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Abstract. The knowledge of protocol specification, especially protocol
field boundary, is invaluable for addressing many security problems, such
as intrusion detection. But many industrial control network (ICN) pro-
tocols are closed. Closed protocol reverse engineering has often been a
time-consuming, tedious and error-prone process. Some solutions have
recently been proposed to allow for automatic protocol reverse engineer-
ing. But their prerequisites, e.g. assuming the existence of keywords or
delimiters in protocol messages, limit the scope of their efforts to parse
ICN protocol messages. In this paper, we present AutoBoundary that
aims at automatically identifying field boundaries in an ICN protocol
message. By instrumenting and monitoring program execution, Auto-
Boundary can obtain the execution context information, and build a
memory propagation (MP) tree for each message byte. Based on the
similarity between MP trees, AutoBoundary can identify protocol field
boundaries, automatically. The intuition behind AutoBoundary makes it
suitable for ICN protocols, which have the characteristics of no delimiter,
no keyword, and no complex hierarchical structure in the message. We
have implemented a prototype of AutoBoundary and evaluated it with 62
ICN protocol messages from 4 real-word ICN protocols. Our experimen-
tal results show that, for the ICN protocols whose fields are byte-aligned,
AutoBoundary can identify field boundaries with high accuracy (100%
for Modbus/TCP, 100% for Siemens S7, and 94.7% for ISO 9506).
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1 Introduction

For industrial control network (ICN), the knowledge of application-level proto-
col specifications is invaluable for addressing many security problems. Protocol
specifications are often required for intrusion detection and firewall systems to
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perform deep packet inspection [3,17]. For ICN management, protocol specifi-
cations can be used to identify protocols and analyze network traffic. They also
allow the automatic generation of protocol fuzzers when performing the black-
box testing [16]. Of course, many ICN protocol specifications can be obtained
from authority documents directly, such as Modbus. But many ICN protocols
are unknown, undocumented or proprietary, such as Siemens S7. For the closed
protocol, protocol reverse engineered manually always means time-consuming
and error-prone. In this case, the specification could only be specified through
automatic protocol reverse engineering.

A key work of protocol reverse engineering is to identify the field boundaries.
Some solutions have recently been proposed to allow for automatic protocol
reverse engineering, including identifying field boundaries. Most of them are
effective and efficient, when the prerequisites are met. The prerequisites include:
(1) the existence of keywords or delimiters in protocol messages; (2) utilizing
loops and comparison operations to parse protocol messages within the soft-
ware binary; (3) getting key information ahead of time, e.g., IP address or host
name, and so on. On the other hand, the syntactic structures of many ICN pro-
tocols have the characteristics of no delimiter, no keyword, and no hierarchical
structure, such as Modbus. In this paper, we present AutoBoundary, a new app-
roach that aims at automatically identifying field boundaries in an ICN protocol
message. AutoBoundary is based on the key observation that bytes belonging
to the same protocol field of a message have the same propagation traces in the
memory, due to they are typically handled together. The intuition behind Auto-
Boundary does not depend on delimiter, keyword, or hierarchical structure. So
it is more suitable for ICN protocols. By dynamically analyzing program exe-
cution, we record the address for a message byte once it propagates from one
place to another. At last, all address records of a message byte compose a mem-
ory propagation tree. A n-byte message results n memory propagation trees.
Through comparing between memory propagation trees, we can decide whether
two message bytes belong to the same protocol field or not. Further, based on the
similarity between memory propagation trees, we can identify the field bound-
aries of a protocol message. We have implemented a proof-of-concept prototype
and evaluated it with 62 ICN protocol message from 4 ICN protocols.

The contributions of this paper are the following: (1) We present a novel
approach to analyze the movement trace of message bytes in the memory. We
use memory propagation (MP) tree as storage structure to record all movement
traces of a message byte, and describe the detail way how to compare between
MP trees. The comparison result embodies the similarity between MP trees.
(2) We present AutoBoundary, an MP-tree-based approach to identify the field
boundaries in an ICS protocol message. (3) We applied our techniques to a set
of real-world applications that implement ICN protocols such as Modbus/TCP,
IEC 60870-5-104, ISO 9506, and Siemens S7. Our results show that AutoBound-
ary can automatically identify field boundaries.
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2 Goal and Assumption

There are three essential components in an application-level protocol specifica-
tion: protocol syntax, protocol FSM and protocol semantics. Inferring protocol
syntax, including identifying field boundary, lays the foundation for automatic
protocol reverse engineering. In this paper, we focus on identifying the field
boundaries. Our goal is to design an algorithm that, given one message of an
ICN protocol and an application that can process this message, recovers the
boundaries of fields.

As mentioned above, we assume that the application, which can parse the
protocol message, could be obtained. Though these appliances that run on very
“special” hardware seem to be hardly obtained, it is not always an unsolvable
problem. We believe that some cutting-edge technologies (e.g., softPLC, virtu-
alization, and digital twins) would make it possible.

3 System Design

The intuition behind AutoBoundary is simple but effective: “Bytes belonging
to the same protocol field of a message have the same propagation traces in
the memory, due to they are typically handled together.” As such, the prop-
agation traces of each message byte can be compared to uncover field bound-
aries. AutoBoundary is interested in how memory propagation information can
be collected and analyzed to identify field boundaries. It has three processing
stages: (1) execution monitor, (2) MP tree generation, and (3) field boundary
identification.

3.1 Stage 1: Execution Monitor

In the execution monitor stage, an ICN protocol message is sent to an applica-
tion that “understands” the protocol that we are interested in, such as a server
program implementing a particular ICN protocol. By monitoring application exe-
cution, we can intercept the network-related system calls (e.g., sys socket), and
mark the message received as tainted data. Moreover, throughout the message
processing life-time, we instrument all instructions that operate on the tainted
data to record propagation traces. More specially, for a data movement instruc-
tion, we check whether the source operand is tainted. If yes, we will mark the
destination operand, which can be a register or a memory location, as tainted
data; If no, we will simply unmark the destination operand. At the same time,
we record the instruction address and the addresses of both the source operand
and destination operand, with the format: “addrins : addrsrc → addrdst”. If an
instruction has two source operands, we will union of their marks, and record
with the format: “addrins : addrsrc1 + addrsrc2 → addrdst”. Similar to previous
systems that use dynamic taint analysis, we establish a relationship between a
particular message byte and a location in memory (or a register). We reference
interested readers to related literature such as [4,10,18].
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As a result of the monitoring process, memory propagation records are pro-
duced for each ICN protocol message. They contain all operations that have one
tainted operands at least.

3.2 Stage 2: Memory Propagation Tree Generation

To organize memory propagation records efficiently and make it possible for
mathematical calculation, we define a new structure and name it as memory
propagation tree, which is described as Definition 1. Each byte from an ICN
protocol message has one, and only one, corresponding MP tree. In the rest of
this section, we discuss the way how to build MP trees from memory propagation
records, calculate branch contribution for an MP tree, and compress an MP tree,
within stage 2.

Definition 1. A Memory Propagation (MP) tree is a data structure made up
of nodes and edges without having any cycle. An MP tree consists of a root
node and potentially many levels of additional nodes that form a hierarchy. The
root node represents the initial memory location of a byte from an ICN protocol
message. The intermediate and leaf nodes represent the locations where this byte
has appeared during its propagation process. An edge means propagating from a
location (i.e., parent node) to another (i.e., child node).

MP Tree Construction. By monitoring the network-related system calls, the
buffer that contains the received protocol message is determined. For each byte
in the buffer, AutoBoundary creates a blank MP tree, adds a root node into
the MP tree, and sets two properties on the root node. One is location prop-
erty that includes the byte address. The other is growth property that indicates
whether a new branch can grow from this node. Then, as shown in Algorithm1,
AutoBoundary repeatedly reads a record from the memory propagation records
generated in Sect. 3.1, and tries to insert a new child node and a new edge that
is from record.addrsrc to record.addrdst into the MP tree mpti, by using the
function MPtree-InsertEdge(). If there is an existing node nodei, whose loca-
tion property value is equal with record.addrsrc and growth property value is
“enable”, the node and edge can be insert into mpti. In this case, AutoBoundary
creates a new node node′, sets its location property value to record.addrdst, and
sets its growth property values to “enable”. A new edge that is from nodei to
node′ is inserted into mpti. On the other hand, if there is no such node, Auto-
Boundary checks whether this memory propagation record would have impact
on mpti. If record.addrdst is the same with any nodes’ location property value,
AutoBoundary modifies the growth property values of these nodes to “disable”.
The value “disable” means that a new branch cannot grow from such nodes,
namely, they cannot be a parent of a new node. It’s important to note that, in
the real-world application, after a tainted memory or register is overwritten by
other non-tainted data, we should no longer keep tracks of its propagation. The
growth property attached to the node helps us to decide whether to keep tracks
of the node’s propagation in the future.
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Algorithm 1. MPtree-Gen
Input. [buf ]: the buffer contains the protocol message

[records]: the memory propagation records generated in Sect. 3.1
Output. [mpt1,mpt2, · · · ,mptn]: MP trees, n means the length of buf
1: for each bytei in buf do
2: create a blank MP tree mpti for bytei
3: create root node rootNodei
4: set rootNodei.locationProperty =getAddress(bytei)
5: set rootNodei.growthProperty = enable
6: insert rootNodei into mpti
7: for read a record from records do
8: MPtree-InsertEdge(record.addrsrc, record.addrdst, mpti)
9: end for

10: end for
11: Return (mpt1,mpt2, · · · ,mptn);

Branch Contribution Calculation. The node that has no child is a leaf node.
A branch consists of a root node, a leaf node, and all of nodes and edges between
them. The branch length is defined in Definition 2.

Definition 2. The length of a branch is the number of nodes, which belong to
the branch. Term “longer” has the same meaning as “with more nodes”.

Definition 3. Branch contribution is used to quantify weigh values of branches
with different length. It embodies the contribution degree of a branch during the
process of identifying field boundaries. It is a decimal number between 0 and
1. 0 means that the branch has no contribution to filed identification procedure.
In contrast, being close to 1 means that the branch has much impact on filed
identification procedure.

For an MP tree, are the weight values of branches with different length the
same? Of course not. The longer a branch is, the wider a byte propagates. A wider
propagation always means that the byte has been processed by more instructions,
while each instruction can partially reflect characteristics of the byte. Therefore,
a longer branch usually provides more help to identify field boundaries. To quan-
tify weight values for branches with different length, we introduce the definition
of branch contribution as Definition 3. For the ith branch, its contribution conti
can be calculated by (1), where n is the total number of branches, and the func-
tion len() gets the length of a branch. The contribution degree is attached to
every branch as an additional property.

conti =
len(branchi)∑n
j=1 len(branchj)

, 1 � i � n (1)

MP Tree Compression. If the length of two branches are equal, and the
nodes residing in the same level have the same properties (i.e., location and
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growth), we say that these two branches are the same. AutoBoundary does
not forbid establishing multiple same branches during the process of MP tree
generation. The redundancy branches reduce the efficiency of compare operation
in the next stage. To mitigate the problem, AutoBoundary compresses the MP
tree by merging the redundancy branches. The compressing approach used by
AutoBoundary is simple and easy, but efficient and effective. For the redundancy
branches, first rip out all but one, and then add the contribution of discarded
branches into the remaining one.

3.3 Stage 3: Field Boundary Identification

Our field boundary identification relies on clustering message bytes. To cluster
bytes, we need to invoke both branch comparison and tree similarity calculation.
In this section, we first explain these procedures before describing how to divide
clusters.

Branch Comparison. To find similar branches across different MP trees, we
need a proper approach to compare branches. As Sect. 3.2 describes, each branch
consists of many nodes. Therefore, to compare two branches, we align their nodes
by using a customized version of sequence alignment algorithm. And the score
gotten by aligned nodes represents the result of branch comparison.

We refer to our approach for aligning nodes as node-based sequence alignment
algorithm. The key observation behind our approach is that, while sequence
alignment algorithm [14] cannot be used for comparing branches directly, it can
be used to align nodes by leveraging the node’s properties (i.e., location and
growth property) generated in the MP tree construction phase. In the node-
based sequence alignment algorithm, we claim two aligned nodes are matched
if they have the same growth property and the distance between their location
is smaller than the size of a variable of type char (i.e., 1 byte). For instance,
knowing a growth-enabled node N of a branch is placed in a particular location
necessitates that its counterpart N ′ of another branch is also growth-enabled and
next to N for these two nodes to be considered a match. We allow gaps in the
node-based sequence alignment algorithm. In addition to using gap penalties to
control gaps, we introduce extra constraints to make it more suitable for branch
comparison. First, a node placed in registers is allowed to align with gaps. This
constrain is for handling the case of coalescing multiple registers (i.e., EAX and
EDX) to perform one computation. Second, a node placed in memory is allowed
to align with gaps, but it must be imposed heavy penalty – the gap penalty is
typically double. This constraint is for handling the case that string functions
are used to parse fields. For example, when using the function “strncmp” to
parse fields, the front part of the field may be handled more times than the rear
part, which results in longer branches for the front part.

After aligning nodes, the node-based sequence alignment algorithm outputs a
score for a pair of branches. This score quantifies the result of branch comparison.
Since AutoBoundary does not focus on the absolute value of the score, it is
insensitive to the scoring system (sub-scores for match, mismatch and gap) used
by sequence alignment algorithm.



Automatic Identification of ICN Protocol Field Boundary Using MP Tree 557

MP Tree Similarity Calculation. Let two target MP tree as mpt1 and mpt2.
To calculate the similarity between them, we need to find the matched branches
and accumulate contribution degrees for each tree, respectively.

Definition 4. For a given branch from an MP tree, comparing it with all
branches from another MP tree (by using branch comparison approach), the cor-
responding branch is defined as which one outscores others.

Definition 5. For a given branch and its corresponding branch, if the score for
branch comparison exceeds a certain threshold, we claim they are matched.

threshold = len × fac × sScorema + len × (1 − fac) × sScoremi,

len =
len(branch) + len(branch′)

2

(2)

Firstly, we deal with mpt1. Travel every branch bri from mpt1, we search its
corresponding branch br′

i in mpt2. We give the definition of corresponding branch
in Definition 4. And then, check whether the branch bri and its corresponding
branch br′

i are matched. The definition of matched branch is given in Definition 5.
As what described in it, a threshold is required to decide whether they are
matched. This threshold can be obtained by (2), where len is the mean value of
the branch length, sScorema and sScoremi are the sub-scores for matched and
mismatched nodes respectively, and fac is an adjustment factor whose range is
from 0.5 to 1 – the value of fac means the least percentage of matched nodes
(for Modbus/TCP, IEC 60870-5-104, ISO 9506 and S7, we suggest setting fac
to 0.75). After that, if bri and br′

i are matched, accumulate the contribution
degree for mpt1. Algorithm 2 describes this process in detail. It traverses all
branches in mpt1, to find the corresponding branch in mpt2. If the comparison
score between branch bri and its corresponding branch br′

i is larger than the
threshold, namely branches are matched, accumulate the contribution degree
of bri into the total contribution degree matchContribution. At the end, the
accumulated contribution degree of mpt1 is obtained.

Secondly, dispose mpt2 with the same procedure as mpt1, but reverse roles
of two MP trees. Travel all branches of mpt2, search the corresponding branch
in mpt1, and accumulate the contribution degree for mpt2.

Algorithm 2. AutoBoundary-AccumulateContribution
Input. [mpt1]: the first MP tree; [mpt2]: the second MP tree
Output. [matchContribution]: accumulated contribution degrees for mpt1
1: for each branch bri in mpt1 do
2: (br′

i, score) = AutoBoundary-FindCorrespondingBranch(bri, mpt2)
3: if score > getThreshold(bri, br

′
i) then

4: matchContribution += getContribution(bri)
5: end if
6: end for
7: Return (matchContribution);
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Algorithm 3. AutoBoundary-CalculateTreeSimilarity
Input. [mpt1]: the first MP tree; [mpt2]: the second MP tree
Output. [similarity]: the similarity between input MP trees
1: matchCont1 = AutoBoundary-AccumulateContribution(mpt1, mpt2)
2: matchCont2 = AutoBoundary-AccumulateContribution(mpt2, mpt1)
3: similarity = (matchCont1×getLength(mpt1)+matchCont2×getLength(mpt2))
4: similarity = similarity/(getLength(mpt1) + getLength(mpt2))
5: Return (similarity);

At last, calculate the similarity between two MP trees, based on their contri-
bution degrees. As Algorithm 3 described, we obtain the result similarity through
merging two accumulated contribution degrees.

Message Byte Clustering. Message byte clustering is an iterative process,
from the first message byte to the last one. As shown in Algorithm 4, each iter-
ation handles two adjacent message bytes. AutoBoundary finds MP trees for
these two bytes, and then calculates the similarity between MP trees through
the approach described above.

Algorithm 4. AutoBoundary-ClusterByte
Input. [message]: the ICN protocol message, including n bytes

[mpt1,mpt2, ...,mptn]: MP trees, one tree mapping one byte
Output. [cluster]: the result clusters
1: for i from 1 to n do
2: mpti = getMPTree(bytei) // bytei means ith byte in message
3: mpti+1 = getMPTree(bytei+1)
4: similarityi = AutoBoundary-CalculateTreeSimilarity(mpti, mpti+1)
5: end for
6: for i from 1 to n− 1 do
7: k =sizeof(short)
8: pre = (1 > i− k/2)?1 : (i− k/2)
9: post = (i + k/2 > n− 1)?(n− 1) : (i + k/2)

10: for j from pre to post do
11: neighbourMean += similarityj
12: end for
13: neighbourMean = neighbourMean/(post− pre + 1)
14: // check whether similarityi is larger than the mean value of k neighbors
15: if similarityi � neighbourMean then
16: divide bytei and bytei+1 into a cluster
17: end if
18: end for
19: Return (clusters);
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After that, n − 1 similarities are obtained. According to these similarities,
AutoBoundary divides message bytes into clusters. To evaluate whether a simi-
larity is high enough, we need a reference value. Therefore, for each one out of
n− 1 similarities, AutoBoundary finds its k neighbors, and calculates the mean
value. If a similarity is larger than its k-neighbor mean value, two message bytes
related to the similarity are divided into a cluster. At last, every message byte
is covered by one and only one cluster. While a cluster is identified as a protocol
field, field boundaries is set between clusters.

4 Evaluation

We have implemented an AutoBoundary prototype in 20,500 lines of source
code on Linux 3.16 (Debian 8.5.0). The execution monitor module extends the
instrumentation tool Pin [12] (version 2.14-71313). However, we note that our
design is not tightly coupled with Pin, and can be implemented using other
instrumentation tools, e.g., Valgrind [15]. The MP tree generation module takes
a memory propagation record file that is the outcome of execution monitor
module as input, and outputs MP trees. Based on MP trees, the field boundary
identification module infers message formats.

We will present two sets of experiments. The first set of experiments involves
20 kinds of prototype messages from 3 known ICN protocols, including Mod-
bus/TCP, IEC 60870-5-104 and ISO 9506. The second set of experiments
involves 10 protocol messages in a closed ICN protocol used by Siemens PLCs,
namely S7. These messages are either for conveying commands from the engineer
station or for retrieving I/O data from the controller.

In the first set of experiments with known ICN protocols, we can quantita-
tively evaluate the effectiveness of AutoBoundary. We compare our results with
the results from a popular network protocol analyzer – Wireshark. We present
the set of message fields as F , and the number of F as |F |. We count |F | in
both Wireshark and AutoBoundary results. We also count the number of fields
in protocol specifications, which will be taken as benchmarking. Because both
Wireshark and AutoBoundary may consolidate multiple protocol fields as one
coarse-grained field, we count the total number of coarse-gained fields as |Ec|. On
the other hand, they may divide a protocol field into multiple overly-fine-grained
fields. We count the number of overly-fine-grained fields as |Eo|. Table 1 reports
the results. In the following, we describe our experiments in greater detail.

4.1 Modbus TCP Request

In this experiment, we monitor the execution of a Modbus/TCP server imple-
mented by libmodbus v3.0.6, and trace 20 Modbus/TCP messages (8 types). The
results in Table 1 show that AutoBoundary identifies all protocol fields, as there
is one overly-fine-grained field discovered by Wireshark. For the error ratio, Auto-
Boundary performs better. As a detailed example, for the “Write Single Coil”
sub-messages, Wireshark reports |Ec| = 0 and |Eo| = 1 while AutoBoundary
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Table 1. Protocol field comparison between Wireshark and AutoBoundary

Protocol Message type Specification Wireshark AutoBoundary

|F | |F | |Ec| |Eo| |F | |Ec| |Eo|
Modbus/TCP Write Single Coil 7 8 0 1 7 0 0

Write Multiple Coils 9 9 0 0 9 0 0

Write Single Register 7 7 0 0 7 0 0

Write Multiple Registers 9 9 0 0 9 0 0

Read Coils 7 7 0 0 7 0 0

Read Discrete Inputs 7 7 0 0 7 0 0

Read Holding Registers 7 7 0 0 7 0 0

Read Input Registers 7 7 0 0 7 0 0

IEC 60870-5-104 U format STARTDT 5 4 1 0 4 1 0

U format STOPDT 5 4 1 0 4 1 0

I format Interrogation 16 15 1 0 11 5 0

I format C SC NA 1 19 17 2 0 12 7 0

I format C DC NA 1 18 17 1 0 11 7 0

I format C SE NB 1 22 17 5 0 12 10 0

I format C RD NA 1 15 14 1 0 10 5 0

I format C CS NA 1 28 23 5 0 13 15 0

ISO 9506 getNameList 16 4 12 0 11 4 0

Read 23 9 14 0 23 0 0

Write 26 11 15 0 28 0 2

defineNamedVariableList 29 12 17 0 31 0 2

shows |Ec| = 0 and |Eo| = 0, comparing with the Modbus/TCP specification.
The reason for having an overly-fine-grained field in Wireshark result is that the
low byte of “output value” field is erroneously identified as a padding of Ether-
net frame. And if a Modbus/TCP server does not use the default port 502 (e.g.,
the example program of libmodbus uses 1502 as the default port), Wireshark
cannot identify any Modbus/TCP fields. AutoBoundary works well no matter
which port number is used by the Modbus/TCP server. Therefore we believe
that AutoBoundary outperforms Wireshark, when confronting Modbus/TCP.

4.2 IEC 60870-5-104 Request

In this experiment, we monitor the execution of an IEC 60870-5-104 server imple-
mented by lib60870 v0.9.4, and trace 20 messages (8 types) in control direction.
Table 1 shows the existence of coarse-grained fields both in the Wireshark and
AutoBoundary results. More specifically, Wireshark identifies 86.7% of protocol
fields, while AutoBoundary only discovers 60.1% of them. To find out the root
cause, we make in-deep analysis against “U format – STARTDT” sub-messages
and “I format – Interrogation” sub-messages.
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For the “U format – STARTDT” sub-messages, Wireshark reports |Ec| = 1
and |Eo| = 0 while AutoBoundary shows |Ec| = 1 and |Eo| = 0. According to
IEC 60870-5-104 specification, a “STARTDT” message has 1 start field, 1 length
field and 4 control fields. The first control field is divided into two parts: bit 1–2
are always 1 (format type), bit 3–8 represents one function (TESTFR, STOPDT
or STARTDT). Therefore, the first control field should be treated as 2 different
fields. Because the last 3 control fields are always 0, they are combined as 1 field.
Wireshark does not identify the last field, i.e. 3-byte 0x00. AutoBoundary treats
the first control field as 1 field. It does not discover the format type field (bit
1–2 of the first control field) and function field (bit 3–8 of the first control field).

For the “I format – Interrogation” sub-messages, Wireshark reports |Ec| = 1
and |Eo| = 0 while AutoBoundary shows |Ec| = 5 and |Eo| = 0. An “Inter-
rogation” message has 16 protocol fields, including start field, length field, two
format type fields (bit 1 of CFO1 1 and bit 1 of CFO 3), send sequence number
field, receive sequence number field, type identification field, SQ field (bit 8 of
VSQ2), number field, test flag field (bit 8 of COT3), P/N field (bit 7 of COT),
cause field, originator address field, common address field, information object
address field and qualifier of interrogation field. Wireshark only discovers one
format type field, while AutoBoundary does not identify SQ, test flag, P/N and
format type fields.

There is a main reason behind the coarse-grained field: for AutoBoundary,
the granularity of dynamic taint analysis is byte but not bit. So it cannot iden-
tify field boundaries which are not byte-aligned, such as function field in the
“STARTDT” message, SQ field in the “Interrogation” message and so on. It is
easy to modify the granularity of dynamic taint analysis from byte to bit, but
the resource consumption will be increasing exponentially. To balance out the
costs and benefits, we keep the byte-granularity.

4.3 ISO 9506 Request

In this experiment, we monitor the execution of an ISO 9506 (MMS) server
implemented by libiec61850 v1.0.1, and trace 12 messages (4 types) in con-
trol direction. Table 1 shows that, there are coarse-grained fields both in the
Wireshark results and AutoBoundary results. Wireshark only identifies 39.3%
of protocol fields. ISO 9506 (MMS) uses Abstract Syntax Notation One (ASN.1)
to encode request PDUs. The Basic Encoding Rules (BER) of ASN.1 has three
parts: identifier, length and content. Wireshark only identifies the content fields.
This is the root cause for the poor result. On the other hand, AutoBoundary
discovers 94.7% of protocol fields. As a detailed example, for “getNameList” sub-
messages, AutoBoundary reports |F | = 11 and |Ec| = 4. Through static analysis
against the source code, we find that the implementation of the protocol ignores
specific messages fields. So these fields cannot be inferred by AutoBoundary.

1 Control Field Octet.
2 Variable Structure Qualifier.
3 Cause Of Transmission.
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For “write” sub-messages, AutoBoundary reports |F | = 28 and |Eo| = 2. The
reason behind overly-fine-grained fields is that the “itemID” field consists of
multiple parts – a logical node name “LLN0”, a functional constraint “ST”, and
a data name “Health”. The implementation of the protocol parses them respec-
tively. Therefore, AutoBoundary regards one “itemID” field as three different
fields. The same thing happens to “defineNamedVariableList” sub-messages.

Table 2. Protocol field comparison between S7 Wireshark dissector and AutoBoundary

Protocol Message function code S7 Wireshark dissector AutoBoundary

|F | |F | |Ec| |Eo|
Siemens S7 Protocol Setup communication 11 11 0 0

Upload 16 16 0 0

PLC Stop 10 10 0 0

Write Variable 20 20 0 0

(Multiple) Read Variable 48 48 0 0

4.4 Siemens S7 Messages

We present our second set of experiments showing that AutoBoundary can
uncover the field boundaries of a closed ICN protocol (S7) message used by
Siemens PLCs. To verify the AutoBoundary results, we use a great project –
S7 Wireshark dissector, and compare results between AutoBoundary and S7
Wireshark dissector.

We monitor the execution of an S7 server implemented by Snap7, and trace
10 messages (5 types) in control direction. As shown in Table 2, for each field
boundary identified by S7 Wireshark dissector, there is an identical field bound-
ary automatically discovered by AutoBoundary.

5 Limitations and Future Work

The first limitation of AutoBoundary is the granularity of dynamic taint anal-
ysis. To balance out the costs and benefits, we choose 1-byte as the minimum
unit when tracing taint data. But some ICN protocol fields are not byte-aligned,
such as IEC 60870-5-104 requests mentioned in Sect. 4.2. In other words, if a
protocol field is not byte-aligned, AutoBoundary cannot infer the filed bound-
ary accurately. Secondly, AutoBoundary is the dynamic trace dependency. If the
implementation of an ICN protocol ignores some message fields, AutoBoundary
cannot discover the boundaries of these fields, just like what happened for ISO
9506 requests mentioned in Sect. 4.3. Fixing the above problems is a part of our
future work. And we plan to extend execution monitoring process to the pro-
tocol client (e.g., HMI application), which is easier to be obtained. In addition,
identifying entire structure of a message is another part of our future work.
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6 Related Works

The methods of automatic protocol reverse engineering can be classified into
network trace analysis and dynamic analysis approaches.

The network trace analysis approaches for protocol reverse engineering take
as input a network capture and use clustering techniques to determine protocol
information. Protocol Informatics project [2] aims to employ Smith Waterman
algorithm to infer protocol formats from a set of protocol network packets. Dis-
coverer [7] leverages recursive clustering and type-based sequence alignment to
infer message formats. RolePalyer [8] can mimic both the server side and the
client side of the session for application protocols. Biprominer [19] and ProDe-
coder [20] are two automatic protocol reverse engineering tools, which use statis-
tical methods to find keywords and probable keyword sequences. AutoReEngine
[13] adopts a similar method but measuring keyword location from the beginning
of a message as well as the end. ReverX [1] uses a speech recognition algorithm
to identify delimiters, and then finds keywords within protocol messages by iden-
tifying the frequency of byte sequences.

The dynamic analysis approaches monitor the execution of a software binary
that implements the communication protocol to identify the protocol message
fields. Polyglot [6] depends on the existence of loops in which tainted data is itera-
tively compared to a constant value. Dispatcher [5] targets transmitted messages.
To extract the message format of sent messages, it leverages the intuition that
the structure of the output buffer represents the inverse of the structure of the
sent message. AutoFormat [11] treats consecutive bytes that are run in the same
execution context as message fields, and then exposes a tree of hierarchal fields.
Tupni [9] can reverse engineer an input format with a rich set of information. Its
key property is that it identifies arbitrary record sequences by analyzing loops
in a program. Wondracek et al. [21] presented a approach to extract informa-
tion about the fields of individual messages, and aggregate this information to
determine a general specification of the message format.

7 Conclusion

We have proposed MP tree to analyze the movement trace of message bytes, and
described the way how to build, compress, and compare MP trees. Based on MP
tree, we have presented AutoBoundary, a system for automatic protocol field
boundary identification. We have implemented a prototype of AutoBoundary
and evaluated it with a variety of ICN protocol messages. Our experimental
results show that AutoBoundary achieves high accuracy in ICN protocol filed
boundary identification.
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