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Abstract. Domain Generation Algorithm (DGA) has been outfitted by
various malware families to extend the resistance to the blacklist-based
techniques. A lot of previous approaches have been developed to detect
the DGA-based malware based on the lexical property of the random
generated domains. Unfortunately, attackers can adjust their DGAs to
produce domains by simulating the character distribution of popular
domains or words and thus can evade the detection of these approaches.

In this work, we develop an approach from a novel perspective, i.e.,
the query time lags of non-existent domains (NXDomain), to mitigate
DGA-based malware without the lexical property. The key insight is that,
unlike the benign hosts, the hosts infected by the same malware families
will query a lot of NXDomains in inherent time lags. We design a system,
LagProber, to detect infected hosts by analyzing the distribution of time
lags. Our experiment with a week of real world DNS traffic reveals that
LagProber is able to detect the infected hosts with low false positive
rate.
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1 Introduction

Domain Generation Algorithm (DGA) has been outfitted by various malware
families to extend the resistance to the blacklist-based techniques. Cybercrim-
inals utilize DGAs to produce random domains and select a small subset for
actual command and control (C&C) use. The randomly generated and short
lived C&C domains render detection approaches that rely on static domain lists
ineffective.

As the domains generated by the DGA-based malware consist of random
and unreadable character concatenations, a lot of researchers have developed
detection techniques, e.g., [8,22,25,28,30–32,34], based on the lexical property.
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However, these random domains can also be generated by simulating the read-
able strings. For example, in [11], the authors present a method to generate
domains based on the character distribution of the words in English dictionary
and their experiment proves that their method can significantly degrade the lexi-
cal property-based detection techniques such as [8,34]. In this case, more intrinsic
features should be extracted without the lexical property to detect DGA-based
malware.

In this work, we develop an approach from a novel perspective, i.e., the query
time lags of NXDomains, to mitigate DGA-based malware without the lexical
property. The key insight is that, unlike the benign hosts, the hosts infected by
the same malware families will query a lot of non-existent domains (NXDomains)
in inherent time lags to find the rendezvous points for C&C connection. Moti-
vated by this peculiarity, we design a system, LagProber, to detect the infected
hosts by analyzing the query time lags of NXDomains. LagProber extracts fea-
tures from the distribution of query time lags, and implements a clustering
method to identify the infected hosts. In contrast with the other DGA-based
malware detection approaches using the time-based features, e.g., periodicity of
C&C connections and change points of NXDomain traffic, our features can be
extracted in a shorter period and do not rely on specific time patterns. More-
over, the features extracted from time lags can be used compatibly with the
periodicity-, change point- or lexical-based detection.

In summary, our research makes following contributions.

(1) We develop an approach from a novel perspective, i.e., the query time lags
of NXDomains, to detect DGA-based malware. Our approach is able to
identify the infected hosts without the lexical property which is easy to be
obscured by attackers.

(2) We design a system, LagProber, to identify the DGA-based malware by
analyzing the query time lags of NXDomains. LagProber implements an
unsupervised algorithm and thus can run without prior knowledge; and the
key advantage is that it can detect the DGA-based malware without the
lexical property.

(3) We evaluate LagProber using a week of real world DNS traffic collected
from a large ISP network to show the efficacy. The result illustrates that
LagProber can accurately detect the DGA-based malware and has scalable
performance.

Organization. The rest of the paper is organized as follows. In Sect. 2, we illus-
trate the background and motivation. The system design is introduced in Sect. 3
and evaluated in Sect. 4. We discuss the limitations in Sect. 5, and summarize
the previous works in Sect. 6. At last, in Sect. 7, we conclude this work.

2 Background and Motivation

In this section, we first introduce the background knowledge of the domain gen-
eration algorithm and then illustrate the motivation of our approach.
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2.1 Domain Generation Algorithm

DGA is an advanced DNS technique used by sophisticated malware families.
The attackers periodically generate thousands of domains, which can be used
as rendezvous points for C&C communication. Among these domains, only a
small number of them are used as actual C&C domains at a certain moment.
The real C&C domains only live for short periods before they are replaced with
other domains; thus, if the C&C domains are retained by the responders, the
C&C communication will persist. The large number of potential C&C domains
complicates taking down the C&C servers.

The generated domains are computed based on a given seed, which can con-
sist of numeric constants, the current date/time, or even Twitter trends. In most
cases, the character distribution of random generated domains is distinct with
that of the benign domains. One can detect DGA-based malware by identify-
ing the random domains. However, as aforementioned in Sect. 1, the domains
can be generated by simulating the English dictionary words [11], which can
significantly degrade the detection approaches based on the lexical property.

Table 1. The time lags of different malware families.

# Family Time lag

1 PadCrypt 0 s between domains

2 Kraken 0 s between domains

3 Proslikefan 0 s between domains

4 Corebot 0 s between domains

5 Pykspa 0 s between domains

6 DirCrypt 0 s between domains

7 Necurs 0 s between domains

8 Symmi 0 s between domains

9 Ramnit 0 s between domains

10 Ranbyus 500 ms between domains

11 newGOZ 1 s between domains

12 Sisron 3 s interval between domains

13 Shiotob 5 s between domains

14 Qadars v3 20 s after 200 domains

15 Banjori as long as DNS query for www.google.de succeeds

2.2 Query Time Lag of NXDomains

In this work, we develop our approach from a novel perspective, i.e., the query
time lags of NXDomains, to detect DGA-based malware without the lexical
property. This is motivated by the fact that the infected hosts don’t know the

www.google.de
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exact C&C domain and have to query a large amount of generated domains until
an available response. Therefore, a sequence of query time lags of the NXDomains
can be collected to extract the features for detection.

In Table 1, according to the analysis report in Johannes’ blog [5], we sum-
marize the time lags of 15 DGA-based malware families. Nine of them query
their domains without waiting, five of them implement invariable intervals and
one of them alternatively queries the generated domains and www.google.de. No
matter what kind of the time lag the attackers implemented, the hosts infected
by the same DGA-based malware will have the same distribution. Particularly,
when an infected host query a lot of generated domains, the distribution of time
lags is consistent. Motivated by this finding, we design a system, LagProber, to
detect DGA-based malware by clustering the hosts with similar distribution of
the query time lags of NXDomains. The detail of LagProber will be introduced
in the following.

3 System Design

In this section, we present our system, LagProber, to show how it works based
solely on the query time lags of NXDomains. It is noticeable that LagProber
only analyzes the second level domains (SLDs) and domains served by dynamic
DNS such as ddns.net. A SLD is a domain directly below a top-level domain
(TLD) like .com and .net, or a ccSLD like .ac.uk and .co.uk. The dynamic DNS
domains analyzed in our work are the same as the ones listed in [18]. The reason
for analyzing these two types of domains is that the DGA-based malware families
usually map their servers to them. Thus, unless otherwise noted, when we talk
about domains or NXDomains we refer to the two types of domains.

3.1 Architecture

The architecture of LagProber is shown in Fig. 1. LagProber takes DNS traffic
as input and the Collector records the NXDomain queries for analysis. For each
host, the Feature Generator extracts the features from the distribution of query
time lags of NXDomains to generate the vectors. The Group Analyzer performs
a clustering process on the vectors to gather similar ones and outputs a set
of candidate clusters. The Significance Analyzer implements a significance
detection process to identify if any infected hosts there. In the following, we will
introduce the details of the four components, i.e., Collector, Feature Generator,
Group Analyzer, Significance Analyzer.

We maintain a finite-state machine to manage the whole workflow of our
system. The state machine is shown in Fig. 2. LagProber starts from the Idle
state. If there is no host querying more than 10 NXDomains (nnx < 10), Lag-
Prober keeps waiting. When a host queries more than 10 NXDomain (nnx > 10),
LagProber comes to the Preparing state. The Feature Generator extracts
the vector from the distribution of the time lags. If the waiting time t exceeds
1 h (the time window), LagProber comes to the Detecting state, or else it comes

www.google.de
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Fig. 1. System Architecture.

back to the Waiting State. In the Detecting state, the Group Analyzer clus-
ters the vectors and Significance Analyzer reports the infected hosts. Then,
LagProber resets the system (e.g., t = 0 and) and goes back to the Waiting
state.

Fig. 2. System Workflow.

3.2 Collector

The Collector collects the NXDomain traffic produced in the monitored network
and filters out the non-malicious NXDomains to improve the system efficacy. In
this work, we consider an NXDomain as non-malicious when it satisfies one of
the following conditions.

– Invalid Top Level Domain (TLD): A domain is considered as non-malicious
if its TLD is not in the list of registered TLDs presented by IANA [4].

– Irregular characters: A domain contains the characters that should not
be included in regular domain (consisting of only letters, numbers and
dashes/hyphens). This domain is probably caused by the typing error or mis-
configuration.

– Popular domains: We consider the top 100,000 domains in Alexa [1] and web-
sites of world’s biggest 500 companies from Forbes [3] as popular legitimate
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domains. These NXDomains are mostly utilized by benign services to transfer
disposable signals [10].

3.3 Feature Generator

When host hi queries more than m NXDomains d1, d2, ..., dm (in this work we
set m = 10 to achieve a fast detection) with timestamps t1, t2, ..., tm, LagProber
extracts the time lags of the queries, i.e., St = {lk : tk+1 − tk}, k ∈ [1,m − 1].
We only focus on the distinct domains in a single day due to that repeatedly
queried domains have no help to find the rendezvous point for C&C connection.

Although most DGA-based malware families in Table 1 prefer to query the
domains with constant time lags, some sophisticated ones can still implement the
time lags based on some probability distribution, e.g., Gaussian distribution, to
obscure the similarity. Anyway, they have the similar statistic values, e.g., mean
and standard deviation, of St. Therefore, six statistic values, i.e., the mean,
variance, median, maximum, minimum and mode (the most frequent value), of
St are extracted by this component to construct vector vi.

3.4 Group Analyzer

The Group Analyzer performs a clustering process to gather the similar vectors.
Since the number of DGA-based malware families in the monitored network is
unsure, LagProber implements a hierarchical merging algorithm, which does not
require the number of clusters as input. This algorithm is a clustering approach

Algorithm 1. Clustering Process
Require: Sv = {vi}, i = 0, 1, ..., p containing vectors generated by the Feature Gener-

ator Component;
Ensure: Sc = {ck}, k = 0, 1, ..., q containing the outputted clusters.
1: C ← Sv

2: while |C| > 0 do
3: ci, cj , dij ← getCloestPairOfClusters(Sv)
4: ai = mean(ci) + 2 ∗ std(ci)
5: aj = mean(cj) + 2 ∗ std(cj)
6: if dij < max{√|v|,min{ai, aj}} then
7: C ∪ merge(ci, cj)
8: end if
9: if dij > ai then

10: Sc ∪ ci
11: remove(C, ci)
12: end if
13: if dij > aj then
14: Sc ∪ cj
15: remove(C, cj)
16: end if
17: end while
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that merges the most similar pairs of clusters as one moves up the hierarchical
until the terminated conditions are satisfied. In our work, the Euclidean distance
is selected as the similarity measures.

In Algorithm 1, we present the workflow of the clustering process. First, con-
sidering each vector generated by the Feature Generator component as a sin-
gle cluster, the function getCloestPairOfClusters extracts the closest pair of
clusters (ci and cj) and returns their distance dij . Second, LagProber deter-
mines whether dij is too large for ci and cj by comparing dij with the value of
ai = mean(ci) + 2 ∗ std(ci), where mean(ci) and std(ci) represent the mean and
standard deviation of the internal distances of the vectors in ci, respectively. As
shown in Table 1, the time lags of most DGA-based malware families are less
than 1 second. The distances of the vectors generated by them are very likely

less than
√|v| =

√∑|v|
i=1(12 − 02), where |v| is the size of vector. Therefore, if

dij < max{√|v|,min{ai, aj}}, LagProber merges ci and cj . Third, if dij > ai

or dij > aj , which indicates that there is no cluster similar to ci, LagProber out-
puts cluster ci or cj . At last, if no cluster can be merged, the clustering process
is terminated.

3.5 Significance Analyzer

When the infected hosts try to connect the C&C servers, they will query much
more NXDomains than the benign ones and the feature vectors will be more
similar. As a result, one or more clusters will contain much more items than
the other ones. Hence, LagProber implements a outliers testing algorithm, i.e.,
one-side Grubbs’ test [12], also known as the maximum normalized residual test
or extreme studentized deviate test, to search for the significantly larger clusters
in the result of Group Analyzer.

According to Grubbs’ test, we define two hypothesis H1 and H0 denoting
if there is a significantly large cluster or not, respectively. Assuming q clusters
c1, c2, ..., cq have been outputted by the Group Analyzer, the statistic test is:

G =
max

i=1,...,q
{|ci| − |c|}
s

, (1)

where |ci| is the size of cluster ci, |c| is the mean size and s is the standard
deviation of the sizes. The hypothesis H0 is rejected at a significance level α (set
as 0.001 in our work) if

G >
q − 1√

q

√√
√√

t2α
2q ,q−2

q − 2 + t2α
2q ,q−2

, (2)

where t α
2q ,q−2 denotes the upper critical value of the t-distribution [33] with

q − 2 degrees of freedom and a significance level of α
2q . In Fig. 3, we present the

workflow of the significance test in this component. As the Grubbs’ test only
examines the maximum, when the hypothesis H0 has been rejected, LagProber
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identifies the corresponding cluster as malicious and removes it for the next
round of test. If hypothesis H0 is accepted, the test process is terminated.

Fig. 3. Workflow of the significance test.

Besides the significantly large clusters, we also consider the clusters con-
taining significantly similar vectors as malicious. Since most of the DGA-based
malware families implements 0 s time lag to query the domains, we determine a
cluster as malicious when the max distance of the internal vectors is less than√|v|. At last, LagProber reports all the hosts generating the vectors in the
significantly large or similar clusters as malicious.

4 Evaluation

In this section, LagProber is evaluated on a week of real world DNS traffic.
We first introduce the dataset used in our evaluation and analyze the detection
result. Then, we present the system performance of LagProber.

4.1 Dataset

Our dataset is collected from an ISP network which offers Internet services to the
Chinese education, research, scientific and technical communities, relevant gov-
ernment departments, and hi-tech enterprises. We obtained DNS traffic collected
on the edge of this network from May 1st, 2018 to May 7th, 2018. The summary
of our dataset is presented in Table 2. Qtotal and Qnx represent the number of
total and NXDomain queries, respectively. Since LagProber only processes the
NXDomain traffic (with about 5% of the volume of the total traffic), the exact
volume of dataset is significantly reduced. It is noticeable that we rule out the
traffic of DNS servers (hosts opening the 53 port for service) in this dataset.
This is because LagProber is designed to work under the recursive servers and
the behaviors of DNS server are not feasible to represent the human activities.

Labeling. To label the infected hosts in our dataset, we first extracts the
response IP addresses mapping to more than 50 distinct SLDs. This is because
the C&C IP addresses used by DGA-based malware families are very likely to
map with multiple domains. Then, we manually examine the domains with the
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Table 2. Summary of our dataset.

Date Qtotal Qnx

2018-05-01 154,548,745 8,352,698

2018-05-02 250,951,430 10,874,362

2018-05-03 226,918,325 10,823,140

2018-05-04 138,368,609 6,085,376

2018-05-05 159,469,521 8,260,969

2018-05-06 154,055,202 8,450,981

2018-05-07 134,670,589 6,940,916

Total 1,218,982,421 59,788,442

help of V irustotal [7] and ThreatCrowd [6] to ensure the malicious. As a results,
we identify 17 infected hosts.

We classify the 17 infected hosts into 3 categories, i.e., dga-1, dga-2 and
dga-3, based on the character distribution. The domain samples are presented
in Fig. 4. The dga-1 domains are constructed by numerics, the dga-2 domains
are similar with the traditional DGA-based malware families that random select
characters, and the dga-3 domains are very likely generated by the HASH-based
DGA [23]. The dga-1 and dga-3 infected hosts query domains with no waiting
while the dga-2 infected hosts consecutively query a few domains per 7 s.

Although the number of hosts is small, the large amount of DNS traffic gives
us a good chance to measure the false positive rate, which is very important for
real world usage. In the following, these infected hosts are used as ground truth
to analyze the result.

Fig. 4. Domain samples queried by the infected hosts.
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4.2 Result Analysis

In Table 3, we present the detection result of LagProber. TPr and FPr denote
the true and false positive rates, respectively. Dh denotes the ratio between the
number of detected infected hosts and the total number Ninf of active infected
hosts. As one host can generate multiple vectors, the metrics, i.e., TPr and FPr,
are calculated based on whether LagProber correctly or falsely classifies a host in
a certain time window (1 h). For example, if the vectors generated by an infected
host are clustered in a significantly large cluster, we identify a true positive. The
true negative, false positive and false negative can be identified similarly. Besides,
we also manually examine the classified vectors to ensure the malicious. This is
because that the infected hosts can also generate benign queries, and if they fail
to connect the C&C servers the positive vectors can not be labeled solely based
on the ground truth.

Table 3. Summary of the detection result.

2018-05-01 2018-05-02 2018-05-03 2018-05-04 2018-05-05 2018-05-06 2018-05-07

TPr 90% 82% 87.5% 90% 100% 100% 88.5%

FPr 3.4% 6.8% 2.9% 0.9% 0.9% 0.6% 0.8%

Dh 100% 100% 100% 100% 100% 100% 100%

Ninf 8 9 11 8 5 12 11

As shown in Table 3, the TPr of LagProber is about 90% in average. The false
negatives mainly emerges in the case that the number of vectors generated by
the infected hosts is too small to construct a significantly large cluster. Anyway,
LagProber can detect all the infected hosts (with Dh = 100%).
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Fig. 5. The relationship between the size and maliciousness of clusters.

The FPr of LagProber is about 2% in average. The false positives are mainly
caused by the small clusters being identified as significantly large by Grubbs’
test. These small clusters are accidentally by the Network Address Translation
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(NAT) routers in the monitored network when they query a sequence of distinct
NXDomains in a short period. In Fig. 5, we present the relationship between
the size and maliciousness of clusters. The abscissa axis represents the size of
clusters and the vertical axis denotes the ratio of malicious ones. When the size
of clusters is 5, the ratio of malicious ones is 90% and when the size exceeds
6, all of the clusters are malicious. Hence, to reduce the false positives, one can
simply set the threshold as 6 to identify the significantly large clusters.

In conclusion, LagProber can detect all the infected hosts with less false pos-
itive rate. This illustrates that the features extracted from the time lags can be
utilized to effectively detect the DGA-based malware. Besides, since most hosts
in our dataset are the NAT routers, LagProber can achieve a better performance
when processing the traffic generated from local or enterprise networks which
contain more personal computers.
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Fig. 6. System performance.

4.3 System Performance

In our experiment, we run LagProber on Ubuntu 12.04 with CPU Intel(R)
Xeon(R) CPU E5-2620 0 @ 2.00 GHz and 32 GB memory. As shown in Fig. 6,
our system spends about 25 min to analyze the traffics (about 24 GB in bro
DNS log format [2]) collected in May 1st, 2018. Since we rule out the repeatedly
queried domains in a single day, usage percentage of CPU raises up to 90% at
the beginning and then gradually decreases to about 9%. LagProber only stores
the vectors generated in an hour so that the memory usage is less and stable
(about 0.3%). In summary, when running on the traffic collected from a large
scale network, the CPU usage rate is 22.5% in average and the memory usage is
about 1 GB. All the results prove that LagProber has scalable performance.

5 Discussion

Limitation. The limitations of this work are as follows. First, the dataset only
contains few kinds of DGA-based malware families due to that it is not easy
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to find the real world traffic of DGA-based malware families with distinct time
lags. However, as we can see in Table 1, the time lag (0 s), of most malware
families is the same as dga-1 (Sect. 4.1), which indicates LagProber can detect
most of them. Second, the attacker can implement long time lags, which is more
similar with benign hosts, to evade our detection. In this case, a longer time
window can be used for accurate detection. Moreover, they have to spend much
more time to connect the C&C servers, and the utility of the infected hosts to
attacker is reduced or limited because the attacker can no longer command his
bots promptly and reliably.

Comparison. The most generally time-based features to detect DGA-based
malware are the periodicity of C&C connection and the change point of the
NXDomain traffic. First, for the periodicity-based detection approaches, multi-
ple C&C connections are needed to extract the features while time lags of the
NXDomains can be extracted in a single C&C connection. If the infected hosts
do not periodically connect the C&C servers, the periodicity-based approaches
are ineffective. Second, for change point detection approaches, it is difficult for
them to accurately detect DGA-based malware because of that the benign hosts
are also very likely to generate the suddenly increased traffics. Hence, the previ-
ous works [9,34] should utilize other evidences, like lexical or whois features for
accurate detection, while LagProber can achieve a low false positive rate merely
based on the features extracted from time lags. Last but not least, the features
extracted from time lags can be used compatibly with the periodicity, change
point or lexical-based detection. For example, when the periodicity or change
point is detected, one can also analyze the time lags to improve the accuracy.

6 Related Work

A wealth of researches have been conducted on detecting DGA-based malware.
They mainly utilize the lexical property of the generated domains. Antonakakis
et al. [8] introduce a system, Pleiades, to detect DGA bots in large scale network
by clustering the NXDomains with the similar character distribution generated
by the same DGA-based malware families. Sharifnya et al. [26] present a rep-
utation system to detect DGA botnets by periodically clustering DNS queries
with similar characteristics. Schiavoni et al. [25] present a system, Phoenix, to
track and fingerprint DGA botnets by clustering domains with similar character
distributions. Wang et al. [29] present a system, DBod, to detect DGA botnet by
searching for the similar set of NXDomains queried by the bots. Thomas et al.
[27] present a method to detect DGA domains by clustering the NXDomains with
similar character distributions queried by distinct recursive DNS servers. Yadav
et al. [32] introduce three metrics, i.e., K-L divergence, Jaccard Index and Edit
distance, to detect DGA domains sharing the same postfix or C&C IP addresses.
Yadav et al. improve their work [32] using NXDomains and temporal correlation
in [31]. Zhang et al. [34] present a system, BotDigger, to detect a single bot
by searching for the suddenly increasing and decreasing random generated SLD
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queries before and after C&C connection. Mowbrey et al. [22] present an app-
roach to detect a DGA bot by examining the anomaly domain length distribution
in a time slot. Luo et al. [20] and Truong et al. [28] present a set of lexical fea-
tures to separate a DGA domain from a popular one. Woddbridge et al. [30] and
Lison et al. [19] present deep learning methods to predict a DGA domain. While
existing solutions demonstrate their effectiveness in detecting malicious servers
or server infrastructures, they still can be significantly degraded by generating
readable domains [11].

Krishnan et al. [15] implement Threshold Random Walk algorithm [13] to
identify an infected host in a fast way without analyzing the lexical property.
Their approach relies on the assumption that an infected host is more likely to
query a previously unseen NXDomain than a benign host. They have to train
the parameters based on at least 24 hours traffic every time when they deploy
their approach. Besides, since the malicious samples are not easy to achieve,
the probability that an infected host queries a previously unseen NXDomain
is pretty difficult to be estimate. Conversely, LagProber detects infected hosts
needs no malicious samples.

Except the above DGA-based malware techniques, some botnet or malware
domain detection approaches without the lexical can also be utilized to detect
DGA domains. Manadhata et al. [21] utilize belief propagation algorithm on
graphical models to detect malicious domains. Lee et al. [17] develop a malicious
domain detection technique using the sequential correlation property of malicious
domains. Khalil et al. [14] and Rahbarinia et al. [24] present methods to infer
the suspicious domains which have strong relationship with the known malicious
ones. Bilge et al. [9] introduce EXPOSURE to detect malicious domains. They
extract 15 features and divide the features into Time-based, DNS answer-based,
TTL value-based and Domain name-based. Then, a detection model is trained
by using decision tree algorithm. Kwon et al. [16] present PsyBoG to detect
botnet by analyzing similar periodicity of the bots. The graph-based approaches
[17,21], which need plenty of samples and time to build and process a graph
structure, are resource consuming. The time-based approaches [9,16] rely on
longer term time patterns, e.g., active time in a month [9] or periodicity of C&C
connection. In contrast, LagProber detects DGA-based malware families in a
short term mode, i.e., the time lag between two NXDomain queries, and does
not rely on the periodicity.

The aforementioned systems are mostly limited by the lexical property, and
thus work only on random generated domains. LagProber is a novel general
detection system that does not have such limitations and can greatly complement
existing detection approaches.

7 Conclusion

In this work, we develop a system, LagProber, to detect DGA-based malware
that is independent of the lexical property of the generated domains. Our system
exploits a new essential property of DGA-based malware, i.e., hosts infected
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by the same malware family will exhibit similar patterns of the query time
lags of NXDomains. In our experimental evaluation real-world network traces,
LagProber shows excellent detection accuracy with a very low false positive rate
on normal traffic.
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