workloads in
PCA and KSM. In experiments, 4 VMs are booted, two in a group, the other two
in different groups. To be able to measure the count of page comparisons and
checksum calculations accurately, we modified some KSM functions to output
the count per second. For simplicity, we don’t show the inter-group test result,
since the VMs in different groups will not be merged.

Figure 7 shows the page sharing opportunities. For Kernel Build and Apache,
we can see that PCA is able to detect almost all page sharing opportunities,
whic is more than 97% of KSM. The results prove that fine-granularity is a
good hint for page classification, and page access permission is a better guide
for page classification. However, there is still room for improvement, because
pages with same content but with different access permission will be separated



PCA: Page Correlation Aggregation for Memory Deduplication 577

into different classifications. For bonnie++, PCA detects more page sharing
opportunities than KSM. It might because PCA can find many additional short-
lived sharing opportunities that KSM is not able to detect. This further proves
that fine-granularity classification can achieve higher accuracy, since the close
contacts between page content and access permissions. We can also see that PCA
can merge pages more quickly than KSM. Because PCA costs less comparison
time in its classification trees, so that equal pages are identified earlier, thereby
new sharing opportunities may be detected.

0

1

2

3

4

5

6

7

0 400 800 1200 1600 2000

N
um

be
r 

of
 M

er
ge

d 
Pa

ge
s

x 
10

00
00

Running Time(s)

Page Merging

KSM-Apache KSM-Bonnie++
KSM-Kernel-Build PCA-Apache
PCA-Bonnie++ PCA-Kernel-Build

Fig. 7. Page sharing opportunities between
2 VMs with different workloads.

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200 1400

N
um

be
r 

of
 C

om
pa

ri
so

n
x 

10
00

00
00

Running Time(s)

Page Comparison
KSM-Apache KSM-Bonnie++
KSM-Kernel-Build PCA-Apache
PCA-Bonnie++ PCA-Kernel-Build

Fig. 8. The number of pages that need to
be compared with different workloads.

Figures 8 and 9 respectively show the amount of page comparisons and check-
sum calculations. Figures show that KSM owns the largest number of page com-
parisons and checksum calculations due to its large global trees. While PCA
has almost forty percent optimizations of KSM. Because in PCA multiple small
classification trees contain less page nodes but have a much higher probability to
have same content, which significantly reduces the otiose operations. Combining
with Fig. 7, we can conclude that PCA has a available tradeoff between detecting
page sharing opportunities and reducing otiose operations. The average reduc-
tion is about 40%. This results prove that based on page access permissions of
guest OS PCA can accurately classify the pages.

4.2 Effectiveness of Covert Channel Defense

To evaluate the effectiveness of PCA against covert channels, we perform two
types of experiment: sender and receiver in the same group and in different
groups. We boot two virtual machines to deploy the sender and receiver process
respectively. Each VM is configured with 1 VCPU and 512 MB memory. They
load a 404 KB file (i.e. 101 4 KB pages) into memory. To ensure each page is



578 M. Zhu et al.

unique, the file is generated randomly by /dev/random. To guarantee that all
pages are merged, we set the sleeping time to 5 s. In each type, we test five times.
In each test, the sender transfer different data to the receiver, and in receiver we
record the write access time of the 101 pages to decode the delivered data.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 200 400 600 800 1000

N
um

be
r 

of
 C

he
ck

Su
m

x 
10

00
00

0

Running Time(s)

Page CheckSum Cacula on
KSM-Apache KSM-Bonnie++
KSM-Kernel-Build PCA-Apache
PCA-Bonnie++ PCA-Kernel-Build

Fig. 9. The number of page checksums with
different workloads.

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100

W
ri

te
 A

cc
es

s T
im

e(
μs

)

Page (4KB)

Covert Channel 

KSM PCA

Fig. 10. Based on VM grouping and page
classification to against covert channel.

Figure 10 shows the experimental results (VMs in the same group), which
transmits a 101-bit data. To do this, the sender modifies the 3rd, 11th, 22th, 32th,
42th, 57th, 63th, 77th, 86th, 93th, 96th pages to encode a data. From Fig. 10, we
can see that although different tests demonstrate different write access spikes,
the write access time of sender-modified pages is always much less than the write
access time of sender-unmodified pages in traditional KSM. While in PCA, there
is no difference between sender-modified pages and sender-unmodified pages.
This is because in PCA, once a page is merged, it will be added into the kcache
tree immediately, and it will be hit in the kcache tree when the receiver decodes
the data. Hence the write access time to the deduplicated pages has a negligible
effect. Thus, the receiver cannot correctly recover the transmitted data.

4.3 Performance Overhead

The general trade-off of memory scanner is CPU utilization and memory con-
sumption versus the security and efficiency. We have measured the CPU con-
sumption of the scanner with some benchmarks by top measurements taken by
per second. Figure 11 shows the average CPU utilization. We can see that PCA
reduces the CPU overhead compared with original KSM. The highest impact is
kernel build workload about 6%. Since kernel build workload has high memory
usage during runtime, it exists vast otiose operations. However, PCA can effec-
tively reduce these otiose operations. Thus the CPU overhead is reduced. While
apache has low memory usage, so its overhead is reduced relatively less.



PCA: Page Correlation Aggregation for Memory Deduplication 579

0

10

20

30

40

50

60

0 400 800 1200 1600

C
PU

 U
til

iz
at

io
n 

%

Running Time(s)

CPU U liza on

PCA-Apache PCA-Bonnie++
PCA-Kernel-Build KSM-Apache
KSM-Bonnie++ KSM-Kernel-Build

Fig. 11. The CPU utilization of KSM and
PCA with different workloads.

30

32

34

36

38

40

42

44

0 100 200 300 400 500

M
em

or
y 

U
til

iz
at

io
n 

%

Running Time(s)

Memory U liza on

KSM-Apache KSM-Bonnie++
KSM-Kernel-Build PCA-Apache
PCA-Bonnie++ PCA-Kernel-Build

Fig. 12. The memory consumption of
KSM and PCA with different workloads

Although the VMI used in our work may lead to a certain of performance loss.
But the overhead is very little. Further, PCA provides a buffer to store access
permissions, which reduces the number of VMI invocation. However, inserting
duplicated pages into kcache tree is very cheap.

The only additional memory space is used by storing the page permission,
the kcache tree, the kcache list, some structures and a few locks to sequential
access shared data structures. From Fig. 12, we can see that PCA only consumes
little memory during VMs execution. This overhead comes from KSM cache,
because some key fields are recorded into the kcache tree nodes.

5 Related Work

Page Sharing. Limited main memory size has become one of the major bot-
tlenecks in virtualization environment, and as an efficient approach to reduce
server memory requirement, memory deduplication thus has attracted a large
body of work on it. Disco [1] was the first system to implement page sharing
on code pages with assistance from guest OS. CBPS requires no assistance from
the guest OS, and was firstly implemented in VMware ESX server [2]. Then,
CBPS was introduced in Xen [3] and KVM [4] to increase the memory density
of VMs. But they can only merge anonymous pages, as the host regards the
guests’ memory as anonymous memory due to the semantic gap.

To acquire more sharing opportunities, Difference Engine [13] and Memory
Buddies [14] proposed sub-page sharing, which not only explores the potential
of same pages but also similar pages. Satori [15] employed sharing-aware virtual
disks to find short-lived sharing opportunities. KSM++ [16] found pages in host
cache are strong sharing candidates and preferential scan them can exploit short-
lived sharing opportunities. Based on this, XLH [17] generates page hints in the
host’s virtual file system for merging them earlier. Singleton [18] combined the



580 M. Zhu et al.

host and guest double-caching into an exclusive cache. However, they didn’t
consider reducing needless overhead of KSM. While we argue that page sharing
needs to consider classification for reducing otiose operations.

Empirical studies [7,8] show CBPS can achieve memory savings up to 50%
on I/O intensive workloads. But CBPS has higher runtime overhead by otiose
comparison. To solve this, an adaptive policy [9] was proposed to obtain more
sharing opportunities but with little CPU overhead. Sindelar et al. [10] proposed
two hierarchical sharing models through sharing-aware algorithms without heavy
CPU overhead. CMD [11] proposed a classification-based approach with a dedi-
cated hardware. While IBM’s AMD [12] generates a signature for each physical
page to avert page comparison. PageForge [19] firstly proposed a hardware-based
design for same-page merging that effectively reduces the CPU overhead. Except
the performance improvement, PCA also concerns security.

Covert Channels. Recent research efforts [23–26] have mentioned the potential
threat of covert channels based on memory deduplication. However, in their con-
text, the covert channel is used primarily for leaking information. Xiao et al. [27]
firstly constructed a rough covert channel to transmit information between two
VMs. In an ideal situation, the bit rate of such covert channel can be around
1kbps. However, its bit errors make it impractical in reality due to uncertain
merging time. For this, Rong et al. [28] proposed a robust communication proto-
col for high-speed transmission and reliability. Xen’s event channel can be used
to conduct covert channels [29,30], which has bend demonstrated in Amazon
EC2 [31]. Moreover, Gruss et. al [32] proposed the JavaScript based covert chan-
nel to collect private information in sandboxes. Our work aims to implement a
defense scheme to these attacks.

Cloud providers can tackle covert channels through either preventative or
detective approach, since they are much more resourceful. Amazon EC2 provides
a dedicated instances service [33], in which different tenants’ VMs do not share
physical hardware. While the significant service charge reduces its attractiveness.
Also, Wu et al. [31] advised the cloud provider to define a policy, which only
allows two tenants to be shared in each server. But the tenant’s neighbor is
predetermined. These approaches may mitigate covert channels, but the memory
utilization is low. In contrast, PCA has a low cost, but allows all tenants to share
system memory.

Kim et al. [34] proposed a group-based memory deduplication scheme that
aims to provide performance isolation on each single server. Deng et al. [35]
also proposed a similar memory sharing mechanism, in which the global KSM
thread is divided into per-group threads. Also, Ning et al. [36] proposed a covert
channel defense mechanism based on VM grouping. SEMMA [37] provides a
security architecture for performance isolation and security assurance. All of the
above work only provides inter-group protection. Further, they did not consider
otiose operations. Our work not only prevent covert channels in both inter-group
and intra-group, but also reduce otiose operations to improve performance.



PCA: Page Correlation Aggregation for Memory Deduplication 581

6 Conclusion

Memory deduplication is an important feature in modern hypervisors. However,
it has otiose operations, and induces covert channels. In this paper, we put for-
ward a highly efficient and secure memory deduplication approach called page
correlation aggregation (PCA). PCA achieves two important objectives. First, it
significantly reduces otiose operations. Meanwhile it speeds up the identification
of page sharing and boosts the sharing opportunities. Second, it effectively mit-
igates or even prevents covert channels. We have implemented our design and
evaluated it on KVM with different workloads. The experimental results show
that PCA is effective, efficient and practical. In the future, we will plan to inves-
tigate the combination of PCA and balloon technique for efficiently managing
the memory in the cloud. Also, we are interested in research logging mechanism
with machine learning to detect the covert channels.

Acknowledgments. We would like to thank the anonymous reviewers for their con-
structive suggestions. This work was supported by the National Key Research and
Development Program of China under grant No. 2016YFB0801002.

References

1. Bugnion, E., Devine, S., Govil, K., et al.: Disco: running commodity operating
systems on scalable multiprocessors. ACM Trans. Comput. Syst. 15(4), 412–447
(1997)

2. Waldspurger, C.A.: Memory resource management in VMware ESX server. ACM
SIGOPS Oper. Syst. Rev. 36(1), 181–194 (2002)

3. Kloster, J.F., Kristensen, J., Mejlholm, A., et al.: On the feasibility of memory
sharing: content-based page sharing in the Xen virtual machine monitor (2006)

4. Arcangeli, A., Eidus, I., Wright, C.: Increasing memory density by using KSM. In:
Proceedings of the Linux Symposium, pp. 19–28 (2009)

5. Srivastava, A., Giffin, J.: Tamper-resistant, application-aware blocking of malicious
network connections. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID
2008. LNCS, vol. 5230, pp. 39–58. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-87403-4 3

6. Payne, B.D., Carbone, M., Sharif, M., Lee, W.: Lares: an architecture for secure
active monitoring using virtualization. In: Proceedings of the IEEE Symposium on
Security and Privacy, pp. 233–247 (2008)

7. Chang, C.R., Wu, J.J., Liu, P.: An empirical study on memory sharing of vir-
tual machines for server consolidation. In: Proceedings of the IEEE International
Symposium on Parallel and Distributed Processing with Applications, IEEE, pp.
244–249 (2011)

8. Barker, S.K., Wood, T., et al.: An empirical study of memory sharing in virtual
machines. In: Proceedings of the Annual Technical Conference, pp. 273–284 (2012)

9. Rachamalla, S., Mishra, D., Kulkarni, P.: All page sharing is equal, but some
sharing is more equal than others (2013). http://www.cse.iitb.ac.in/internal/
techreports/reports/TR-CSE-2013-49.pdf

10. Sindelar, M., Sitaraman, R.K., Shenoy, P.: Sharing-aware algorithms for virtual
machine colocation. In: Proceedings of the ACM Symposium on Parallelism in
Algorithms and Architectures, pp. 367–378 (2011)

https://doi.org/10.1007/978-3-540-87403-4_3
https://doi.org/10.1007/978-3-540-87403-4_3
http://www.cse.iitb.ac.in/internal/techreports/reports/TR-CSE-2013-49.pdf
http://www.cse.iitb.ac.in/internal/techreports/reports/TR-CSE-2013-49.pdf


582 M. Zhu et al.

11. Chen, L., Wei, Z., Cui, Z., et al.: CMD: classification-based memory deduplica-
tion through page access characteristics. In: Proceedings of the ACM International
Conference on Virtual Execution Environments, vol. 49, no. 7, pp. 65–76 (2014)

12. Ceron, R., Folco, R., Leitao, B., et al.: Power systems memory deduplication. In:
IBM Redbooks (2012). http://www.redbooks.ibm.com/abstracts/redp4827.html

13. Varghese, G., Voelker, G.M., Vahdat, A., et al.: Difference engine: harnessing mem-
ory redundancy in virtual machines. In: Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation, pp. 309–322 (2008)

14. Wood, T., Tarasuk-Levin, G., Shenoy, P., et al.: Memory buddies: exploiting page
sharing for smart colocation in virtualized data centers. In: Proceedings of the
International Conference on Virtual Execution Environments (2009)

15. Mios, G., Murray, D.G., Hand, S., Fetterman, M.A.: Satori: enlightened page shar-
ing. In: Proceedings of the Annual Technical Conference, USENIX, pp. 1–14 (2009)

16. Miller, K., Franz, F., Groeninger, T., et al.: KSM++: using I/O-based hints to
make memory-deduplication scanners more efficient. In: Proceedings of the ASP-
LOS Workshop on Runtime Environments, Systems, Layering and Virtualized
Environments (2012)

17. Miller, K., Franz, F., Rittinghaus, M., Hillenbrand, M., Bellosa, F.: XLH: more
effective memory deduplication scanners through cross-layer hints. In: Proceedings
of the Annual Technical Conference, USENIX, pp. 279–290 (2013)

18. Sharma, P., Kulkarni, P.: Singleton: system-wide page deduplication in virtual envi-
ronments. In: Proceedings of the International Symposium on High-Performance
Parallel and Distributed Computing, ACM, pp. 15–26 (2012)

19. Skarlatos, D., Kim, N.S., Torrellas, J.: Pageforge: a near-memory content-aware
page-merging architecture. In: Proceedings of the Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, ACM, pp. 302–314 (2017)

20. LibVMI tool. http://libvmi.com/
21. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! A fast, cross-

VM attack on AES. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014.
LNCS, vol. 8688, pp. 299–319. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11379-1 15

22. Irazoqui, G., Eisenbarth, T., Sunar, B.S.: $ A: a shared cache attack that works
across cores and defies VM sandboxing-and its application to AES. In: Proceedings
of the Security and Privacy, pp. 591–604. IEEE (2015)

23. Ristenpart, T., Tromer, E., Shacham, H., et al.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of
the ACM Conference on Computer and Communications Security, pp. 199–212.
ACM (2009)

24. Suzaki, K., Iijima, K., Yagi, T., et al.: Software side channel attack on memory
deduplication. In: Symposium on Operating Systems Principles, Poster session
(2011)

25. Suzaki, K., Iijima, K., et al.: Memory deduplication as a threat to the guest OS. In:
Proceedings of the Fourth European Workshop on System Security. ACM (2011)

26. Suzaki, K., Iijima, K., Yagi, T., et al.: Implementation of a memory disclosure
attack on memory deduplication of virtual machines. IEICE Trans. Fundam. Elec-
tron. Commun. Comput. Sci. 96(1), 215–224 (2013)

27. Xiao, J., Xu, Z., Huang, H., et al.: Security implications of memory deduplica-
tion in a virtualized environment. In: Proceedings of the Dependable Systems and
Networks, pp. 1–12. IEEE (2013)

http://www.redbooks.ibm.com/abstracts/redp4827.html
http://libvmi.com/
https://doi.org/10.1007/978-3-319-11379-1_15
https://doi.org/10.1007/978-3-319-11379-1_15


PCA: Page Correlation Aggregation for Memory Deduplication 583

28. Rong, H., Wang, H., Liu, J., et al.: WindTalker: an efficient and robust protocol of
cloud covert channel based on memory deduplication. In: Proceedings of the Big
Data and Cloud Computing, pp. 68–75. IEEE (2015)

29. Shen, Q., Wan, M., Zhang, Z., Zhang, Z., Qing, S., Wu, Z.: A covert channel using
event channel state on Xen hypervisor. In: Qing, S., Zhou, J., Liu, D. (eds.) ICICS
2013. LNCS, vol. 8233, pp. 125–134. Springer, Cham (2013). https://doi.org/10.
1007/978-3-319-02726-5 10

30. Wu, J.Z., Ding, L., Wang, Y., et al.: Identification and evaluation of sharing mem-
ory covert timing channel in Xen virtual machines. In: Proceedings of the Cloud
Computing, pp. 283–291. IEEE (2011)

31. Wu, Z., Xu, Z., Wang, H: Whispers in the hyper-space: high-speed covert channel
attacks in the cloud. In: Proceedings of USENIX Security Symposium, pp. 159–173
(2012)

32. Gruss, D., Bidner, D., Mangard, S.: Practical memory deduplication attacks in
sandboxed Javascript. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS
2015. LNCS, vol. 9326, pp. 108–122. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24174-6 6

33. Amazon Web Services. Amazon EC2 dedicated instances. http://aws.amazon.com/
dedicated-instances/

34. Kim, S., Kim, H., Lee, J.: Group-based memory deduplication for virtualized
clouds. In: Alexander, M., et al. (eds.) Euro-Par 2011. LNCS, vol. 7156, pp. 387–
397. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29740-3 44

35. Deng, Y., Hu, C., Wo, T., et al.: A memory deduplication approach based on
group in virtualized environments. In: Proceedings of the Service Oriented System
Engineering, pp. 367–372. IEEE (2013)

36. Ning, F., Zhu, M., You, R., et al.: Group-based memory deduplication against
covert channel attacks in virtualized environments. In: Proceedings of the Trust-
com/BigDataSE/I SPA, pp. 194–200. IEEE (2016)

37. Chen, X., Chen, W., Long, P., et al.: SEMMA: secure efficient memory management
approach in virtual environment. In: Proceedings of the Advanced Cloud and Big
Data, pp. 131–138. IEEE (2013)

38. Apache http server benchmarking tool. http://httpd.apache.org/docs/2.2/
programs/ab.html

39. Bonnie++ file system benchmark. https://www.coker.com.au/bonnie++/

https://doi.org/10.1007/978-3-319-02726-5_10
https://doi.org/10.1007/978-3-319-02726-5_10
https://doi.org/10.1007/978-3-319-24174-6_6
https://doi.org/10.1007/978-3-319-24174-6_6
http://aws.amazon.com/dedicated-instances/
http://aws.amazon.com/dedicated-instances/
https://doi.org/10.1007/978-3-642-29740-3_44
http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
https://www.coker.com.au/bonnie++/

	PCA: Page Correlation Aggregation for Memory Deduplication in Virtualized Environments
	1 Introduction
	2 Background and Threat Model
	3 Design and Implementation
	3.1 Overview
	3.2 VM Grouping and Page Classification
	3.3 KSM Cache
	3.4 VMI-Based Memory Deduplication Scanner

	4 Evaluation
	4.1 Deduplication Effectiveness
	4.2 Effectiveness of Covert Channel Defense
	4.3 Performance Overhead

	5 Related Work
	6 Conclusion
	References




