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Abstract. We present a functional encryption scheme for quadratic
functions from lattices under identity-based access control. This repre-
sents a practical relevant class of functions beyond multivariate quadratic
polynomials and may adapt to many scenarios. Recently, Baltico et al.
[10] in Crypto 2017 presented two constructions from pairings which
enable efficient decryption only when x�Fy is contained in a sufficiently
small interval to finally compute a discrete logarithm, and one construc-
tion is proved selectively secure under standard assumptions and the
other adaptively secure in the generic group model (GGM). Our con-
struction is no pairings and no small interval restriction. We formalize
the definition of identity-based functional encryption and its indistin-
guishability security and achieve adaptive security against unbounded
collusions under standard assumptions in the random oracle model.
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1 Introduction

Functional Encryption (FE) is an ambitious generalization of public-key encryp-
tion which overcomes the all-or-nothing, user-based access to encrypted data and
enables fine grained, role-based access to the data. Namely, functional encryption
comes equipped with a key generation algorithm that utilizes a master secret key
to generate decryption keys skF corresponding to functions F , the key holders
only learn F (x) from a ciphertext Enc(x) and no more information about x is
revealed. This is well suited for cloud computing platforms and remote untrust-
worthy severs to store sensitive private data and allow users to request the result
of the function F computing on the underlying data.
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The definition of functional encryption was first formalized by [17,39] which
gave indistinguishability (IND-based) and simulation (SIM-based) security
model, and identity-based encryption (IBE) [2,14,15,20,21,28,44], attribute-
based encryption (ABE) [11,16,31,33,42], predicate encryption (PE) [3,32,35,
36,38] and other concrete functionalities [18,45] in a general framework could
all be regarded as specific function classes of functional encryption.

Though Garg et al. [9,24,26,46] constructed functional encryption for general
function, their work used brilliant but ill-understood indistinguishability obfus-
cation(iO) or multi-linear maps machinery that existing constructions [23,27]
were found to be insecure [22,34], so there is no provably secure instantiation by
now. Some work [4,5,29,30] considered general function under bounded collu-
sions from simple primitives or well-understood assumptions. Conversely, there
is also some fascinating work that constructs iO from FE schemes [8,12,13,25].

Recently Abdalla et al. [1] built FE for linear functions surprisingly and effi-
ciently from standard assumptions like the Decision Diffie-Hellman (DDH) and
Learning-with-Errors (LWE) assumptions. Later, Agrawal et al. [4] promoted
their schemes from selective security to adaptive security and gave an additional
construction from Decision Composite Residuosity (DCR) assumption. Beyond
linear functions, Baltico et al. [10] constructed two FE schemes for quadratic
functions from pairings which enable efficient decryption only when x�Fy is
contained in a sufficiently small interval to finally compute a discrete logarithm,
and one construction is proved selectively secure under standard assumptions
and the other adaptively secure in the generic group model (GGM). This moti-
vates the following question:

Can we build adaptively secure FE scheme for quadratic functions without
pairings and the small interval restriction?

1.1 Our Results

We answer the above question affirmatively. We propose the first adaptively
secure FE scheme for quadratic functions from lattices against unbounded collu-
sions, but under identity-based access control. On the one hand, identity-based
functional encryption can be regarded as functional encryption under identity-
based control. On the other hand, we can think it as an extension of identity-
based encryption what only allow certain identity owner to decrypt partial infor-
mation or function values. We notice that Sans and Pointcheval [43] consider
the identity-based access control as an additional property to expand the possi-
ble applications of their unbounded length inner product FE schemes. Here we
formalize the identity-based functional encryption definition and indistinguisha-
bility security (IND-IBFE-CPA) based on [17,39]. Namely, we additionally add
identity id to the input to KeyGen and Encrypt algorithms, and we need the
identity-based access control property to prove adaptive security of our scheme
under random oracle model. So constructing adaptively secure FE scheme for
quadratic functions under standard model is still an open problem.
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In recent years, lattice-based cryptography has been shown to be extremely
versatile, leading to a large number of attractive theoretical applications. Lattice
problems provide some significant advantages not found in other types of cryp-
tography, based on worst-case assumption, resistant to cryptanalysis by quantum
algorithms and lattice cryptography operations are very simple (almost matrix
operations), especially to our scheme, without the small interval restriction to
finally compute a discrete logarithm. We employ preimage sampling techniques
with trapdoor [2,20,28] to generate secret keys unlike linear functions schemes
from LWE assumption [4] which do not use preimage sampling algorithms with
trapdoor.

Overview of Techniques. We utilize x�Fy form to represent general
quadratic functions the same as [10]. Without loss of generality, messages are
expressed as pairs of vectors (x,y) ∈ Z

l ×Z
l of the same length l, and it is easy

to see that the case in which one is longer than the other can be captured by
padding the shorter one with zero entries, and secret keys are associated with
(l × l) matrices F, and decryption allows to compute x�Fy =

∑
i,j fi,jxiyj .

We use dual Regev’s cryptosystem for multi-bit messages [4,28], which enjoys
ciphertexts have size O(l). Namely, we set Ct(x,y) = (c01, c02, c11, c12):

c01 = A�s1 + r
′
1, c11 = B�s2 + r

′
2

c02 = U�
1 s1 + r1 + x, c12 = U�

2 s2 + r2 + y

where s1, s2 are chosen at random, U1,U2 are Z
n×l
q matrices, and A,B ∈ Z

n×m
q

are contained in the public key and r1, r2, r
′
1, r

′
2 are noises. We have a relation

that AE1 = U1,BE2 = U2 where E1,E2 ∈ Z
m×l are sampled uniformly from

discrete Gaussian probability distributions. We observe that

x�Fy ≈ c�
02Fc12 − c�

01E1Fc12 − c�
02FE

�
2 c11 + c�

01E1FE�
2 c11.

Thus we set skF = (F,E1F,FE�
2 ,E1FE�

2 ). Then, there is a problem that
if one user asks for an F which is invertible (especially unitary matrix), he
will get a pair of E1,E2 from skF and he can compute arbitrary skF′ =
(F′,E1F′,F′E�

2 ,E1F′E�
2 ) corresponding to F′ and decrypt arbitrary x�F′y

owing to the relation that AE1 = U1,BE2 = U2 always holds.
To circumvent this problem, we employ extension preimage sampling tech-

niques with trapdoor [2,20]. We additionally use a public matrix R ∈ Z
n×l
q to

randomize F and make the multiplication into the extension preimage sampling
algorithms. So in the KeyGen algorithm, the relation becomes (A|RF)E1 = U1

and (B|RF)E2 = U2 where E1,E2 ∈ Z
(m+l)×l can be sampled uniformly by

extension sampling algorithms with trapdoors TA, TB.
In order to prove the security, we need to regard U1,U2 as random ora-

cle U1(id),U2(id): {0, 1}∗ → Z
n×l
q to answer secret keys queries for arbitrary

identity id except the challenge id∗ and arbitrary F. For different F, there are
distinct E1,E2 which have enough entropy to resist collusion attacks.
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1.2 Related Work

Agrawal and Rosen [5] considered bounded collusions schemes from LWE
assumption, and they also achieved bounded collusions functional encryption
for quadratic functions.

Sans and Pointcheval [43] consider the identity-based access control as an
additional property to expand the possible applications of their unbounded
length inner product FE schemes. They do not formalize the definition of
identity-based functional encryption and its security model, and they only
achieve selective security from pairings under random oracle model for their
unbounded length inner product FE schemes.

1.3 Organization

In Sect. 2, we introduce some necessary notations and some lemmas, algorithms
and assumptions from lattice-based cryptography. We formalize the definitions
of identity-based functional encryption (IBFE) and its security model in Sect. 3.
Section 4 presents our IBFE scheme for quadratic functions. In Sect. 5, we ana-
lyze the security of our scheme. We conclude and propose some open problems
in Sect. 6.

2 Preliminary

Notations. We denote vectors by lower-case bold letters (e.g. x) and are always
in column form (respectively, x� is a row vector). Matrices are denoted by upper-
case bold letters (e.g. A) and treat them with their ordered column vector sets
[a1,a2, ...]. We let M1|M2 denote the (ordered) concetenation of the column
vector sets of M1 and M2, M1‖M1 denote the (ordered) concetenation of the
row vector sets of M1 and M2, and vectors are similar. For a vector x, we let
‖x‖ denote its l2 norm and ‖x‖∞ denote its infinity norm. Similarly, for matrices
‖ · ‖ and ‖ · ‖∞ denote their l2 and infinity norms respectively.

2.1 Functional Encryption

We recall the syntax of functional encryption, as defined by [17], and their indis-
tinguishability based security definition.

Definition 1 (Functionality). A functionality F defined over (K, M) is a
function F : K × M → Σ ∪ {⊥} where K is a key space, M is a message space
and Σ is an output space which does not contain the special symbol ⊥.

Definition 2 (Functional Encryption). A functional encryption scheme FE
for a functionality F is a tuple of four algorithms FE = (Setup, KeyGen, Encrypt,
Decrypt) that work as follows:

Setup(1λ) takes as input a security parameter 1λ and outputs a master key pair
(mpk, msk).
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KeyGen(msk,K) takes as input the master secret key and a key (i.e. a func-
tion) K ∈ K, and outputs a secret key skK .

Encrypt(mpk,M) takes as input the master public key mpk and a message M
∈ M, and outputs a ciphertext C.

Decrypt(mpk, skK , C) takes as input a secret key skK and a ciphertext C, and
returns an output v ∈ Σ ∪ {⊥}.

For correctness, it is required that for all (mpk, msk) ← Setup(1λ), all keys K
∈ K and all messages M ∈ M, if skK ← KeyGen(msk, K) and C ← Encrypt
(mpk, M), then it holds with overwhelming probability that Decrypt(skK , C) =
F(K, M) whenever F(K, M) 	= ⊥.

Indistinguishability-Based Security. For a functional encryption scheme FE
for a functionality F over (K, M), security against chosen-plaintext attacks
(IND-FE-CPA, for short) if no PPT adversary has non-negligible advantage in
the following game:

1. The challenger runs (mpk, msk) ← Setup(1λ) and gives mpk to A.
2. The adversary A adaptively makes secret key queries. At each query, A

chooses a key K ∈ K and obtains skK ← KeyGen(msk, K).
3. Adversary A chooses a pair of distinct messages M0, M1 ∈ M such that

F(K, M0)=F(K, M1) holds for all Keys K queried in the previous phase. The
chanllenger computes C* ← Encrypt(mpk, Mβ) and return C* to A.

4. Adversary A makes further secret key queries for arbitrary keys K ∈ K, but
under the requirement that F(K, M0)=F(K, M1).

5. Adversary A eventually outputs a bit β′ ∈ {0, 1} and wins if β′ = β.

The adversary’s advantage is defined to be AdvA(λ):= |Pr[β′ = β] − 1/2|.

2.2 Lattices

An m-dimensional lattice L is a discrete additive subgroup of Rm. Given positive
integers n,m, q and a matrix A ∈ Z

n×m
q , we let Λ⊥

q (A) denote the lattice {x ∈
Z

m : A ·x = 0 mod q} and Λq(A) denote the lattice {y ∈ Z
m : y = A� ·s mod q

for some s ∈ Z
n}. For u ∈ Z

n
q , we let Λu

q (A) denote the coset {x ∈ Z
m : A·x = u

mod q}. Note that if t ∈ Λu
q (A) then Λu

q (A) = Λ⊥
q (A) + t and hence Λu

q (A) is
a shift of Λ⊥

q (A).

Discrete Gaussians. Let σ be any positive real number, c ∈ R
m. The Gaussian

distribution Dσ,c centered at c with parameter σ is defined by the probability
distribution function ρσ,c(x) = exp(−π‖x − c‖2/σ2). For any set L ⊂ R

m,
define ρσ,c(L) =

∑
x∈L ρσ,c(x). The discrete Gaussian distribution DL,σ,c over

L centered at c with parameter σ is defined by the probability distribution
function ρL,σ,c(x) = ρσ,c(x)/ρσ,c(L) for all x ∈ L.

The following lemma states that the total Gaussian measure on any translate
of the lattice is essentially the same.
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Lemma 1 [28,37]. For any m-dimensional lattice Λ, σ ≥ ω(
√

log m), c ∈ R
m,

ε ∈ (0, 1), we have

ρσ,c(Λ) ∈
[
1 − ε

1 + ε
, 1

]

· ρσ(Λ)

A sample from a discrete Gaussian with parameter σ is at most
√

mσ away
from its center c with overwhelming probability.

Lemma 2 [28,37]. For any m-dimensional lattice Λ, m > n, center c, σ ≥
ω(

√
log m), we have

Pr[‖x − c‖ >
√

mσ|x ← DΛ,σ,c] ≤ negl(n).

There is an upper bound on the probability of a discrete Gaussian, equiva-
lently, it is a lower bound on the min-entropy of the distribution.

Lemma 3 [28]. For any m-dimensional lattice Λ, σ ≥ ω(
√

log m), center c,
positive ε > 0, and x ∈ Λ, we have

DΛ,σ,c ≤ 1 + ε

1 − ε
· 2−m.

In particular, for ε < 1
3 , the min-entropy of DΛ,σ,c is at least m-1.

Ajtai et al. [6,7] showed how to sample an essentially uniform A, along with
a relatively short basis TA.

Lemma 4. Let n, q, m be positive intergers with q > 2 and m ≥ 5n log q. There
is a probabilistic polynomial-time(PPT) algorithm TrapGen that outputs a pair
(A ∈ Z

n×m
q , TA ∈ Z

m×m) where the distribution of A is statistically close to
uniform over Z

n×m
q and ‖TA‖ ≤ m · ω(

√
log m).

Gentry et al. [28] showed that if ISISq,m,2σ
√

m is hard, fA : Zm
q → Z

n
q with

fA(e) = Ae mod q is one-way function, even collision resistant function where
‖e‖ ≤ √

mσ. Note that for m > 2n log q, σ > ω(
√

log m), fA is surjective for
almost all A, and the distribution of u = Ae mod q is statistically close to
uniform over Z

n
q . Furthermore, fix u ∈ Z

n
q , a short basis for Λ⊥(A) can be used

to efficiently sample short vectors from f−1
A (u) without revealing any information

about the short basis TA.

Lemma 5. Let n, q, m be positive integers with q ≥ 2 and m ≥ 2n log q. There is
a PPT algorithm SamplePre that on input of A ∈ Z

n×m
q , a basis TA for Λ⊥

q (A),
a vector u ∈ Z

n
q and an integer σ ≥ ‖T̃A‖ · ω(

√
log m), the distribution of the

output of e ← SamplePre(A, TA,u, σ) is with negligible statistical distance of
DΛu

q (A),σ.
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2.3 Algorithm SampleR

The preimage sampling algorithm can be easily generalized to generate preim-
ages of matrices instead of vectors by independently running SamplePre algo-
rithm on each column of the matrix, so we overload the notation by directly
giving matrices U ∈ Z

n×l
q as inputs to the SamplePre algorithm. The follow-

ing algorithm is reminiscient of the extension preimage sampling algorithm of
[2,20].

Algorithm SampleR(A, M, TA, U, σ)
Inputs:

a rank n matrix A in Z
n×m
q and a matrix M in Z

n×l
q ,

a short basis TA of Λ⊥
q (A) and a matrix U ∈ Z

n×l
q ,

a gaussian parameter σ > ‖T̃A‖ · ω(
√

log(m + l)).
Running:

1. sample a random matrix E10 ∈ Z
l×l distributed statistically close to

DZl×l,σ,
2. compute Y = U − M · E10 ∈ Z

n×l
q , and run E11 ←

SamplePre(A, TA,Y, σ),
3. output E1 = (E11‖E10) ∈ Z

(m+l)×l

Outputs:
Let A = (A|M). The algorithm outputs a matrix E1 ∈ Z

(m+l)×l sampled
from a distribution statistically close to DΛU

q (A),σ. In particular, E1 ⊂ ΛU
q (A).

Theorem 1. Let n, q, m, l be positive integers with q ≥ 2 and m ≥ 2n log q.
There is a PPT algorithm SampleR that on input of A ∈ Z

n×m
q , a basis TA

for Λ⊥
q (A), matrices M,U ∈ Z

n×l
q , and an integer σ ≥ ‖T̃A‖ · ω(

√
log(m + l))

outputs E1 ← SampleR(A,M, TA,U, σ) which is with negligible statistical dis-
tance of the distribution DΛU

q (A),σ where A = (A|M).

Proof. As the process of the algorithm, we have

Pr[E1] = Pr[E10] · Pr[E11 : E10]

= ρσ(E10) · ρσ(E11)
ρDl×l,σ · ρσ({E11 : AE11 = U − ME10})

.

For a t satisfying At = U − ME10, we have

{E11 : AE11 = U − ME10} = t + Λ⊥
q (A)

Then we have

ρσ(t + Λ⊥
q (A)) ∈

[
1 − ε

1 + ε
, 1

]

· ρσ(Λ⊥
q (A))
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for some negligible function ε. Besides, we have

ρσ(ΛU
q (A)) =

∑
ρσ(E1) =

∑

AE11=U−ME10

ρσ(E11)ρσ(E10)

=
∑

E10←Dl×l

ρσ(E10)
∑

E11←Dm×l,AE11=U−ME10

ρσ(E11)

=

⎛

⎝
∑

E10←Dl×l

ρσ(E10)

⎞

⎠ ρσ(t + Λ⊥
q (A))

∈
⎛

⎝
∑

E10←Dl×l

ρσ(E10)

⎞

⎠ ·
[
1 − ε′

1 + ε′ , 1
]

· ρσ(Λ⊥
q (A))

∈
[
1 − ε′

1 + ε′ , 1
]

· ρDl×l,σ · ρσ(Λ⊥
q (A))

for some negligible function ε′. Thus,

ρσ(ΛU
q (A)) ∈

[
1 − ε′

1 + ε′ , 1
]

· ρDl×l,σ · ρσ(Λ⊥
q (A))

Pr[E1] ∈ ρσ(E10) · ρσ(E11)

ρDl×l,σ ·
[
1−ε
1+ε , 1

]
· ρσ(Λ⊥

q (A))

∈
[
1 − ε′

1 + ε′ ,
1 + ε

1 − ε

]

· ρσ(E10) · ρσ(E11)
ρσ(ΛU

q (A))

The distribution of E1 is with negligible statistical distance of the distribution
DΛU

q (A),σ. This ends the proof. ��

2.4 Learning with Errors

We review the learning with errors (LWE) problem for the most part from [41].
We first introduce the error distribution χα, that is, the normal (Gaussian)

distribution on T with mean 0 and standard deviation α/
√

2π having density
function 1

αexp(−πx2/α2). Its discretized normal distribution on Zq denoted to be
the distribution of �q ·X� mod q, where X is a random variable with distribution
χα and �x� is the closest integer to x ∈ R.

The following lemma about the distribution χα will be needed to show that
decryption works correctly.

Lemma 6 [2]. Let x ∈ Z
m and r ← χm

α , then the quantity ‖x�r‖ treated as an
integer in [0, q − 1] satisfies

‖x�r‖ ≤ ‖x‖qαω(
√

log m) + ‖x‖√m/2

with all but negligible probability in m.
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For an integer q ≥ 2 and some probability distribution χ over q, s ∈ Z
n
q , define

As,χ to be the distribution on Z
n
q × Zq of the variable (a, a�s + x) induced by

choosing a uniformly at random from Z
n
q , x ← χ.

Learning with Errors (Decision Version). For an integer q = q(n) and a
distribution χ on Zq, LWEq,χ is to distinguish between the distribution As,χ for
some uniform secret s ← Z

n
q and the uniform distribution on Z

n
q ×Zq(via oracle

access to the distribution).
Regev [41] demonstrated that for certain moduli q and Gaussian error dis-

tribution χα, LWEq,χα
is as hard as solving several standard worst-case lattice

problems using a quantum algorithm.

Theorem 2. Let α(n) ∈ (0, 1) and q(n) be a prime such that α · q ≥ 2
√

n. If
there exists an efficient(possibly quantum) algorithm that solves LWEq,χα

, then
there exists an efficient quantum algorithm for approximating SIVP and GapSVP
to with O(n/α) factors in the worst case.

Peikert et al. [19,40] showed that there is a classical reduction from GapSVP to
the LWE problem.

3 Definitions of Identity-Based Functional Encryption

Definition 3 (Identity-Based Functional Encryption). An identity-based
functional encryption (IBFE) scheme for a functionality F is a tuple of four
algorithms IBFE = (Setup, KeyGen, Encrypt, Decrypt) that work as follows:

Setup(1λ) takes as input a security parameter 1λ and outputs a master key pair
(mpk, msk).

KeyGen(msk, id,K) takes as input the master secret key, an id ∈ ID and a
key (a.k.a. a function) K ∈ K, and outputs a secret key skK .

Encrypt(mpk, id,M) takes as input the master public key mpk, an id ∈ ID and
a message M ∈ M, and outputs a ciphertext C.

Decrypt(mpk, skK , C) takes as input a secret key skK and a ciphertext C, and
returns an output v ∈ Σ ∪ {⊥}.

For correctness, it is required that for all (mpk, msk) ← Setup(1λ), all id ∈ ID,
all keys K ∈ K and all messages M ∈ M, if skK ← KeyGen(msk, id, K)
and C ← Encrypt(mpk, id, M), then it holds with overwhelming probability that
Decrypt(skK , C) = F(K, M) whenever F(K, M) 	= ⊥.

Definition 4 (IND-IBFE-CPA Security). For an identity-based functional
encryption scheme for a functionality F over (K, M), security against chosen-
plaintext attacks (IND-IBFE-CPA, for short) if no PPT adversary has non-
negligible advantage in the following game:

1. The challenger runs (mpk, msk) ← Setup(1λ) and gives mpk to A.
2. The adversary A adaptively makes secret key queries. At each query, A

chooses an identity id ∈ ID and a key K ∈ K and obtains skK ← Key-
Gen(msk, id, K).
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3. Adversary A chooses an identity id* ∈ ID and a pair of distinct messages
M0, M1 ∈ M such that F(K, M0)=F(K, M1) holds for all Keys K queried in
the previous phase. The chanllenger computes C* ← Encrypt(mpk, id*, Mβ)
and return C* to A.

4. Adversary A makes further secret key queries for arbitrary identities id ∈ ID
and keys K ∈ K, but under the restriction that id 	= id* and F(K, M0)=F(K,
M1).

5. Adversary A eventually outputs a bit β′ ∈ {0, 1} and wins if β′ = β.

The adversary’s advantage is defined to be AdvA(λ):= |Pr[β′ = β] − 1/2|.

4 Construction of Identity-Based Functional Encryption
for Quadratic Functions

Let U1,U2 : {0, 1}∗ → Z
n×l
q be hash functions, which can be simply seen as l

maps to map id to uniform syndromes in Z
n
q at random and independently. For

ease of exposition, we overload them as matrices.

Setup(1n, 1l, P, V ): Utilize TrapGen to generate A ∈ Z
n×m
q and trapdoor

TA ⊂ Λ⊥
q (A), B ∈ Z

n×m
q and trapdoor TB ⊂ Λ⊥

q (B), where A,B are statis-
tically close to uniform, and TA, TB ∈ Z

m×m. Choose R ∈ Z
n×l
q uniformly

at random. Set max(‖x‖∞, ‖y‖∞) = P and ‖F‖∞ = V , K = l2P 2V . Define
mpk:={A,B, R, K, P, V} and msk:={TA, TB}.

Keygen(msk, id,F): Given F, running SampleR(A, RF, TA, U1(id), σ),
SampleR(B, RF, TB, U2(id), σ) to sample E1 and E2 ∈ Z

(m+l)×l such
that (A|RF)E1 = U1(id) and (B|RF)E2 = U2(id). Compute and return the
secret key skF = (F,E1F,FE�

2 ,E1FE�
2 ).

Encrypt(mpk, id, (x,y)): Sample s1, s2 ← Z
n
q uniformly at random, r

′
1, r

′
2 ←

χm
q,α and r

′′
1 , r

′′
2 , r1, r2 ← χl

q,α and compute

c01 = A�s1 + r
′
1, c11 = B�s2 + r

′
2

c02 = U1(id)�s1 + r1 + � q

K
� · x, c12 = U2(id)�s2 + r2 + � q

K
� · y

c03 = R�s1 + r
′′
1 , c13 = R�s2 + r

′′
2 .

Then, return C := (c01, c02, c03, c11, c12, c13).
Decrypt(mpk, skF, C): Compute μ

′
= c�

02Fc12 − (c01‖F�c03)�E1Fc12 −
c�
02FE

�
2 (c11‖F�c13)+ (c01‖F�c03)�E1FE�

2 (c11‖F�c13) mod q2 and output
the value μ ∈ {−K + 1, ...,K − 1} that minimizes | (� q

K
�)2 · μ − μ

′ |.
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4.1 Parameters and Correctness

For ease of exposition, we omit id here. Observe that

c�
02Fc12

= (U�
1 s1 + r1 + � q

K
� · x)�F(U�

2 s2 + r2 + � q

K
� · y)

= (U�
1 s1)

�FU�
2 s2 + (U�

1 s1)
�F� q

K
� · y + (� q

K
� · x)�FU�

2 s2 + (� q

K
� · x)�

F� q

K
� · y + r�

1 F(U�
2 s2 + r2 + � q

K
� · y) + (U�

1 s1 + � q

K
� · x)Fr2

(c01‖F�c03)�E1Fc12

= ((A�s1 + r
′
1)‖(F�(R�s1 + r

′′
1 )))�E1F(U�

2 s2 + r2 + � q

K
� · y)

= ((A�‖(F�R�))s1 + (r
′
1‖(F�r

′′
1 )))�E1F(U�

2 s2 + r2 + � q

K
� · y)

= ((A�‖(F�R�))s1)�E1FU�
2 s2 + ((A�‖(F�R�))s1)�E1F� q

K
� · y

+ (r
′
1‖(F�r

′′
1 ))�E1F(U�

2 s2 + r2 + � q

K
� · y) + ((A�‖(F�R�))s1)�E1Fr2

c�
02FE

�
2 (c11‖F�c13)

= (U�
1 s1 + r1 + � q

K
� · x)�FE�

2 ((B�s2 + r
′
2)‖(F�(R�s2 + r

′′
2 )))

= (U�
1 s1 + r1 + � q

K
� · x)�FE�

2 ((B�‖F�R�)s2 + (r
′
2‖(F�r

′′
2 )))

= (U�
1 s1)

�FE�
2 (B�‖F�R�)s2 + (� q

K
� · x)�FE�

2 (B�‖F�R�)s2

+ (U�
1 s1 + r1 + � q

K
� · x)�FE�

2 (r
′
2‖(F�r

′′
2 )) + r�

1 FE
�
2 (B�‖(F�R�))s2

(c01‖F�c03)
�E1FE

�
2 (c11‖F�c13)

= ((A�s1 + r
′
1)‖(F�(R�s1 + r

′′
1 )))�E1FE

�
2 ((B�s2 + r

′
2)‖(F�(R�s2 + r

′′
2 )))

= ((A�‖(F�R�))s1 + (r
′
1‖(F�r

′′
1 )))�E1FE

�
2 ((B�‖(F�R�))s2 + (r

′
2‖(F�r

′′
2 )))

= ((A�‖(F�R�))s1)
�E1FE

�
2 (B�‖(F�R�))s2 + (r

′
1‖F�r

′′
1 )�E1FE

�
2 ((B�‖(F�

R�))s2 + (r
′
2‖F�r

′′
2 )) + ((A�‖(F�R�))s1)

�E1FE
�
2 (r

′
2‖F�r

′′
2 )

µ
′
= c�

02Fc12 − (c01‖F�c03)
�E1Fc12 − c�

02FE
�
2 (c11‖F�c13) + (c01‖F�c03)

�

E1FE
�
2 (c11‖F�c13)

= (� q

K
� · x)�F� q

K
� · y + r�

1 Fr2 + r�
1 F� q

K
� · y + � q

K
� · x�Fr2 − (r

′
1‖F�r

′′
1 )�

E1F(r2 + � q

K
� · y) − (� q

K
� · x + r1)

�FE�
2 (r

′
2‖F�r

′′
2 ) + (r

′
1‖F�r

′′
1 )�E1F

E�
2 (r

′
2‖F�r

′′
2 )
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error = r�
1 Fr2 + r�

1 F� q

K
� · y + � q

K
� · x�Fr2 − (r

′
1‖F�r

′′
1 )�E1F(r2 + � q

K
� · y)

− (� q

K
� · x + r1)

�FE�
2 (r

′
2‖F�r

′′
2 ) + (r

′
1‖F�r

′′
1 )

′�E1FE
�
2 (r

′
2‖F�r

′′
2 )

We set ‖E1‖ = ‖E2‖ = β ≤ √
(m + l)σ, and note that

| r�
1 Fr2 |≤ l2V α2q2ω(log n),

| r�
1 F� q

K
� · y |=| � q

K
� · x�Fr2 |≤ � q

K
� · l2PV αqω(

√
log n),

| (r
′
1‖F�r

′′
1 )�E1Fr2 |=| r�

1 FE
�
2 (r

′
2‖F�r

′′
2 ) |< (m + l)2V 2βα2q2ω(log n),

| (r
′
1‖F�r

′′
1 )�E1F� q

K
� · y |=| � q

K
� · x�FE�

2 (r
′
2‖F�r

′′
2 ) |

< � q

K
� · (m + l)lPV 2βαqω(

√
log n),

| (r
′
1‖F�r

′′
1 )�E1FE�

2 (r
′
2‖F�r

′′
2 ) |< (m + l)2V 3β2α2q2ω(log n),

Then, error ≤ (m + l)2PV 3β2α2q2ω(log n)
In order to ensure the correctness, we let error ≤ � q

K �2/4. We set

α−1 > K2βω(
√

log n), q > α−1ω(
√

n)

Additionally, ensure that TrapGen and SampleR can work. We set

m = 5n log q, σ > mω(log m)

5 Security Analysis

Theorem 3. If LWEq,χα
is hard with the parameters set as above, then the

IBFE scheme for quadratic functions is IND-IBFE-CPA secure in the random
oracle model.

Proof. Let A be an adversary attacking the CPA security of IBFE, we can
construct an adversary B that breaks the LWE assumption.

B receives 2(m+2l) samples from LWE oracle which be parsed as (p∗
1i, c

∗
1i) ∈

Z
n
q ×Zq, i=1, ... , m+2l, (p∗

2i, c
∗
2i) ∈ Z

n
q ×Zq, i=1, ... , m+2l. B’s goal is to guess

whether c∗
ji = p∗�

ji sj + r or c∗
ji are uniformly random from Zq, j = 1, 2.

Then, B can simulate A’s view:

– mpk: B sets A = [p∗
11, ...,p

∗
1m],B = [p∗

21, ...,p
∗
2m], R = [p∗

j(m+1), ...,p
∗
j(m+l)]

where without loss we assume p∗
1i = p∗

2i, i=m+1, ... ,m+l, and sends
(A,B,R) to A.
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– Queries to hash U1(),U2(): on A’s distinct query id, if id = id∗, return
(U1(id∗) = [p∗

1(m+l+1), ...,p
∗
1(m+2l)], U2(id∗) = [p∗

2(m+l+1), ...,p
∗
2(m+2l)]), or

if id is contained in the list, return (U1(id), U2(id)), otherwise, for an F,
choose E1,E2 ← DZ(m+l)×l,σ so that (A|RF)E1 = U1(id) and (B|RF)E2 =
U2(id), and store (id,F, U1(id), U2(id), E1,E2) into the list and return
(U1(id), U2(id)), where E1, E2 are uniform and have enough entropy. Note
that it does not matter that we have no input F here, because the number of
F is at most V l2 (a polynomial) and maybe we can store all F corresponding
to an id and the same U1(id), U2(id). Besides, we note that for a sample E1

corresponding to an F, it is hard to find a distinct F′ satisfying RF = RF′

without loss of generality assuming full rank R.
– Queries to secret keys: when A asks for a secret key for (id, F), we

assume without loss of generality that A has made all relevant queries
to U1,U2. If (id, F) is contained in the list, B computes and returns
(F,E1F,FE�

2 ,E1FE�
2 ), otherwise returns a random bit and aborts.

– Challenge ciphertext: when A submits a challenge id∗(distinct from all its
queried id) and a pair of distinct message (x0,y0) and (x1,y1) which sat-
isfies x�

0 Fy0 = x�
1 Fy1 for all queried F, B picks β ∈ {0, 1} and generates

ciphertexts as follows:

c01 = [c∗
11, ..., c

∗
1m]�, c02 = [c∗

21, ..., c
∗
2m]�

c03 = [c∗
1(m+1), ..., c

∗
1(m+l)]

�, c13 = [c∗
1(m+1), ..., c

∗
1(m+l)]

�

c02 = [c∗
1(m+l+1), ..., c

∗
1(m+2l)]

� + xβ , c12 = [c∗
2(m+l+1), ..., c

∗
2(m+2l)]

� + yβ

When A terminates with some output, B terminates with the same output.
It remains to analyze the reduction. It is easy to see that the master public key

A,B,R and the random oracle responses U1,U2 are clearly uniformly random.
Thanks to the discrete Gaussian distributions, for different F, there are distinct
E1,E2 which have enough entropy so that the adversary can not forge new
E′

1,E
′
2 corresponding to arbitrary F′ and acquire more information than x�

β Fyβ

through collusion attacks. We claim that the probability that B does not abort
during the simulation is 1

QU1,U2
(this is proved by considering a game in which

B can answer all secret key queries). We showed that if B does not abort during
secret key queries, then the challenge ciphertexts is distributed as encryption
of β = 0 or β = 1 depending on whether the LWE sample is real or random.
Therefore, conditioned on B not aborting, A’s view is statistically close to the
one provided by the real IBFE CPA security experiment. Then, we have

Adv
LWEq,χα

B ≥ AdvIND−IBFE−CPA
A

QU1,U2

− negl(n).

This concludes the proof. ��
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6 Conclusions and Open Problems

We propose an adaptively secure IBFE scheme for quadratic functions from
lattices in the random oracle model. Constructing adaptively secure FE scheme
for quadratic functions under standard model is still an open problem.

We formalize the definitions of identity-based functional encryption (IBFE)
and its indistinguishability security (IND-IBFE-CPA) which may apply to many
scenarios and applications, and it seems easier to construct IBFE schemes than
FE schemes, so we appeal for more constructions for more practical function
classes for IBFE.

Lattice-based cryptography have many fascinating properties not found in
other types of cryptography, but related techniques are still limited to con-
struct and prove some primitives(e.g. FE), so whether we can construct an FE
scheme for polynomial functions from standard assumptions is an appealing open
problem.
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