
Cryptographic Password Obfuscation

Giovanni Di Crescenzo(B), Lisa Bahler, and Brian Coan

Perspecta Labs, Basking Ridge, NJ 07920, USA
{gdicrescenzo,lbahler,bcoan}@perspectalabs.com

Abstract. We consider cryptographic program obfuscation of point
functions (i.e., functions parameterized by a secret s that, on input a
string x, return 1 if x = s and 0 otherwise). We achieve the following
notable results: (1) the first efficient point function obfuscator for arbi-
trarily large as well as very short secrets, provable without random oracle
assumptions; (2) the first efficient and provably-secure (under the exis-
tence of one-way permutations or block ciphers that have no theoretical
attack faster than exhaustive key search) real-life applications built on
top of these obfuscators, such as: (a) entity authentication via password
verification; (b) entity authentication via passphrase verification; and (c)
password management for multi-site entity authentication.

Keywords: Program obfuscation · Password authentication

1 Introduction

Program obfuscation is the problem of modifying a computer program so to
hide sensitive details of its code without changing its input/output behavior.
While this problem has been known for several years in computer science, only
in the last 15 years, researchers have considered the problem of provable pro-
gram obfuscation; that is, the problem of program obfuscation, where sensitive
code details are proved to remain hidden under a widely accepted intractability
assumption (such as those often used in applied cryptography). Early results in
the area implied the likely impossibility of constructing a single program capa-
ble of obfuscating an arbitrary polynomial-time program into a virtual black
box [3]. Moreover, most recent results show the possibility of constructing differ-
ent obfuscators for restricted families of functions, such as point functions (and
extensions of them), under more or less accepted hardness assumptions (see, e.g.,
[2,5,10,12,16,19]). Point functions can be seen as functions that return 1 if the

Supported by the Defense Advanced Research Projects Agency (DARPA) via U.S.
Army Research Office (ARO), contract number W911NF-15-C-0233. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation hereon. Disclaimer: The views and
conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of DARPA, ARO or the U.S. Government.

c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 497–512, 2018.
https://doi.org/10.1007/978-3-030-01950-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_29&domain=pdf

498 G. Di Crescenzo et al.

input value is equal to a secret value stored in the program, and 0 otherwise.
Although conceptually simple, point functions come with surprisingly interesting
applicability to real-life problems. As often suggested in the literature (see, e.g.,
[16,19]), point function obfuscation might be applicable to the password verifi-
cation function in very commonly used login/password authentication methods.

In this paper we carry out an exploration of this suggestion. Our main result is
a practical method for cryptographic password obfuscation under standard cryp-
tographic assumptions (and, specifically, without using a random oracle assump-
tion or a heuristic construction for a multilinear map), such as the existence of
a one-way permutation or, of a block cipher for which there are no theoreti-
cal attacks faster than exhaustive key search. Known practical methods include
the well-known password hashing method (i.e., at registration, server stores the
cryptographic hash of the user’s password; at authentication, server checks that
hash of the provided password is equal to the stored hash). This method was
analyzed in a cryptographic program obfuscation context by [16], but is however
only proved secure under the random oracle assumption. (Note that this assump-
tion, although often accepted by practitioners, has been declared as almost cer-
tainly false in its generality [9], and is especially troublesome in light of the less
and more recent attacks to widely considered or used hash functions such as
MD4, MD5 and SHA1). By now, there are several known obfuscators for point
functions that do not make the random oracle assumption, but they all assume
secrets much longer than typical passwords. The only exception and the closer
result in the literature to ours is an elegant construction of a perfectly one-way
function from [10], which could be used to construct a point function obfuscator
under the assumption of claw-free permutations. We note that this construction
is not practical as it is estimated 4–5 orders of magnitude less efficient than the
one we propose.

As all point function obfuscators in the literature use secrets of length about
equal to the factoring-type security parameter (e.g., 2048), to increase capa-
bility to commonly used passwords and passphrases as well as secrets of arbi-
trary lengths, we have designed two new methods: (a) a new hash function that
transforms these point function obfuscators in the literature so that they can
work with arbitrarily longer secrets; (b) a new (multi-bit-output) point function
obfuscator, which can work with secrets as short as the symmetric cryptography
security parameter (e.g., 128). Our obfuscators satisfy a computational notion
of functional correctness (i.e., no efficient adversary can find an input on which
the obfuscated program differs from the original program), and a rather strong
notion of obfuscation security (i.e., the obfuscated program is efficiently simu-
latable). An underlying technical contribution is the construction of an efficient
second-preimage-resistant extractor that is simultaneously a second-preimage-
resistant hash function, a pairwise almost-independent hash function, and has
efficient instantiations from a single efficient cryptographic primitive. Our effi-
ciency claims on this extractor and its resulting obfuscators are substantiated by
implementations and performance results on commodity computing resources.
Finally, we demonstrate that program obfuscators for point functions are usable
in the following real-life applications: password verification (obfuscating a server’s

Cryptographic Password Obfuscation 499

algorithm verifying if a client’s input string is equal to the client’s previously reg-
istered password), passphrase verification (as for password verification, but with
the variant that the client has registered a passphrase containing only structured
text); and password manager (obfuscating a server’s verification and retrieval
algorithms that verify the client’s master password or passphrase, and retrieve
a client’s previously registered password for a specific server).

In particular, we have modified code on an open-source password manager
(Pass, based on gpg2) to accommodate our (multi-bit-output) point function
obfuscator instead of their current cryptographic solution (whose obfuscation
properties can at best be proved using a random oracle assumption). The overall
resulting runtime of a specific password retrieval on the modified application
is less than 3% slower than the same operation on unmodified Pass. Solving
these password and passphrase obfuscation problems without using a random
oracle assumption are natural problems that have remained unsolved for decades.
Details of our real-life application results are discussed in AppendixA.

2 Definitions and Preliminaries

In this section we first recall basic definitions and slightly modify the theory-
oriented definition of program obfuscators into a practice-oriented definition that
better fits a large class of obfuscator implementations (including ours for point
functions) and where the correctness property only holds in a computational
sense (i.e., even against a possibly malicious polynomial-time adversary). Finally,
we discuss security notions for point function obfuscators.

Security Parameters. In our constructions and concrete security analysis, will
use two types of security parameters, described below:

1. the ‘factoring-based’ security parameter, a global parameter λf , currently set
to 2048, that is typically used to determine key lengths in asymmetric cryp-
tographic primitives (e.g., public-key encryption) proved secure under the
hardness of number theoretic problems related to factoring and/or discrete
logarithm problem; and

2. the ‘symmetric-cryptography’ security parameter, a global parameter λs, cur-
rently set to 128, that is most typically used to determine key/output lengths
in several symmetric cryptographic primitives (e.g., block ciphers).

Point Functions. We consider families of functions as families of maps from a
domain to a range, where maps are parameterized by some values chosen accord-
ing to some distribution on a parameter set. Let pF be a family of functions
fpar : Dom → {0, 1}, where Dom = {0, 1}n, and each function is parameterized
by value par from a parameter set Par = {0, 1}n, for some length parameter
n. We say that pF is the family of point functions if on input x ∈ Dom, and
secret value y ∈ Par, the point function fy returns 1 if x = y and 0 otherwise.
When we assume an efficiently samplable distribution of secret values y ∈ Par,
we define the (rounded) min entropy parameter of pF as the largest integer t

500 G. Di Crescenzo et al.

such that each y ∈ Par is sampled with probability ≤ 2−t. The family mbpF of
multi-bit-output point functions is defined as follows: on input x ∈ Dom, secret
value y ∈ Par, and output value z, the function fy returns z if x = y and 0
otherwise.

Program Obfuscators: Formal Definitions. To define a cryptographic pro-
gram obfuscator for a class of functions F , we consider a pair of efficient algo-
rithms with the following syntax. On input function parameters fpar, including
a description desc(f) of function f ∈ F , the obfuscation generator genO returns
generator output gpar. On input a description desc(f) of function f ∈ F , gener-
ator output gpar, and evaluator input x, the obfuscation evaluator evalO returns
evaluator output y.

Informally, we would like to define an obfuscator for the class pF of point
functions as any such pair of algorithms satisfying some functionality correct-
ness property (i.e., the obfuscated program computes the same function as the
original program), some efficiency property (i.e., the obfuscated program is not
much slower than the original program), and some obfuscation security property
(i.e., the obfuscated program hides any sensitive information about the original
program which is not computable by program evaluation). Here, we actually con-
sider a slightly relaxed notion of the functionality correctness property, according
to which the obfuscated program can return an output different from the origi-
nal program for some of the inputs; however, these inputs are hard to find, even
to an efficient algorithm that has access to the program’s secret value. Further-
more, we discuss some of the security notions in the literature, and eventually
formally define the strongest known notion (implicit in [3] and saying, informally
speaking, that any efficient adversary’s view of the obfuscated program can be
efficiently simulated and thus the adversary learns nothing more than an upper
bound on the program size), specialized to the class of point functions pF with
secret distributions having high min-entropy. We now proceed more formally.

We say that the pair (genO, evalO) is a cryptographic program obfuscator for
the class pF of point functions if it satisfies the following:

1. (Computational correctness): For any fs in pF , with function parameters
fpar = (s, desc(pF)), and any efficient algorithm A, the event fs(x′) �= y
holds with probability δ, for some negligible (or very small) δ, where x′, y are
generated by the following probabilistic steps:

• gpar ← genO(fpar),
• x′ ← A(gpar, fpar),
• y ← evalO(gpar, x′).

2. (Polynomial Blowup Efficiency): There exists a polynomial p such that for all
fs in pF , the running time of evalO(gpar, ·) is ≤ p(|fs|), where |fs| denotes
the size of the (smallest) boolean circuit computing fs.

3. (Adversary view simulation security): Given any high min-entropy distribu-
tion D returning an n-bit secret, there exists a polynomial-time algorithm Sim
such that for any function fs, |s| = n, in the class pF of point functions, with
black-box access to fs such that for all fs in pF with parameters fpar, the
distributions Dview and Dsim are computationally indistinguishable, where

Cryptographic Password Obfuscation 501

• Dview = {s ← D; gout ← genO(s, desc(pF)) : gout},
• Dsim = {s ← D; gout ← Sim(1|s|, desc(pF)) : gout}.

Other security notions considered in the literature include adversary output
black-box simulation (where the simulator has also access to a black-box com-
puting the program [3] and targets simulating the adversary’s output bit), real-
vs-random indistinguishability (where no efficient adversary can distinguish the
obfuscation of the function f from an obfuscation of a random function in the
class F) [5], and indistinguishability obfuscation (where no efficient adversary
can distinguish the obfuscation of any two circuits computing the same func-
tion f) [3]. We note that an obfuscator satisfying the adversary view black-box
simulation security notion also satisfies these latter 3 security notions.

Known Point Function Obfuscators. The obfuscator in [16] for the family of
point functions satisfies adversary view black-box simulation under the random
oracle assumption. This obfuscator essentially consists of computing a crypto-
graphic hash of the secret, similarly as typically done for passwords in real-life
systems. A previous result of [7], although formulated as a oracle hashing scheme,
can be restated as an obfuscator satisfying a strong variant of real-vs-random
indistinguishability under the Decisional Diffie Hellman assumption. The obfus-
cator in [19] satisfies adversary output black-box simulation under the existence
of a strong type of one-way permutations. Moreover, one of the obfuscators
in [5], based on any deterministic encryption scheme, satisfies real-vs-random
indistinguishability, and has several instantiations. This follows as deterministic
encryption schemes can be built using the hardness of the learning with rounding
problem [20] or the existence of lossy trapdoor functions [6], and the latter have
been built using any one of many group-theoretic assumptions (see, e.g., [13]).
Some of the resulting obfuscators have efficient implementations [12]. Finally,
an obfuscator was given in [2] using the hardness of the learning with error
problem.

All results mentioned so far either make the random oracle assumption or
work for secret distributions not significantly different than uniform. The only
obfuscator working for arbitrary secret distributions of high min-entropy can be
obtained using a result from [10] on perfectly one-way functions, constructed
assuming the existence of claw-free permutations. This result is far from having
an efficient implementation.

Our goal in the rest of this paper is to show an obfuscator for point functions
that works for arbitrary secret distributions of high min-entropy, without making
the random oracle assumption, and resulting in an efficient implementation.

Families of One-Way α -Permutations. The term efficient is used for run-
ning time in both a practical and theoretical sense, as needed. We say that a
family of functions {F} is efficiently samplable if there exists an efficient algo-
rithm randomly choosing a function F from the family, and is efficiently com-
putable if there exists an efficient algorithm that evaluates any function F from
the family. We say that a family of functions {F}, is a family of α -permutations
if the probability that, for a randomly chosen x, F (x) has > 1 preimages, is < α.

502 G. Di Crescenzo et al.

Families of Pairwise-Independent Hash Functions. We say that a fam-
ily of hash functions {Hm,n}, where Hm,n : {0, 1}m → {0, 1}n is pairwise δ
-independent if for any x0 �= x1 ∈ {0, 1}m, and any y0, y1 ∈ {0, 1}n, it holds that
Prob[H(x0) = y0 ∧ H(x1) = y1] ≤ δ+2−2n. We say that family {Hm,n} is pair-
wise independent if it is is pairwise δ-independent, for δ = 0. Constructions for
pairwise-independent hash functions include a random one-degree polynomial in
a Galois field or a random one-degree polynomial modulo a prime [11], where by
a random polynomial we denote a polynomial with coefficients randomly cho-
sen in their domain set. All these constructions are efficiently sampleable and
efficiently computable.

Families of Second-Preimage-Resistant Hash Functions. This crypto-
graphic primitive was introduced in [17], under the name of universal one-way
hash functions, and have also been called target-collision-resistant hash func-
tions since [4] or second-preimage-resistant hash functions. We say that a family
of functions {h |h : {0, 1}a → {0, 1}b} is second-preimage-resistant over {0, 1}a

if it satisfies the following three properties: (1) h is efficiently sampleable from
its family; (2) every h in the family is efficiently computable; and (3) no efficient
adversary can win, except with very small probability, in the following game:
first, the adversary picks an input z, then a random function h is sampled from
its family; finally, the adversary, given h(z), wins the game if it finds an input x
such that h(x) = h(z). The first constructions for such families of functions were
proposed in [17], based on families of one-way permutations with varying domain
sizes and any family of pairwise-independent hash functions. Later, more prac-
tical constructions were proposed in [4,18], based on collision-intractable hash
functions. Generally speaking, second-preimage-resistant hash functions may or
may not satisfy pairwise-independence properties.

Randomness Extractors. The statistical distance between two distributions
D1,D2 over the same space S is defined as sd(D1,D2) = 1

2 Σx∈S |Prob[x ←
D1] − Prob[x ← D2] |. We say that distributions D1,D2 are δ-close if it holds
that sd(D1,D2) ≤ δ. We say that a distribution D is δ -close to uniform, or,
briefly, δ-uniform, if it holds that sd(D,U) ≤ δ, where U denotes the uniform
distribution over the same space S. The min-entropy of a distribution D is
defined as H∞(D) = minx{− log2(Prob[x ← D])}. A function Ext: {0, 1}a ×
{0, 1}b → {0, 1}c is called a (k, ε)-extractor if for any distribution D on {0, 1}a

with min-entropy at least k, the distribution N(D) is ε-uniform, where N(D) =
{x ← D; e ← {0, 1}b; y = Ext(x, e) : (e, y)}. The leftover hash lemma [14]
says that if {Hm,n} is a family of pairwise-independent hash functions, value
x is drawn according to a distribution D such that H∞(D) ≥ k, and n ≥
k − 2 log(1/ε), then the function Ext(x,Hm,n) defined as y = Ext(x,Hm,n) =
Hm,n(x) is a (k, ε)-extractor. By inspection of the proof in [15], we see that it
can be directly extended to families of pairwise δ-independent hash functions,
as follows.

Cryptographic Password Obfuscation 503

Lemma 1. For any δ > 0, if {Hm,n} is a family of pairwise δ-independent hash
functions, value x is drawn according to a distribution D such that H∞(D) ≥
k, and n ≤ k − 2 log(1/ε), for some ε ≤ (1/2) log(1/δ), then the function
Ext(x,Hm,n) defined as y = Ext(x,Hm,n) = Hm,n(x) is a (k, ε)-extractor.

We say that a function Ext: {0, 1}a × {0, 1}b → {0, 1}c is a second-preimage-
resistant (k, ε)-extractor if it is both a second-preimage-resistant hash function
over {0, 1}a and a (k, ε)-extractor.

3 An Efficient Second-Preimage-Resistant Extractor

In this section we construct an efficient second-preimage-resistant extractor, or
actually a family of hash functions which satisfies the following desirable com-
bination of functionality, efficiency and security properties:

1. it achieves arbitrarily large compression, in that it maps an arbitrarily-long
input string to a fixed-length output string;

2. it is an almost pairwise-independent hash function;
3. it is a one-way function with second-preimage resistance;
4. in addition to elementary operations, it only uses, as a black-box, a hash

function satisfying above properties 2 and 3, and achieving small and fixed
compression (specifically: it maps a fixed-length input string to a fixed-length
output string, where the difference between the input string’s length and the
output string’s length can be any small constant ≥ 1).

Properties 1 and 4 (resp., 2 and 3) are used to satisfy functionality correctness
and efficiency (resp., security) requirements. The closest constructions to ours
from the literature only satisfy 3 out of 4 of the listed properties, as follows: two
constructions in [17] missed properties 1 or 4, and a construction from [4,18]
missed property 2.

Formally, we achieve the following

Theorem 1. Let tF,sample (resp., tF,eval) denotes the running time to sample
(resp., evaluate) a function F . Let {aF | aF : {0, 1}b → {0, 1}b} be a family
of one-way α-permutations, and let {piH | piH : {0, 1}a → {0, 1}b} be a family
of pairwise δ-independent hash functions. There exists (constructively) a fam-
ily {sprH | sprH : {0, 1}�(a−b) → {0, 1}b} of second-preimage-resistant (k, ε)-
extractors such that

– b ≤ k − 2 log(1 + ε) and ε ≤ (1/2) log(1/δ′), for δ′ = �(δ + α)
– tsprH,sample = O(�(tpiH,sample) + taF,sample), and
– tsprH,eval = O(�(taF,eval + tpiH,eval + tpiH,sample) + taF,sample).

The function sprH obtained in the proof of Theorem 1 will be applied to obtain
the following two important new results: (1) in Sect. 4, it will be used in combina-
tion with the obfuscators from [5–7,13], and [19], to design efficient obfuscators
for point functions with secret length higher than the factoring-type security

504 G. Di Crescenzo et al.

parameter (e.g., 2048); (2) in Sect. 5 it will be used to design an efficient obfus-
cator for multi-bit-output point functions with secret length greater than or
equal to the symmetric-cryptography security parameter (e.g., 128). The rest of
this section is devoted to proving Theorem 1.

Informal Description of Function sprH: Our goal is to define a family of
functions, denoted as sprH, that satisfies the above properties 1–4. One higher-
level view of our construction looks similar to the linear hash construction in
[4,18], and its lower-level component looks similar to a function from [17]. How-
ever, some technical differences with these papers actually allow us to achieve
all 4 desired properties; most importantly:

1. sprH processes an arbitrarily long input by repeatedly applying an inner
function with the same domain and codomain sizes (instead, in [17] domain
and codomain sizes vary). This approach is important to achieve properties
1 and 4.

2. in sprH the inner function used at each iteration is both a second-preimage-
resistant function and a pairwise almost-independent hash function (as
opposed to only a collision-intractable hash function, as in [4,18]). This app-
roach is important to achieve properties 2 and 3.

Formal Description: Let desc(F) denote a conventional encoding of function
F , and let a, b denote positive integers such that a > b and a − b ≥ 1 is a
small constant. The construction for sprH uses a pairwise δ-independent hash
functions piH : {0, 1}a → {0, 1}b, and a one-way α-permutations aP : {0, 1}b →
{0, 1}b. We define function sprH : {0, 1}∗ → {0, 1}b, as follows.
Input to sprH: string x = x1| · · · |x�, where xi ∈ {0, 1}a−b, for i = 1, . . . , �.
Instructions for sprH:

1. Set u0 = 0b

2. Randomly sample a one-way α-permutation aP
3. For i = 1, . . . , �,

randomly sample a pairwise δ-independent hash function piHi

compute vi = aP (ui−1|xi) and ui = piHi(vi)
4. Return: (u�, desc(aP), desc(piH1), . . . ,, desc(piH�)).

The running times tsprH,sample and tsprH,eval claimed in Theorem 1 are veri-
fied by algorithm inspection, observing that sprH can compress arbitrarily long
inputs into b-bit outputs, and that it invokes � times a single function piH(aP (·))
compressing a-bit outputs to b-bit outputs. In what follows, we show that sprH
is a second-preimage-resistant (k, ε, δ′)-extractor with the parameters in Theo-
rem 1, by showing that it is both a second-preimage-resistant hash function over
{0, 1}a and a pairwise δ′-independent hash function.

The proof that sprH is a second-preimage-resistant hash function directly
follows by applying results in [4,17,18], as follows. First, we observe that the
function obtained by cascading a one-way α-permutation aP with a pairwise
δ-independent hash function piH, is a second-preimage-resistant hash function.

Cryptographic Password Obfuscation 505

This follows directly by Lemma 2.2 in [17], which proves the exact same result
when α = 0, δ = 0 and a − b = 1. We observe that no technical difficulty is
encountered in extending this proof to values of α, δ that are negligible or very
small and a value of a − b that is a small constant (or even logarithmic in the
security parameter). Because of this observation, we note that sprH can be
considered as the linear hash iterated application of a second-preimage-resistant
hash function, as in the linear hash construction from [4,18]. In particular, we
can apply Theorem 5.3 from [4] which proves our desired statement; i.e., the
linear hash construction transforms a second-preimage-resistant hash function
from a-bit strings to b-bit strings into a second-preimage-resistant hash function
from arbitrary-length strings to b-bit strings.

The proof that sprH is a pairwise δ′-independent hash function is obtained
by induction over �. The base case directly follows by observing that the assump-
tions that function piH1 is pairwise δ-independent and that function aP is an
α-permutation imply that the composed function piH1(aP (·)) is a pairwise δ′-
independent hash function, for δ′ = α + δ. The inductive case follows by com-
bining the induction hypothesis with the fact that at the �-th iteration, function
sprH computes u� using function piH�(aP (·)) for an independently chosen pair-
wise δ-independent hash function piH�.

Implementation: Primitive Setting. Families of pairwise-independent hash
functions piHi can be implemented as in Sect. 2. Function aP can be instantiated
in 3 ways:

1. setting n = 2048, and using exponentiation modulo a prime; that is,
aPg,p(x) = gx mod p, where publicly available parameters p, g are as follows:
p is an (n + 1)-bit prime and g is a generator of Z∗

p;
2. using a length-preserving collision-intractable hash function cihk : {0, 1}n →

{0, 1}n for which no theoretical attacks (faster than birthday attacks) are
known, and assuming such a function is a one-way α-permutation, for a value
α negligible in n or very small; that is, aPcih,k(x) = cihk(x);

3. as a block cipher bc : {0, 1}κ × {0, 1}n → {0, 1}n for which no theoretical
attacks (faster than exhaustive search attacks) are known, to be run on a
fixed, but randomly chosen, input block r, and assuming that the resulting
function bc(·, r) is a one-way α-permutation over the set of block cipher keys,
for α negligible in n or very small; that is, aPbc,r(x) = bc(x, r).

In our implementation, we used the 3rd option for efficiency reasons, and based
on the observation that function aPbc,r(x), mapping the set of keys of the block
cipher to the cipher’s output, is indeed expected to be a one-way α-permutation.
This observation is based on the fact that if function aPbc,r(x) were not close to
a one-way α-permutation, a theoretical attack exhaustively searching for any of
the colliding keys would be possible. Note that such an attack would be faster
than exhaustive key-search, thus giving a theoretical break of the block cipher.

506 G. Di Crescenzo et al.

4 Obfuscators for Point Functions with Larger Secrets

In this section we show how to obtain point function obfuscators where the
obfuscated secret value can have length and min entropy parameters arbitrar-
ily greater than the factoring-type security parameter, starting from a point
function obfuscator where the obfuscated secret value has fixed length and min-
entropy parameter, which we already know how to build. Formally, we obtain
the following

Theorem 2. Let �a, ea, �u, ε be integers such that �u + 2ε ≤ ea ≤ �a and
ε ≥ λs, let sprH be a second-preimage-resistant (�a, ε)-extractor, and let
(genOu,evalOu) be a cryptographic program obfuscator for the family of point
functions with ε-uniformly distributed �u-bit secret values. Then there exists (con-
structively) a cryptographic program obfuscator obfuscator (genOa,evalOa) for
the family of point functions with respect to �a-bit secrets drawn from any dis-
tribution of min-entropy ea.

An important consequence of Theorem 2 is that any one of the point function
obfuscators in [7], [5,6,13], or [19] can be extended to obtain a point function
obfuscator that works for secret values with arbitrarily larger length and drawn
from arbitrary distributions of min entropy larger than the factoring-type secu-
rity parameter.

Informal and Formal Descriptions: The basic idea of the transformation
underlying Theorem 2 follows a ‘hash-and-obfuscate’ paradigm, analogously to
the much studied ‘hash-and-sign’ paradigm used for the design of digital signa-
ture schemes for large messages. This paradigm goes through two steps: first,
the input is hashed using a second-preimage-resistant extractor, which we will
implement using the construction sprH from Sect. 3; then, the extractor’s out-
put is processed through the obfuscator with fixed length parameter, which can
be instantiated using any one of the schemes from the literature (e.g., [5,5–
7,13,20], [10] or [19].) The resulting scheme satisfies computational functionality
correctness, and the same adversary view simulation obfuscation notion as the
used obfuscator for fixed-length secrets. We now proceed more formally. The
construction for (genOa,evalOa) uses the family of efficiently samplable func-
tions sprH : {0, 1}∗ → {0, 1}b from Sect. 3, which are simultaneously second-
preimage-resistant hash functions and pairwise δ′-independent extractors, and an
obfuscator (genOu,evalOu) for the family of point functions with length param-
eter �u and secret values with almost uniform distribution.
Input to genOa: parameters 1eu , 1�u , ε, secret value s ∈ {0, 1}�a

Instructions for genOa:

1. Randomly sample function sprH : {0, 1}�a → {0, 1}�u

2. Compute v = sprH(s)
3. Compute outu = genOu(v)
4. Return: outa = (desc(sprH), outu).

Cryptographic Password Obfuscation 507

Input to evalOa: input value x ∈ {0, 1}�a and the output from genOa, containing
the description desc(sprH) of function sprH and the output outu from genOu.

Instructions for evalOa:

1. Compute v′ = sprH(x)
2. Return: evalOu(v′).

Proofs are omitted due to space restrictions.

5 Obfuscators for Multi-bit-output Point Functions
With Shorter Secrets

In this section we describe an obfuscator, denoted as (genOmb, evalOmb), for
the family of multi-bit-output point functions, where secrets can have a shorter
length parameter than in our previous implementations, which implies applica-
bility to the obfuscation of passphrases and even passwords. More specifically,
this obfuscator differs from analogue results in the literature and in previous
sections, in the following properties:

1. it works for a generalized type of point functions: multi-bit-output point func-
tions, whose output can be a long string, instead of a bit;

2. it works for a length parameter that can be arbitrarily chosen as ≥
the symmetric-cryptography security parameter (i.e., 128), instead of the
factoring-type security parameter (i.e., 2048);

3. its obfuscation property can be based on the security of a symmetric cryp-
tography primitive (i.e., a block cipher or a cryptographic hash function),
instead of a number theory problem typically applied to construct an asym-
metric cryptography primitive.

Formally, we achieve the following

Theorem 3. Let �o, �s, k, ε be integers such that k ≤ �s. Also, let sprH be
a second-preimage-resistant (k, ε)-extractor and let (KeyGen, Enc, Dec) be a
secure symmetric encryption scheme. Then there exists (constructively) a cryp-
tographic program obfuscator (genOmb, evalOmb) for the family of multi-bit out-
put point functions mbpF with �o-bit outputs and �s-bit secrets drawn from any
distribution of min-entropy k.

We note that in the above theorem we are trading off some slightly, but not
significantly, reduced confidence in the security assumptions (as indicated in
item 3 of the above list), to achieve increased functionality power (as indicated in
items 1 and especially item 2 of the above list). Indeed the property in item 1 can
be obtained without resorting to symmetric cryptography primitives (see, e.g.,
[8]), but this comes with decreased obfuscator’s efficiency. The (most interesting)
property in item 2 was unknown and is the one that allows applications to
passphrase and password obfuscation, as further detailed in AppendixA.

508 G. Di Crescenzo et al.

Formal Description: Let | denote string concatenation, and let sprH denote
a second-preimage-resistant (k, ε)-extractor (such as the one constructed in
Sect. 3). Also, let (KeyGen, Enc, Dec) be a symmetric encryption scheme with
the following syntax: on input a unary string 1n denoting the symmetric encryp-
tion security parameter, KeyGen returns an n-bit random key; on input key
and message m, encryption algorithm Enc returns ciphertext c; on input key
and ciphertext c, decryption algorithm Dec returns message m. Our construc-
tion of (genOmb, evalOmb) combines the extractor sprH with the encryption
scheme (KeyGen, Enc, Dec), as follows.
Input to genOmb: security parameters 1n, 1n0 , 1ε, entropy parameter k, secret
value s ∈ {0, 1}�s , output value w ∈ {0, 1}�o

Instructions for genOmb:

1. uniformly and independently choose r ∈ {0, 1}n0

2. compute key = sprH(r|s), where key ∈ {0, 1}n

3. compute v = Enc(key, w|0n0)
4. set gpar = (r, v) and return: gpar.

Input to evalOmb: security parameters 1n, 1n0 , 1ε, entropy parameter k, the pair
(r, v) returned by genOmb, and input value x ∈ {0, 1}�

Instructions for evalOmb:

1. compute key′ = sprH(r|x), where key′ ∈ {0, 1}n

2. compute (w′|w′′) = Dec(key′, v)
3. if w′′ = 0n0 return w′ else return 0

Proofs and performance analysis are omitted due to space restrictions.

6 Conclusions

We showed for the first time how to efficiently obfuscate passwords, passphrases
and password managers, without a random oracle assumption. Our obfuscator
can work with passwords and passphrases of practical lengths. Even if we expect
practitioners to continue using the simpler to implement construction based on
cryptographic hashing of a password, our construction gives confidence that the
impact of any future attacks to cryptographic hash functions can be significantly
limited by a simple protocol design change.

A Applications: How to Obfuscate Password Verification,
Passphrase Verification and Password Managers

In this section we show how to use the obfuscators from previous sections to
obfuscate, using standard cryptographic assumptions (and specifically not using
the random oracle assumption), software applications commonly used in real-life,
such as password verification, passphrase verification, and password managers.

Cryptographic Password Obfuscation 509

Obfuscation of Password Verification. Entity authentication based on
shared secrets is one important class of system applications that seem to sig-
nificantly rely on obfuscation, as we now explain. Consider the typical scenario
of a client and a server who use a secret to let the server successfully register
and later authenticate a client, as follows:

1. registration: the client gives an obfuscated version of the secret verification
program to the server, thus not revealing the secret to any server intruder;

2. authentication: the client securely sends the secret to the server, which runs
the obfuscated version of the secret verification program to verify that the
received secret is the same as the one in the obfuscated verification program.

One important case is when such secret is the client’s password. Indeed, entity
authentication via password verification, has often been used as an application
motivating the design of program obfuscators for point functions. Note that in
this case, the verification program computes precisely a point function, where
the secret value is the client’s password stored during the registration phase,
and the obfuscated program’s input is the client’s string entered during the
authentication phase. As mentioned before, point function obfuscators in the
literature are either proved secure under the random oracle assumption or for
secret points of length about equal to the factoring-type security parameter (i.e.,
2048 bits, which is much more than the length of real-life passwords). When
using passwords with ASCII characters including lowercase letters, uppercase
letters, numbers and special symbols (for a total of 96 characters), a password
of 20 uniformly and independently chosen characters will contain just below
132 bits of entropy. Note that passwords of 20 or more characters have already
widespread usage, for instance, in WiFi access to residential networks in private
homes. Our solution, which works only when passwords are chosen by the user,
can be defined as the hashing-based scheme from [16], with the only difference
that the cryptographic hash function H, which could be implemented as SHA2
or SHA3, is actually replaced by the hash function sprH from Sect. 3, where the
one-way α-permutation is instantiated using a block cipher like AES, as already
described there. With this instantiation, the provable properties of hash function
sprH only depend on the (arguably reasonable) assumption that a block cipher
like AES (when parameterized by a random input block x and seen as a function
F (·, x) mapping the key k to an output y = F (k, x)) is a one-way α-permutation,
for some small α. Following the discussion at the end of Sect. 3, this assumption
is also supported by the lack of a known theoretical attack faster than exhaustive
key-search for AES.

Obfuscation of Passphrase Verification. Our solution for password verifica-
tion is directly applicable to passphrase verification, where a meaningful English
sentence, with lower entropy per character, is used as a passphrase. Various tech-
niques have been proposed in the literature to estimate the average number of
entropy bits per character in an English passphrase (typically, a number between
0.5 and 3), and may vary depending on the specific assumptions made on the
used character sequences. After estimating the average number v of entropy

510 G. Di Crescenzo et al.

bits per character in a passphrase taken from a desired set of sequences, a sys-
tem designer could augment passphrase choice requirements by requiring that a
passphrase has length at least q, satisfying qv ≥ 128.

Obfuscation of a Password Manager. Our solution for password verifica-
tion is also directly applicable to password managers, another pervasive real-
life authentication application, as today the number of password-based services
used by the average computer user has increased dramatically. We have evalu-
ated some password manager packages for suitability for our experiments with
point function obfuscators, and chosen Pass, a well-known, open-source, pass-
word manager [1]. The cryptography currently used in Pass can be seen as a
natural extension of the obfuscator from [16] for point functions, to an obfuscator
for the password manager’s password derivation program, under the assumption
that the used collision-resistant hash function behaves like a random oracle. We
have augmented this password manager with an option that obfuscates the pass-
word manager’s password derivation program without making a random oracle
assumption. Our option processes the user’s passphrase or password using our
multi-bit-output point function obfuscator from Sect. 5, which is based on the
hash function from Sect. 3, and only makes the previously discussed assumption
on a block cipher with unknown key. Recall that our multi-bit-output obfus-
cator from Sect. 5 could work in two modes: a symmetric or an asymmetric
mode, depending on whether the multi-bit output string was encrypted using
symmetric or asymmetric encryption. Because Pass already encrypts the web-
site passwords using asymmetric encryption, we could use our multi-bit-output
obfuscator in asymmetric mode, and were able to significantly reduce code com-
plexity by focusing our software production on augmenting Pass with the use of
our hash function from Sect. 3.

Performance Analysis. We used (here and in the rest of the paper) a Dell
2950 processor (Intel(R) Xeon(R) 8 cores: CPU E5405 @ 2.00GHz, 16 GB RAM),
without parallelism. We performed two types of performance analysis. In Table 1
we compare the running time of the cryptographic hash function SHA1 imple-
mented under Pass against the running time of our proposed replacement: i.e.,

Table 1. Performance of SHA1 against our hash function sprH.

Input length Output length SHA1 running time sprH running time

64 128 0.0000 s 0.0001 s

128 128 0.0000 s 0.0001 s

192 128 0.0001 s 0.0004 s

256 128 0.0001 s 0.0007 s

320 128 0.0001 s 0.0010 s

384 128 0.0001 s 0.0014 s

448 128 0.0001 s 0.0017 s

512 128 0.0001 s 0.0020 s

Cryptographic Password Obfuscation 511

our cryptographic hash function sprH. In Table 2 we compare the running times
of Pass procedures against the running time of our newly proposed option: i.e.,
Pass with our multi-bit-output point function obfuscator.

Our second set of performance results is about a metric, denoted as time
ratio, and defined as the ratio of the running time of Pass while using SHA1
to the running time of Pass while using our hash function. Because Pass is
essentially performing not much computation other than running calls to gpg2,
we performed our measurements directly on gpg2 calls.

Table 2. Performance of Pass with SHA1 against Pass with our hash function sprH

Type of
master secret

Estimated
entropy

Time ratio on
gpg2 -X –gen-key

Time ratio on
pass insert <site>

Time ratio on pass
-X show <site>

Password 132 0.8756 1 0.9783

Passphrase 100 0.9606 1 0.9363

In Table 2, we consider the three main commands that can be run with Pass:
key generation, website password insertion and website password recovery. In
the first row, we used a master password of 20 characters uniformly and inde-
pendently chosen from a set of 96 ASCII characters. In the second row, we used
a master passphrase of 56 characters from a meaningful English sentence, which
was roughly estimated to have about 100 bits of entropy. As clear from the last
3 columns of the table, our modified version of Pass only slows down Pass by
very small percentages, while offering a password manager obfuscation without
a random oracle assumption.

References

1. https://www.passwordstore.org/
2. Bahler, L., Di Crescenzo, G., Polyakov, Y., Rohloff, K., Cousins, D.B.: Practi-

cal implementations of lattice-based program obfuscators for point functions. In:
International Conference on High Performance Computing & Simulation, HPCS
(2017)

3. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

4. Bellare, M., Rogaway, P.: Collision-resistant hashing: towards making UOWHFs
practical. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052256

5. Bellare, M., Stepanovs, I.: Point-function obfuscation: a framework and generic
constructions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol.
9563, pp. 565–594. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49099-0 21

https://www.passwordstore.org/
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/BFb0052256
https://doi.org/10.1007/978-3-662-49099-0_21
https://doi.org/10.1007/978-3-662-49099-0_21

512 G. Di Crescenzo et al.

6. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic
encryption, and efficient constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 19

7. Canetti, R.: Towards realizing random oracles: hash functions that hide all partial
information. Proc. CRYPTO 97, 455–469 (1997)

8. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 28

9. Cannetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: Proceedings of 30th ACM STOC, pp. 209–218 (1998)

10. Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash
functions (preliminary version). In: Proceedings of 30th ACM STOC, pp. 131–140
(1998)

11. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)

12. Di Crescenzo, G., Bahler, L., Coan, B., Polyakov, Y., Rohloff, K., Cousins, D.B.:
Practical implementations of program obfuscators for point functions. In: Interna-
tional Conference on High Performance Computing & Simulation, HPCS (2016)

13. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13013-7 17

14. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

15. Impagliazzo, R., Zuckerman, D.: How to recycle random bits. In: 30th IEEE FOCS
1989, pp. 248–253 (1989)

16. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfusca-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 20–39. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-
3 2

17. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Proceedings of 21st ACM STOC 1989, pp. 33–43 (1989)

18. Shoup, V.: A composition theorem for universal one-way hash functions. In: Pre-
neel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer, Hei-
delberg (2000). https://doi.org/10.1007/3-540-45539-6 32

19. Wee, H.: On obfuscating point functions. In: Proceedings of 37th ACM STOC
2005, pp. 523–532 (2005)

20. Xie, X., Xue, R., Zhang, R.: Deterministic public key encryption and identity-
based encryption from lattices in the auxiliary-input setting. In: Visconti, I., De
Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 1–18. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32928-9 1

https://doi.org/10.1007/978-3-540-85174-5_19
https://doi.org/10.1007/978-3-540-78967-3_28
https://doi.org/10.1007/978-3-642-13013-7_17
https://doi.org/10.1007/978-3-540-24676-3_2
https://doi.org/10.1007/978-3-540-24676-3_2
https://doi.org/10.1007/3-540-45539-6_32
https://doi.org/10.1007/978-3-642-32928-9_1

	Cryptographic Password Obfuscation
	1 Introduction
	2 Definitions and Preliminaries
	3 An Efficient Second-Preimage-Resistant Extractor
	4 Obfuscators for Point Functions with Larger Secrets
	5 Obfuscators for Multi-bit-output Point Functions With Shorter Secrets
	6 Conclusions
	A Applications: How to Obfuscate Password Verification, Passphrase Verification and Password Managers
	References

