
Verifiable Single-Server Private
Information Retrieval

Xingfeng Wang1 and Liang Zhao1,2(B)

1 College of Cybersecurity, Sichuan University, Chengdu, China
xingfengW@yeah.net, zhaoliangjapan@scu.edu.cn

2 HIFIVE Lennon Laboratory, Chengdu HiFive Technology Co., Ltd.,
Chengdu, China

Abstract. Single-server Private Information Retrieval (SPIR) allows a
client to privately retrieve some data from a database stored on a server.
While many SPIR schemes exist, these previous SPIR schemes are gen-
erally under the honest-but-curious server model. This model however is
not suitable for many real world scenarios such as involving the untrusted
cloud server. In this paper, we first propose an SPIR scheme that is based
on the learning with (binary) errors assumption under the honest-but-
curious server model. Specifically, compared with some previous SPIR
schemes, our proposal provides a low communication complexity. Then,
according to the above warm-up scheme, we introduce a Verifiable SPIR
(VSPIR) scheme under the malicious server model where the server may
provide some fraudulent answers. To the best of our knowledge, our
scheme is the first practical VSPIR scheme that employs the probabilistic
verification process. Finally, for our proposal, we present the theoretical
analyses of the properties (i.e., correctness, privacy and security), and
give the detailed implementation results.

Keywords: Learning with errors
Single-server private information retrieval
Probabilistic verification process

1 Introduction

1.1 Background

In the age of Internet accessing remote database is common and information
is the most sought after and costliest commodity. In such a situation it is very
important not only to protect information but also to protect the identity of the
information that a user is interested in [11]. Private Information Retrieval (PIR)
schemes are cryptographic schemes that enable users to retrieve records from
public databases while keeping private the identity of the retrieved records [2].
In PIR schemes, a client is allowed to retrieve an entry from a server in possession
of a database without revealing which entry is retrieved. The concept of PIR was
first proposed in 1995 by Chor et al. [4]. There is a trivial solution consisting
c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 478–493, 2018.
https://doi.org/10.1007/978-3-030-01950-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_28&domain=pdf

Verifiable Single-Server Private Information Retrieval 479

in sending the entire database regardless of the query. This solution has a high
communication complexity of the database’s size tb(at least log tb bits). Later,
some schemes [3,16,18]that send less data have been proposed. Specifically, the
Fully Homomorphic Encryption (FHE) and even the SomeWhat Homomorphic
Encryption (SWHE) proposed by Gentry is known to imply the PIR scheme [3].

Moreover, in some practical scenarios, the server may provide the incorrect
answers due to malicious behaviors or accidental failures. These scenarios can
be defined as the malicious server model. Under this model, a PIR scheme can
work effectively if the client should be able to identify the incorrect answers with
overwhelming probability. This implies that how to verify the returned answers
is a significant problem for a PIR scheme. Actually, for the honest-but-curious
server model used in the previous work, it is assumed that the server is honest,
which means that he follows the predefined scheme. From this point, this model is
not very practical compared with the malicious server model. Then, constructing
a PIR scheme that is secure in the malicious server model is well motivated and
has been put forth by Beimel [2].

1.2 Related Work

In [18], Zhang and Safavi-Naini gave a verifiable multi-server PIR scheme where
the servers may be malicious and provide some fraudulent answers. This scheme
is an unconditionally t-private and computationally secure k-server verifiable
PIR scheme in the honest-but-curious server setting. The drawback of this
scheme is that it is too complicated to implement practically. Moreover, this
PIR scheme does not work when all colluding servers host the database, which
can be seen as the single malicious server setting..

In Sect. 5 of [3], the SWHE scheme is used to construct an asymptotically
efficient Single-server PIR (SPIR) scheme based on the Learning With Errors
(LWE) assumption. Specifically, this scheme employs some symmetric encryption
scheme in the retrieval procedure. Using the most efficient symmetric scheme
with the respect to the communication, the corresponding complexity of this
scheme is O((log n) + κpoly log(κ)) (n is the database size and κ is the security
parameter).

In [16], Vannet and Kunihiro proposed an SPIR scheme under the honest-
but-curious server model relying on the unrelated Approximate GCD (AGCD)
assumption. Assume the size of database is tb, which can be split into nb blocks
of mw words of bb bits each, such that nb · mw · bb = tb. When nb cannot be
decomposed in this way, pad the database with several bits. The database is
denoted by a 2-dimensional array of words where each word is marked by two
coordinates. Now use the set {bi,j |1 ≤ i ≤ nb, 1 ≤ j ≤ mw} to denote the
database, and write block u as {bu,j |1 ≤ j ≤ mw}. The security of this scheme
is based on the AGCD assumption introduced in [6]. The assumption is said
that given a random distribution of values pq + ε where ε � p, the q has ϕq bits.
Sample a set of this distribution, output p. In the single bit scheme, assume that
the client wants to retrieve the block u consisting of {bu,j}1≤j≤mw. The client
samples a large random odd number p, and saves it as the secret key. He picks nb

480 X. Wang and L. Zhao

random numbers qi and εi, and computes Qi = pqi + 2εi + δi,u(δi,u is the index
vector where δi,j = 1 if i = j, 0 otherwise). For each Qi that the server received,
compute Rj =

∑nb
i=1 bi,jQi and send it back to the client. On receiving Rj , the

client decodes that (Rj mod p) mod 2 = (
∑nb

i=1 bi,j(pqi + 2εi + δi,u) mod q)
mod 2 =

∑nb
i=1 bi,j(2εi + δi,u) mod 2 = bu,j . In this scheme, p and q should

be two large integers, which can guarantee that the scheme holds the security
property. However, this scheme works under the honest-but-curious server model
but not the malicious server model.

1.3 Open Problem

The previous work [9,16] related to SPIR is generally under the honest-but-
curious server model. This model however is not suitable for many real-world
scenarios such as involving the untrusted cloud server. From Zhang and Safavi-
Naini’s work [18], although a verifiable multi-server PIR scheme has been pre-
sented, constructing a Verifiable SPIR constructing a Verifiable SPIR (VSPIR)
scheme under the malicious server model seems to be a difficult task. This is due
to the fact that the protection of the input index depends on the heavy FHE
scheme, which implies that the computational complexity is very high. To the
best of our knowledge, there has not been a practical VSPIR scheme. Therefore
how to construct a simple and pratical VSPIR is still an open problem.

1.4 Our Contributions

In this work, we present two main contributions. The first warmup one is to
introduce an SPIR scheme based on the decision-LWE with binary error assump-
tion under the honest-but-curious server model. Then, according to this scheme,
we construct a VSPIR scheme under the malicious server model.

– The SPIR scheme based on the decision-LWE assumption. In our pro-
posed SPIR, we use the database defined in [16]. We assume that a client
wants to obtain the block u without revealing any information about u. The
client uses a special variant of the encryption scheme with additive homo-
morphism in [7] to encrypt the query vector where the u-th elements is 1
and others are 0, then compute the query messages {Qi}. A server computes
Rj =

∑n
i bi,jQi where Ri is equivalent to the encrypted bu,j . Then the server

sends Rj to the client. For each Rj , the client runs the homomorphic decryp-
tion scheme to recover the block u. Thus the client can get the real block.
The privacy of our SPIR scheme is based on the hardness of LWE with binary
error problem.

– The VSPIR scheme using the probabilitic verification process (see
Fig. 1). Based on our proposed SPIR scheme, we use a probabilistic veri-
fication process [5] to construct our VSPIR scheme. The main idea of the
probabilistic verification is very simple: a client samples a random input r
and precomputes a specific function F (r). He sends an input pair (x, r) to a

Verifiable Single-Server Private Information Retrieval 481

server in a random order, and wants to receive both F (x) and F (r) from the
server. When receiving the answers from the server, the client checks the cor-
rectness of the response value F (r); if it is the same as the precomputed F (r),
then the client accepts the response F (x), and rejects otherwise. Because both
x and r are independent and distributed identically, no malicious adversary
can distinguish the real input x from the random input r and deceive with
probability greater than 1/2. In our proposed VSPIR scheme, we do the sim-
ilar process: the client generates a random vector r ∈ {0, 1}m to replace the
u-th row in a matrix. Encrypt this matrix, then send the query message to
the server and decode the responses Rj from the server. If the elements of
the random vector corresponding to the index are the same, the elements of
u-th row are the same. Then, the client accepts the received responses.

Fig. 1. Verifiable single-server PIR

For showing the merits of our proposal, we list the differences between our
scheme and some other related scheme in Table 1. Specifically, our construction
is essentially different from the SPIR construction proposed by Brakerski and
Vaikuntanathan [3]. In our proposal, the client uses the encryption scheme with
the additively homomorphic property to encrypt the index directly and the server
responses the answer using the addictive homomorphically evaluate the database
access function. However, in [3], the client encrypts the symmetric key using the
FHE or SWHE scheme, then uses the encrypted symmetric key to encrypt the
index, which can convert the symmetric ciphtertexts into homomorphic cipher-
texts. The server uses the homomorphic ciphertexts homomorphically evaluate
the database access function to retrieve an encryption of the answer. Moreover,
in our SPIR construction, since using the encryption scheme based on the LWE
with binary error assumption, the matrix multiplication operation in encryp-
tion scheme is equivalent to some matrix addition operation. The computational
complexity can be slowed down to be O(

√
tb).

1.5 Outline of Our Paper

The rest of this paper is organized as follows: in Sect. 2, after finishing notations
used in this paper, we introduce the LWE problem and some definitions related
to the VSPIR. In Sect. 3, we detail our proposed constructions for the SPIR
scheme and VSPIR scheme, and then in Sect. 4 we analyze their performances.

482 X. Wang and L. Zhao

In Sect. 5, we present some computer simulations for our proposals. Finally, in
Sect. 6, we make some concluding remarks.

Table 1. Comparisons between the proposed scheme and some other related schemes.

Zhang and

Safavi-Naini [18]

Brakerski and

Vaikuntanathan [3]

Vannet and

Kunihiro [16]

Our VSPIR

Single-server No Yes Yes Yes

Verifiability Yes No No Yes

Assumption d-SBDH LWE AGCD LWE with binary

error

Communication

complexity

O(κn1/�(2k−1)/t�) O(log n + κpoly log(κ)) O(
√

n log n) O(c
√

n)

Computational

complexity

O(κn2/�(2k−1)/t�) O(κ3) O(n log n) O(c
√

n)

n: database size; k: server number related parameter; κ: security parameter; t: number of

servers

2 Preliminaries

2.1 Notations

Before we present our scheme, we give some notations used in this paper. In this
work, We denote vectors by bold lower-case letters (x,y, · · ·), matrices by bold
upper-case letters (X,Y, · · ·). We denote a security parameter by κ ∈ N+. We
denote the class of polynomial functions in κ by poly(κ), some fixed polynomial
functions q in κ by q = q(κ), and some unspecified negligible function in κ by

negl(κ). We denote the transpose of x by xT . We consider the operation x
$←− Ψ

as choosing x uniformly at random in a set Ψ . We use D to indicate a distribution
over some finite set S. We denote x $←− D that x is generated at random from
the distribution.

2.2 Learning with Errors

The LWE problem was first introduced by Regev [15]. The formal definition can
be as follows:

Definition 1 (LWE Problem [3]). For security parameter κ, n = n(κ), let
q = q(n) be an integer and error distribution χ = χ(n) over Zq. Let As,χ be
the distribution obtained by choosing a vector a from Z

n
q and an error term

e from χ uniformly at random, and outputting (a, 〈a, s〉 + e) ∈ (Zn
q × Zq). The

learning with errors problem LWEn,m,q,χ defined as follows: Given m independent
instances from As,χ, output s with non-negligible probability.

The decision variant of the LWE problem, denoted decision-LWEn,m,q,χ is to
distinguish the following two distributions: One is that sampling m instances

Verifiable Single-Server Private Information Retrieval 483

(ai, bi) uniformly from Z
n+1
q . The other one is that sampling m instances

sampled according to As,χ. The decision-LWEn,m,q,χ assumption is that the
decision-LWEn,κ,q,χ problem is computationally infeasible.

Regev proved in [15] that given certain module q and Gaussian error distri-
bution χ, LWEn,κ,q,χ problem is as long as certain worst-case lattice problems
which are hard to solve using a quantum algorithm. These reductions take χ to
be the discretized versions of the Gaussian distribution which is B-bounded for
an appropriate value B.

Definition 2 (B-Bounded Distributions [3]). A distribution ensemble
{χn}n∈N , supported over the integers, is called B-bounded if

Pr
e←χn

[|e| > B] ≤ negl(n).

The following theorem is the Regev’s worst-case to average-case reduction
for LWE:

Theorem 1 ([15]). For q = q(n) ∈ N be a product of q =
∏

qi such that for
all i, qi = poly(n), and let B ≥ n. There exists an efficiently sampleable B-
bounded distribution χ such that if there is an efficient algorithm that solves
the decision-LWEn,q,χ problem, then there is an efficient quantum algorithm for
solving Õ(qn1.5/B)-apporoximate worst-case SIVP and gapSVP.

We refer the readers to [14,15] for the detailed and formal definitions of these
lattice problems.

Definition 3 (LWE with Binary Error Problem [10]). Let n, q be positive

integers, χ be a uniform distribution on {0, 1} and s
$←− χn be a secret vector

in {0, 1}n. Let A
′
s,χ be the distribution obtained by choosing a vector a ∈ Z

n
q

uniformly at random and a noise term e
$←− χ, and outputting (a, 〈a, s〉 + e) ∈

Z
n
q × Zq.
LWE with binary error problem is to recover s from m samples (ai, 〈ai, si〉 +

ei) ∈ Z
n
q × Zq.

The decision variant of the LWE with binary error problem is to distinguish
with non-negligible advantage m samples chosen according to A

′
s,χ, from m sam-

ples chosen according to the uniform distribution over Z
n
q × Zq.

Theorem 2 ([13]). For any integers n and m = n·(1+Ω(1/ log n)), and all suf-
ficiently large polynomially bounded prime modulus q ≥ nO(1), solving LWEn,m,q

with uniformly random binary errors (i,e, in {0,1}) is at least as hard as approx-
imating lattice in the worst case on Θ(n/ log n)-dimensional lattices within a
factor γ = Õ(

√
n · q).

Theorem 2 shows that for the LWE problem, it remains hard even when
the errors are small (e.g, uniformly random from {0, 1}). Most cryptographic
constructions are based on the LWE problem where secret and error are identi-
cally distributed [10]. Using the search-to-decision reduction of [13], Peikert et
al. proved that decision-LWEn,m,q with binary error has the similar hardness of
LWEn,m,q with binary error.

484 X. Wang and L. Zhao

2.3 The GHV-Type Encryption Scheme

The basis of the GHV scheme [7] is a trapdoor sampling algorithm [8]. The
trapdoor sampling procedure generates a matrix A ∈ Z

m×n
q (that is within

negligible statistical distance of uniform), together with an invertible matrix
T ∈ Z

m×m with small entries such that T · A = 0(mod q).
The trapdoor can be used to solve the LWE problem relative to A. This

is done as follows: Ty = T(As + x) = Tx(mod q). Multiplying T−1 gives
us x. There is a probabilistic polynomial-time (PPT) algorithm TrapDoor that,
on input 1κ, positive integer q ≥ 2, and a poly(n)-bounded positive integer
m ≥ 5n log q, output matrices A ∈ Z

m×n
q and T ∈ Z

m×m where the Euclidean
norm of each rows is at least 20n log q [1].

The GHV-type encryption scheme [7] is defined by a triple PPT algorithm
GHV = (GHV.KeyGen, GHV.Enc, GHV.Dec):

– GHV.KeyGen(1κ) → (pk, sk): On input the 1κ, let n = κ, run the trapdoor
sampling algorithm to obtain a matrix A∈ Zm×n

q together with a trapdoor
matrix T∈ Zm×m, i.e., (A,T)←TrapDoor(1n, q,m). The public key pk is A
and the secret key sk is T.

– GHV.Encpk(M)→C: To encrypt the binary message M ∈ {0, 1}m×m, choose

a uniformly random matrix S $←− Z
n×m
q and an “error matrix” X $←− χm×m.

Output the ciphertext C ← AS + 2X + M(mod q) where 2X means multi-
plying each entry of the matrix X by 2.

– GHV.Decsk(C) → M: Set E ← TCTT (mod q), and then output B ← T−1

E(TT)−1 mod 2.

2.4 Formal Definitions About VSPIR

Definition 4 (VSPIR). The VSPIR scheme consists of a database owner
server S,and a client C. S has the database db = (db1, · · · , dbtb). C owns an
index i ∈ [tb] and wants to recover the dbi from the clouds, keeping the i secret.
The VSPIR scheme is defined by five PPT algorithms VSPIR = (VSP.Setup,
VSP.Query, VSP.Challenge, VSP.Response, VSP.Verify):

1. VSP.Setup(1κ) → (pk, sk) : On input 1κ, output the public key pk and secret
key sk.

2. VSP.Querysk(i) → (Q, aux) : On input a private key sk and an index i ∈ [tb],
output a query Q along with auxiliary information aux.

3. VSP.Challengesk(i, κ) → L: On input κ, the index i and sk output the challenge
message L.

4. VSP.Responsepk(Q, db, L) → R: On input a public key pk, the query Q,
database db and the challenge L. Output the response message R.

5. VSP.Verifysk(Q,R, aux) → {dbi,⊥} : On input sk, Q, the response message
R, and the auxiliary aux. Output the dbi or ⊥.

The server S who owns the database is responsible to set up the system.
To set up the system, S runs VSP.Setup to obtain (pk, sk) in the off-line stage.

Verifiable Single-Server Private Information Retrieval 485

Then pk is published or sent to server, the database db is given to the cloud, and
the sk is kept private by client. To retrieve dbi, C runs VSP.Query to compute
(Q, aux) and sends the query message Q to the cloud S. Upon receiving Q,
S runs VSP.Response and replies with the responses message R. To verify the
responses, C runs VSP.Challenge to generate a challenge message L and runs
VSP.Verify to verify the responding messages and compute dbi if the algorithm
VSP.Verify does not output the failure message.

Now, we present some formal properties of VSPIR, these definitions are based
on the previous work [3,16,18].

Definition 5 (Correctness). The VSPIR scheme is convinced to be correct if
the verify algorithm always computes the correct value of dbi when the server
gives the correct response. Formally, for κ, database db, let VSP.Setup(1κ) →
(pk, sk), for any query index i ∈ [tb], let VSP.Querysk(i) → (Q, aux) and
VSP.Responsepk(Q, db, L) → Ri, it holds that

Pr[VSP.Verifysk(Q,R, aux) �= dbi] ≤ negl(κ)

if the verify algorithm does not compute the failure message.

Definition 6 (Privacy). The scheme VSPIR is convinced to be private if the
adversary can not learn any information about i. Namely, for two queries i1,i2 ∈
[tb] it can computationally distinguish VSP.Querysk(i1) from VSP.Querysk(i2)
with negligible probability. Formally, let κ be a security parameter for an adver-
sary A running in polynomial time and asking polynomially many queries, it
holds that

Pr[A(VSP.Querysk(i1))] − Pr[A(VSP.Querysk(i2))] ≤ negl(κ).

Definition 7 (Security). The scheme VSPIR is convinced to be secure if PPT
adversary can deceive the client into obtaining an incorrect value of dbi with
negligible probability. We can consider the behavior of A in a number of Game0,
Game1, Game2 as defined below:

1. Game0. The challenger generates VSP.Setup(1κ) → (pk, sk) and then pub-
lishes pk to A. A owns the database db and every time A chooses an index i
the challenger will reply corresponding query message Q.

2. Game1. A picks a specific index i and sends it to the challenger, the challenger
responses VSP.Querysk(i) → (Q, aux). To verify the dbi, challenger runs
VSP.Challengesk(i, κ) → C.Then A runs VSP.Respon- sepk (Q, db, C) → R
to response the challenger.

3. Game2. A wins if VSP.Verifysk(Q,R, aux) /∈ {dbi,⊥}.
In the security Game2, A can deceive the client into reconstructing an incor-

rect value of dbi even if it can choose the index of database freely with negligible
probability. Thus, the security of a VSPIR scheme defined above allows the client
to recover the correct block that he wants to obtain from the database

486 X. Wang and L. Zhao

Definition 8 (Communication Complexity). The communication complex-
ity of a scheme is defined as the number of bits being exchanged to transfer a single
database element excluding the setup phase.

Definition 9 (Index Mapping Function). We define an index mapping func-
tion which maps the index u to an vector matrix. It takes as input an index u
in some scope and output an index vector: δi,u ← E(u). where the u-th element
of the vector is 1, the others are 0.

3 Our Constructions

In this section, we demonstrate our scheme in a gradual manner. We first present
our variant of the GHV-type encryption scheme and an SPIR using this variant.
After that, based on the proposed SPIR, we give a VSPIR construction under
the malicious server model.

3.1 A Variant of the GHV-Type Encryption Scheme

In GHV scheme [7], it can encrypt a matrix of m2 elements in time Õ(m3). To
reduce the computational complexity, we consider the LWE with binary error
assumption. Luckly, previous work [10,13] has proved the hardness of the LWE
with binary error problem.

For ease of presentation, we focus below on the case of encrypting binary vec-
tors for better use in our SPIR scheme. The extension for encrypting matrices
with lower computational complexity comparable to GHV scheme is straightfor-
ward. Our variant of the GHV-type encryption scheme VGHV = (VG.KeyGen,
VG.Enc, VG.Dec) is a triple of PPT algorithms as follows:

– VG.KeyGen(1κ) → (pk, sk): The algorithm is the same as the algorithm in
GHV scheme. The public key pk = A ∈ Z

m×n
q and the secret key sk =T∈

Z
m×m.

– VG.Encpk(m) →c: To encrypt m ∈ {0, 1}m, choose a uniformly random vector
s ∈ {0, 1}n and a uniformly random error vector x ∈ {0, 1}m. Output the
ciphertext c ← As+ 2x+m(mod q) where 2x means multiplying each entry
of the vector x by 2.

– VG.Decsk(c) → m: Set e ← Tc mod q, and then output m← T−1 e mod 2.

For the decryption algorithm, recall that T · A = 0(mod q) and therefore
Tc =T(2x+m)(mod q). If in addition all the entries of T(2x+m) are smaller
than q then we also have the equality over the integers e = (Tc(mod q)) =
T(2x+m)(mod q), and hence T−1e = m(mod 2). We have the correct decryp-
tion when all the entries of T(2x+m) are smaller than 2/q.

Additional Homomorphic Operation. Given two ciphertexts c1, c2 that
decrypt to m1, m2. Let c = c1 + c2. For addition, we have c = A(s1 + s2) +
2(x1 + x2) + m1 + m2 which can be decrypted as m1 + m2 when all entries in
T(2(x1 + x2) + m1 + m2) are smaller than q/2.

Verifiable Single-Server Private Information Retrieval 487

Theorem 3 Any distinguishing algorithm with advantage ε against the
CPA privacy1 of the scheme can be converted to a distinguisher against
decision-LWEm,n,q with binary error with roughly the same advantage at least
ε/2m.

Proof. See Appendix D for the proof.

We can use the above variant of the GHV scheme to encrypt the binary
matrices by setting uniformly random S ∈ {0, 1}n×m and uniformly random
“error matrix” X ∈ {0, 1}m×m. Specifically, we call this variant of the GHV
scheme as MVGHV. Note that, our MVGHV is more efficient than the original
GHV scheme: MVGHV takes time O(m · n) to encrypt a matrix of m2 elements
comparing with Õ(m3) in GHV scheme. The CPA privacy of MVGHV scheme is
based on the LWE with binary error using the proof algorithm in [7].

Theorem 4. For the parameter n = n(κ) and c = c(n) > 0, let q > 8n3c,
m =
5n log q�, then the encryption scheme from above with parameters n,m,q
supports nc additions.

Proof. See Appendix A for the proof.

Theorem 4 shows that the number of LWE with binary error samples m =
O(n) is linear. For selection about m, it can be satisfied by taking m = 5n log q
for fixed q.

3.2 Our SPIR Scheme

Now we introduce our SPIR scheme. We redefine the database (db1, · · · , dbtb),
dbi ∈ {0, 1}: assume the database can be split into nb blocks of mw words of bb
bits each, such that nb · mw · bb = tb (tb is the size of database). Namely, the
nb is the count of blocks, and mw for words per block and bb for bits per word.
If nb cannot be decomposed in this way, pad the database with several extra
bits to make it that. We denote the database by a 2-dimensional array of words
where each word is marked by two coordinates. Then we obtain the database
b = {bi,j |1 ≤ i ≤ nb, 1 ≤ j ≤ mw}, the total bit size of the database is tb. First
we assume that every word is a single bit, clearly mw = 1.

Assume that the client C wants to recover the block u that is consisted of
bu,j . We present the SPIR with four PPT algorithms SPIR = (SP.Setup, SP.Query,
SP.Response, SP.Dec):

– SP.Setup(1κ) → (pk, sk): This algorithm is to set up the system and generate
the public key pk and the secret key sk. On input κ, Run the VG.KeyGen to
obtain the public key pk = A ∈ Z

m×n
q , and the secret key sk = T ∈ Z

m×m.
The pk is published to S, and the sk is kept secretly in C.

1 The notation of CPA privacy is equivalent to the formal notation of CPA security.

488 X. Wang and L. Zhao

– SP.Querypk(u) → Q: This algorithm for C is to obtain the query string. On
input the public key pk and index u, compute the function E(u) to obtain
the index vector δi,u ∈ {0, 1}nb, and then spit it to mc = �nb/m� vectors, if δ
cannot be decomposed in this way, pad the last vector with several 0 elements.
Encrypt these vectors in order. Run the algorithm VGHV.Encpk(mc) → cc,
c ∈ [mc]. The query message Q is these ordered vectors cc.

– SP.Response(b,Q) → R: This algorithm for S is to compute the responses.
On input the query message Q and the database b, compute the responses for
every j from 1 to mw: rj =

∑mc

c=1 bm(c−1)+i,jcc for i from 1 to m. According
to the homomorphism, multiply bi,j by c corresponds to the multiplication of
bi,j and δ. Thus rj is the homomorphic sum of bi,jmc. The element of vector
δi,u is 1 where i = u, otherwise 0. The rj is the ciphertext of block bu. The
response message R is these vectors rj .

– SP.Decsk(R) → bu,j : This algorithm for S is to recover the block that C wants.
On input the secret key sk and responses R, run VG.Decsk(rj) to obtain the
block u.

Multi-Words SPIR Scheme. In the above scheme, we assume that the word
is a single bit. We can easily modify it to recover multi-words scheme. Instead
of computing As + 2e, we compute As + 2mwe , bu,jej ← bu,jTj(2xj + δj)
mod q, hence bu,jT−1

j e mod 2mw = bu,jδj . Since q has to be large for security
reasons and the noise only progresses linearly when processing the database, we
can afford to start with a fairly large noise. We can utilize the same trick to
obtain the “multi-words matrix retrieval”.

3.3 Our VSPIR Scheme

Before introducing our VSPIR scheme,we show the probabilistic verification pro-
cess used in the work [5]. C delegates some computation F to an untrusted server
S, and C wants to verify the response from S. Assume that C can precompute
F (x), we can define it as three procedures:

– Setup. Input κ, the delegated computation function F : {0, 1}n → {0, 1}m,
and the value x ∈ {0, 1}n.

– Precomputation. C samples a random input r, computes w = F (r), and stores
(r, w) as secret state.

– Delegation and Verification. C has an input m ∈ {0, 1}n. C sets r0 = r and
r1 = m, then samples a random bit b ∈ {0, 1}, and sends the pair (rb, r1−b)
to S. S computes and sends (z0, z1) = (F (r0), F (r1)) to C. Then C accepts
and recovers the response z1−b if w = zb.

From the work in [5], we can find that since x and r are independent and
identically distributed, no malicious adversary can cheat C successfully with
non-negligible probability. Our VSPIR scheme employs the similar probabilistic
verification procedures as above. The main difference of probabilistic verification
procedure between our VSPIR and the proposal in [5] is that we use a random

Verifiable Single-Server Private Information Retrieval 489

vector to mark the result that we want instead of precomputating. Now we
detail the description of our VSPIR scheme VSPIR = (VSP.Setup,VSP.Challenge,
VSP.Response, VSP.Verify):

– VSP.Setup(1κ) → (sk, pk). On input 1κ, run SP.Setup and output (sk, pk).
– VSP.Challengesk(u) → Q. On input the index u and sk, pick up a random

vector v ∈ {0, 1}m, if the d-th element of vvd is 1, then run index mapping
function vi,u ← E(u) otherwise generate a 0 vector with the same dimension.
Then combine these vectors into a matrix I. Run the encryption algorithm in
MVGHV to encrypt the matrix using the SP.Query way to obtain the query Q.

– VSP.Response(b,Q)→ Rk. On input database b and query messages Q, com-
pute SP.Response(b,Q) to obtain the responses Rj .

– VSP.Verifysk(Q, Rj)→ {bu,⊥}. On input Q and the responses messages Rj ,
run the decryption algorithm in MVGHV and make sure whether the decryp-
tion result is our expectation. Accept and output the recovers if when the
elements of the random vector’s corresponding index are the same,the ele-
ments of u-th row in the matrices bu,jI are the same as bu,j . Otherwise, reject
and output ⊥.

4 Performance Analysis

In this section, we first analyze correctness, privacy and security of the proposed
SPIR and VSPIR scheme. After that, we present communication complexity and
computational complexity of our proposals.

4.1 Correctness, Privacy and Security

Theorem 5 (Correctness). If the proposed MVGHV encryption scheme holds
the homomorphic property for supporting polynomially many additions,then our
VSPIR scheme can computes the correct retrieval information when server gives
the correct response.

Proof. See Appendix B for the proof.

Theorem 6 (Privacy). If any distinguishing algorithm can distinguish two
queries for distinct bits of database with probability at least 1/2 + ε/2, then the
distinguisher can break the privacy of our VSPIR with probability (1 + ε)/2.

Proof. See Appendix C for the proof.

Theorem 7 (Security). Our VSPIR scheme is convinced to be secure if no
PPT adversary can deceive the client into obtaining an incorrect value responded
from the server with non-negligible probability.

Proof. See Appendix D for the proof.

4.2 Complexity

In this section, we analyze the communication complexity and computational
complexity of our protocols. Recall our schemes, the public key is sent only once,
it is independent of the database and the query, and it can be used for many

490 X. Wang and L. Zhao

queries. Therefore it is customary to analyze such schemes in the public key
model where sending the public key does not count towards the communication
complexity.

For SPIR scheme, to encrypt the query vectors, the size of ciphertext in our
encryption algorithm is composed of �nb/m� vectors whose size is �nb/m�m log q.
Then the response size is m log q. When nb = mw =

√
tb, for fixed security

parameter, the communication complexity is O(c
′√

tb). For VSPIR scheme, the
total size of one round transform messages comes to (m2 + �nb/m�m2) log q and
the communication complexity is O(c

√
tb) (c and c

′
are constant).

The communication complexity is not changed in the process for multiple
bits recovery, but we now can retrieve a block of mw bb bits. Furthermore, when
nb = mw =

√
tb/bb the communication complexity is O(c

√
tb/bb) per an index

recovered.
Now let us look at the computational complexity. To set up the system, the

key generation algorithm is executed once and takes time O(1). If not considering
any optimization algorithm, to encrypt the vector index it takes about �nb/m�m
operations and to encrypt the matrix index it takes about �nb/m�m · n. When
nb = mw =

√
tb, for fixed security parameter, the computational complexity is

O(
√

tb) and O(c
√

tb), respectively.

5 Computer Implementations

In this section, we made a straightforward implementation of our VSPIR scheme
without aiming for high levels of optimization. The timings were performed on a

The number of bit of q
10 20 30 40 50 60

co
sts

(se
co

nd
)

0

500

1000

1500

2000

2500
VSP.Query

The number of bit of q
10 20 30 40 50 60

co
sts

(se
co

nd
)

0

500

1000

1500

2000

2500

3000
VSP.Verify

Fig. 2. The trends of the client’s costs in our VSPIR scheme

Table 2. The client’s costs in our VSPIR scheme (second).

(ψ, n) RVSP.Query RVSP.Verify

(13, 8) 1.012 1.010

(22, 51) 34.236 45.236

(30, 269) 204.415 282.754

(42, 531) 731.950 801.481

(56, 1563) 2494.514 2864.157

ψ: the number of bit of q

Verifiable Single-Server Private Information Retrieval 491

2013 ASUS (Intel(R) Core(TM) i5-3230M, 2 hyperthreaded cores at 2.60 GHz,
8 GB RAM at 1.600 GHz), on Windows (Windows 10 Home, x64 64). Our imple-
mentations are single-threaded. We used NTL for operations over Zq, matrix
operations, and big number operations. We implement the algorithm VSP.Query
and the decryption part of VSP.Verify. To simplify the operation, we focus on a
matrix. For showing the cost of the proposed VSPIR scheme, we list the time
costs in Table 2 when choosing different parameters and draw the trends of the
proposed VSPIR in the Fig. 2. Note that, second can be denoted by s.

Now we consider some real scenarios. As showed in [17], the maximum band-
width of common Internet access technologies such as the Wireless 802.11 g is
54Mbit/s, Fast Ethernet is 100Mbit/s, OC12 is 622Mbit/s. In these scenarios, the
communication complexity of the server and the client can be asymmetrically neg-
ligible. Let the database be 1G bits, we set the bit of q = 30, n = 269, nb =

√
tb.

Assume that the upload speed and download speed are all 20Mbit/s, now we can
roughly compute the time cost of one round query and the response is about 31 s.
The probabilistic verification process can increase the time costs slightly.

6 Conclusions

In this paper, we have proposed an efficient SPIR scheme based on the LWE with
binary error assumption and a VSPIR scheme using the probabilistic verification
that can work under the malicious server model. Compared with previous works,
our scheme is the first practical VSPIR scheme under the malicious server model
that we know of. Specifically, our VSPIR scheme has communication complexity
O(c

√
tb) that is smaller than the communication complexity of the proposal in

[18].

Acknowledgements. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 61302161, in part by the Doctoral Fund, Min-
istry of Education, China, under Grant 20130181120076. The corresponding author
of this research Liang Zhao is supported by the International Visiting Program for
Excellent Young Scholars of SCU.

A PROOF OF THEOREM 3

Proof (sketch). Let A be a CPA-adversary that distinguishes between encryp-
tions of messages of its choice with advantage ε. First, We construct a distin-
guisher D with advantage at least ε/2 between the two distributions: {(A,As+
x) : A ← Z

m×n
q , s ∈ {0, 1}n,x ∈ {0, 1}m} and {Unif(Zm×n

q × Z
m
q)}. The distin-

guisher D takes as input (A, c), and runs the adversary A with A as the public
key. Upon receiving message m0,m1 from the adversary, D chooses at random
i ∈ {0, 1}, returns the challenge ciphertext 2c+m mod q, then outputs 1 if the
adversary A guesses the right i, and 0 otherwise.

On the one hand, if c is uniformly random matrix then the challenge cipher-
text is also uniformly random, regardless of the choice of i. Hence in this case D
outputs 1 with probability at most 1/2. On the other hand, if c = As+x(mod q),

492 X. Wang and L. Zhao

then the challenge ciphertext is 2c + m = As
′
+ 2x + m(mod q). By assump-

tion A will guess the right i with probability (1 + ε/2). Finally, a standard
hybrid argument can be used to convert the distinguisher D from above to a
decision-LWEm,n,q with binary error distinguisher with advantage ε/2m.

B PROOF OF THEOREM 4

Proof. Let vector c =
∑�

i=1 (Asi + 2xi + mi) be obtained by adding
 ≤ nc

ciphertexts. Recall that every row of T has Euclidean norm at most 20n log q.
Then every entry of

∑�
i=1 Txi is at most 20
n log q. All the m

′
is are binary so

each entry of Tm is at most 20
n log q. Hence the each entry in T(2x + m) is
bounded by 40
n log q < 4n3c < q/2 for some q. Now we can decrypt c to recover
the correct value.

C PROOF OF THEOREM 5

Proof. On the one hand, our proposed similar probabilistic verification proce-
dures provide the correctness of the response message from server. On the other
hand, as introduced in the preliminaries section, the GHV scheme is correct
regard to additive homomorphic operation, our MVGHV scheme follows the same
property. Then our VSPIR using the MVGHV scheme has the correctness when
the server provides the correct response.

D PROOF OF THEOREM 6

Proof (sketch). Let A be a CPA-adversary that distinguishes between encryp-
tions of queries of its choice with advantage ε, we first construct a distinguisher
D with advantage at least ε/2 between two queries: the query the client wants
and a query chosen randomly. The distinguisher D takes as input a pair of matri-
ces (A, C), and runs the adversary A with A as the public key. Upon receiving
message B0,B1 from adversary, D chooses at random i∈ {0, 1}, returns the chal-
lenge ciphertext encrypted by MVGHV scheme, then outputs 1 if the adversary
A guesses the right i, and 0 otherwise. On the one hand, if C is the random
query ciphertext, then C is equivalent to be a uniformly distribution. In this case
D outputs 1 with probability at most 1/2. On the other hand, If C encrypts the
query the client wants, by assumption A will guess the right i with probabil-
ity (1+ε)/2. Then the privacy of our VSPIR is based on the decision-LWE with
binary error assumption.

E PROOF OF THEOREM 7

Proof. To verify the correctness of the response, we sample a random vector
replace the index matrix. If an algorithm can break the privacy of our scheme
with probability negl(κ), the algorithm can distinguish queries for block X1 and
block X2. Then the adversary can deceive the client into obtaining an incorrect
value with probability negl(κ)/2m.

Verifiable Single-Server Private Information Retrieval 493

References

1. Alwen, J., Peiket, C.: Generating shorter bases for hard random lattices. In:
STACS, pp. 75–86 (2009)

2. Beimel, A. Ishai, Y.: Private information retrieval: a primer. www.cs.bgu.ac.il/
beimel/Papers/PIRsurvey.ps

3. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS, pp. 97–106 (2001)

4. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval.
In: FOCS, pp. 41–50 (1995)

5. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using
fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 483–501. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 26

6. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

7. Gentry, C., Halevi, S., Vaikuntanathan, V.: A simple BGN-type cryptosystem from
LWE. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 506–522.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 26

8. Gentry, C. Peikert, C. Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206. ACM (2008)

9. Goldberg, I.: Improving the robustness of private information retrieval. In: 2007
IEEE Symposium on Security and Privacy, pp. 131–148 (2007)

10. Johannes, A., Buchmann, F.G., Rachel, P., Thomas W.: On the hardness of LWE
with binary error: revisiting the hybrid lattice-reduction and meet-in-the-middle
attack. In: AFRICACRYPT, pp. 24–43 (2016)

11. Kumar, M., S., Sarkar, P.: Symmetrically private information. In: INDOCRYPT,
pp. 225–236 (2000)

12. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 465–484. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 26

13. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 2

14. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: STOC, pp. 333–342 (2009)

15. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34 (2009). Preliminary version in STOC 2005

16. Vannet, T., Kunihiro, N.: Private information retrieval with preprocessing based
on the approximate GCD problem. In: Dunkelman, O., Keliher, L. (eds.) SAC
2015. LNCS, vol. 9566, pp. 227–240. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-31301-6 14

17. Wikipedia. https://en.wikipedia.org/wiki/Bandwidthx
18. Zhang, L.F., Safavi-Naini, R.: Verifiable multi-server private information retrieval.

In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479,
pp. 62–79. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07536-5 5

www.cs.bgu.ac.il/beimel/Papers/PIRsurvey.ps
www.cs.bgu.ac.il/beimel/Papers/PIRsurvey.ps
https://doi.org/10.1007/978-3-642-14623-7_26
https://doi.org/10.1007/978-3-642-14623-7_26
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_26
https://doi.org/10.1007/978-3-642-22792-9_26
https://doi.org/10.1007/978-3-642-22792-9_26
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/978-3-319-31301-6_14
https://doi.org/10.1007/978-3-319-31301-6_14
https://en.wikipedia.org/wiki/Bandwidthx
https://doi.org/10.1007/978-3-319-07536-5_5

	Verifiable Single-Server Private Information Retrieval
	1 Introduction
	1.1 Background
	1.2 Related Work
	1.3 Open Problem
	1.4 Our Contributions
	1.5 Outline of Our Paper

	2 Preliminaries
	2.1 Notations
	2.2 Learning with Errors
	2.3 The GHV-Type Encryption Scheme
	2.4 Formal Definitions About VSPIR

	3 Our Constructions
	3.1 A Variant of the GHV-Type Encryption Scheme
	3.2 Our SPIR Scheme
	3.3 Our VSPIR Scheme

	4 Performance Analysis
	4.1 Correctness, Privacy and Security
	4.2 Complexity

	5 Computer Implementations
	6 Conclusions
	A PROOF OF THEOREM 3
	B PROOF OF THEOREM 4
	C PROOF OF THEOREM 5
	D PROOF OF THEOREM 6
	E PROOF OF THEOREM 7
	References

