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Abstract. System logs record useful information such as execution
paths and states of running programs. Log analysis is an important part
of anomaly detection which is critical for system security. A primary step
for log anomaly detection is to extract structured log templates (message
types) from a mass of unstructured raw logs. However, conventional log
parsers are designed to work offline, which needs to collect logs for a
time period and then load all logs into memory for training. This greatly
limits its applications to large-scale log analysis. With the continuous
increase of log scales, online streaming methods are greatly desired now.
Most of existing online methods are designed for specific log systems and
there still lacks a universal log parser. In this paper, we present Slop,
which is an efficient and universal streaming log parser. To improve the
efficiency of Slop, we first group coming log messages into different parti-
tions according to their lengths. Then, we extract the message types from
different partitions. This avoids many unnecessary comparisons between
logs and existing message types. To improve the universality and accu-
racy, we investigate the relationships between lengths of message types
and the lengths of their raw logs. Based on the uncovered results, we
design a nonlinear threshold criterion for message type extraction which
is adaptive to several log systems. Finally, we implement a prototype
of Slop and conduct extensive experiments to validate its effectiveness
and efficiency based on diverse real-world datasets. It is shown that Slop
obtains 55%–82% improvements in accuracy and achieves higher effi-
ciency than state-of-the-art methods.
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1 Introduction

Log systems record the behavior and running states of systems and programs.
Logs contain useful information such as execution paths which help operators
to detect execution anomalies [1–3]. Log analytics plays important roles in the
building of secure and trustworthy systems. In general, log files are composed of
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independent lines of unstructured text data, which is called a log message. A pri-
mary step for log analysis is to convert unstructured raw logs into structured log
templates which are called message types. Implementations of such techniques
are generally called as log parsers.

Existing log parsers can be roughly classified into two categories, namely
offline methods and online methods. Offline methods such as LKE [4] and
LogSig [5] generate message types based on clustering methods which divide
log messages into different clusters. Heuristic methods such as SLCT [6] and
IPLoM [7] generate candidates of messages types by counting the occurrences
of words at different positions. However, offline methods are often limited by
system resources as they need load a mass of log data into memory. In addition,
log messages used for training are collected in a specific time period. If new
message types are added after training, we have to train the parser again. With
the development of computer science, the scale of logs is becoming much larger
than before, especially with the emergence of distributed systems. For example, a
large service system like HDFS can generate around 50 GB logs (120–200 million
lines) per hour [8]. Therefore, online streaming methods are greatly demanded.

Drain [9] and Spell [10] are two recent online log parsers. These methods
process log messages in a streaming manner, which works incrementally as log
messages are being generated. However, there are two weaknesses of current
online log parsers. First, there is an improvement space for existing online meth-
ods in both accuracy and efficiency. Second, these methods are designed for
specific log systems and the parameter settings are not universal. Drain needs to
specify the depth of a prefix tree before parsing log messages [9]. Spell generates
message types based on a linear threshold criterion which is not capable for most
log systems [10].

In this paper, we present Slop, an efficient and universal streaming log parser.
Based on the intuition that in most cases log messages have the same length
if they belong to the same message type, we perform a partition step to group
incoming log messages according to their lengths. Then we extract message types
for each partition independently. This greatly improves the efficiency by avoiding
many unnecessary searches and comparisons. In order to guarantee the accuracy
of Slop, we also combine the message types in different partitions since a small
number of message types may generate logs with varying lengths (e.g., logs have
different numbers of parameters). In order to improve the universality of our
method, we investigate the relationships between the lengths of message types
and the lengths of raw log messages for several log systems. We find that these
two metrics are not linearly correlated. We then propose a nonlinear thresh-
old criterion to extract message types from the raw log messages. This greatly
improves the universality and accuracy of our approach. Compared with other
methods, Slop is more adaptive and requires less domain knowledge of log sys-
tems. Finally, we implement a prototype of our method and conduct extensive
experiments to validate its effectiveness and efficiency based on diverse datasets.
The results clearly demonstrate that Slop outperforms state-of-the-art methods
in both accuracy and efficiency.
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In summary, we make the following contributions:

– We improve the efficiency of Slop by grouping incoming log messages into
different partitions. This avoids many unnecessary comparisons in the step of
message type extraction.

– We guarantee the accuracy of Slop by aggregating message types in different
partitions and merging the message types belonging to the same types.

– We improve the universality and accuracy of Slop by proposing a nonlinear
threshold criterion in the step of message type extraction.

– We conduct experiments based on the data collected from five real log systems
to evaluate the performance and the result clearly shows the superiority of
Slop.

The rest of this paper is organized as follows: In Sect. 2, we present the
terminologies. Section 3 describes the methodology of Slop. Section 4 shows the
selection of a proper threshold criterion for message type extraction. In Sect. 5,
we conduct extensive experiments to evaluate the performance of Slop. After a
review of related work in Sect. 6, we conclude the work in Sect. 7.

2 Terminologies

In this section, we describe the terminologies used in this paper. Figure 1 presents
an example of the log parsing problem. The upper box shows the raw log mes-
sages and the lower contains the extracted message types. Log messages 1 and 2
are from BlueGene/L [11], and Log messages 3 to 5 are from HDFS [12]. Message
types 1 to 4 are their templates, respectively.

Log messages are independent text lines in a log file. It is a complete log
that describes the behavior of the system or an application. A log message is
constituted by constant tokens and variable tokens. The upper box in Fig. 1
contains a number of log messages, where constant and variable tokens are dis-
tinguished with black and blue colors, respectively. In the rest of this paper, we
use mi to denote a log message.

Message types are generative templates of log messages. A message type
consists of constant tokens, which is the common part of a large number of log
messages. The variable tokens are replaced by asterisks, as shown in the bottom
box in Fig. 1. Message types have the same constant tokens but different numbers
of variable tokens belong to the same type. In the rest of this paper, we use tk
to denote a message type.

Tokens are words delimited by whitespace, commas or colons in a log mes-
sage. For example, RAS, KERNEL, FATAL, r20 = 0x0044397c presented in
Fig. 1 are tokens. The length of a log is defined as the number of tokens.

Constant tokens are the common parts in many different log messages. For
example, RAS, KERNEL, FATAL are constant tokens of log messages 1 and 2.

Variable tokens are the parts which vary in different log messages. Variable
tokens are replaced by asterisks in Fig. 1. For example, the last four tokens in
log messages 1 and 2 are variable tokens.
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Log message 1:
  RAS KERNEL FATAL r20=0x00443940 r21=0x0044397c 
         r22=0x0034f650 r23=0x00000010
Log message 2:
  RAS KERNEL FATAL r24=0x083e0e68 r25=0x0 e891c
         r26=0x0 e4230 r27=0x0 e8914
Log message 3:

         blk_4980916519894289629
Log message 4:
  INFO dfs.DataNode$DataXceiver: Receiving block
         blk_7503483334202473044 src: /10.251.215.16:52002 dest: 
         /10.251.215.16:50010
Log message 5:
  INFO dfs.DataNode$DataXceiver: Received block
         blk_1608999687919862906 src: /10.251.215.18:52002 dest: 
         /10.251.215.18:50010 of size 91178

Message type 1:
  RAS KERNEL FATAL * * * *
Message type 2:

*
Message type 3:
  INFO dfs.DataNode$DataXceiver: Received block * src: * dest: *
Message type 4:
  INFO dfs.DataNode$DataXceiver: Received block * src: * dest: * 
         of size *

Log Parse

Fig. 1. An example of the log parsing problem (Color figure online)

3 Methodology of Slop

Figure 2 presents the basic workflow of Slop, which consists of five main steps,
namely raw log preprocessing, log partitioning, message type prematching, mes-
sage type extraction, and message type combination.
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Fig. 2. Structure of slop
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3.1 Raw Log Preprocessing

In this step, Slop deletes tokens that are ensured to be variable tokens, e.g.,
timestamps. Timestamps always increase in a single log file. However, times-
tamps have fixed positions in log messages and thus the efficiency can be greatly
improved if we remove these tokens before log parsing. It is worth noting that
this is not a necessary step. If users have no knowledge of where the timestamp
is, they can choose to do nothing in this step. The accuracy of the results will
not be affected without any preprocessing of the raw logs.

3.2 Log Partitioning

In this step, Slop groups an incoming log message into specific partitions accord-
ing to the length. As shown in Fig. 2, for an incoming message, if it does not
match any partitions according to its length, Slop will create a new partition.
Message types are extracted in each partition independently. Each partition con-
tains several message types. In the rest of this paper, we denote a partition as
a set Pj , and Pj = {t1j , t2j , . . . , tkj}, where tkj is the k-th message type in Pj .
Clearly, partitioning the messages into small groups reduce many unnecessary
comparisons. This is because the number of message types in each partition is
much smaller than the total number of message types. In most cases, log mes-
sages have the same length if they belong to the same message type. Some log
messages belonging to the same message type may have different lengths and
thus are grouped into different partitions. We handle this problem by combining
all message types and merge message types belonging to the same type. The
details are described as in Sect. 3.5.

3.3 Message Type Prematching

When an incoming message mi is grouped into a partition Pj , Slop first calculates
the intersections between mi and tkj ∈ Pj . If the intersection length satisfies the
threshold criterion (see Sect. 4), then mi is a possible realization of tkj . In the
next step Slop extracts the message type and parameters of mi, and update
the message type tkj . If the intersection length does not satisfy the threshold
criterion for any message types, then a new message type is created and added
to the partition.

3.4 Message Type Extraction

If an incoming message mi is prematched with a message type tkj , Slop extract
the message type and parameters of mi, and update tkj using the LCS (Longest
Common Subsequence) method. The LCS problem is to find the longest subse-
quence common to all sequences in a set of sequences (often just two sequences).
For example, given two sequences S1 = ABCDEFG and S2 = ABKDEFH, the
longest common subsequence of S1 and S2 is ABDEF. There are two key points
to note here. The first key point is that LCS needs to appear in both sequences
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simultaneously. The other is that the order of tokens in LCS needs to be the
same order it appears in both sequences.

When we obtain the LCS between mi and tkj , then the remaining tokens
(variable tokens) are parameters. We then replace the variable tokens with aster-
isks to obtain the message type of mi. If the obtained message type is different
from tkj , we use it substitute tkj .

3.5 Message Types Combination

As mentioned previously, the partitioning step may divide the log messages
belonging to the same type into different groups. In this step, Slop combines
all message types in different partitions to obtain the final set of message types
and merges message types belonging to the same type. Figure 3 presents an
example of two log messages from HDFS [12]. At the end of m1, there is just one
IP address as its parameter while there are two IP addresses in m2. Although
m1 and m2 have different lengths, they belong to the same message type.

Log message 1:
  INFO bfs.FSNamesystem: BLOCK* ask 10.251.31.5:50010 to 
         replicate blk_1608999687919862906 to datanodes(s) 

10.251.90.64:50010
Log message 2:
  INFO bfs.FSNamesystem: BLOCK* ask 10.250.14.224:50010 to 
         replicate blk_1608999687919862687 to datanodes(s) 

10.251.215.16:50010, 10.251.71.193:50010

Message type 1:
  INFO bfs.FSNamesystem: BLOCK* ask * to replicate * to 
         datanodes(s) *
Message type 2:
  INFO bfs.FSNamesystem: BLOCK* ask * to replicate * to 
         datanodes(s) * *

Log Parse

Fig. 3. An example from HDFS logs

To tackle this problem, we propose an algorithm to combine the obtained
message types. Assume the there are n partitions and each partition contains
a number of message types. Denote the set of final message types as P . Slop
compares the message types from each partition with that in P . If a message
type is a subsequence of the other, then the two message types will be com-
bined as a single message type. The pseudo-code of the algorithm is presented in
Algorithm 1. The function intersection(tkj , ti) calculates the length of common
constant tokens between tkj and ti. |ti| is the length of the message type ti,
which is the number of constant tokens.
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Algorithm 1. Message types combination algorithm
Input: Partitions
Output: P : The final message type set
Initialization: P = ∅

1 for j ← 1 : n do
2 foreach tkj ∈ Pj do
3 flag = True;
4 foreach ti ∈ P do
5 if intersection(tkj , ti) == min(|tkj |, |ti|) then
6 flag = False;
7 break;

8 if flag then
9 Add tkj to P ;

It is worth noting that the algorithm is efficient since the total number of
message type are usually small. For example, an HDFS [12] log file which contains
more than 11 million log messages just has 39 message types. Additionally, the
combination can be performed periodically with a much longer time interval.
This further improves the efficiency.

4 A Nonlinear Threshold Criterion

In this section, we first present why a proper threshold criterion is necessary
for message type extraction and the weaknesses of the linear threshold criterion.
We then introduce a nonlinear threshold criterion which is universal for several
common log systems.

4.1 The Necessity of a Proper Threshold

Although log messages m3 and m4 in Fig. 1 share a common token “INFO”,
they do not belong to the same message type. That is, we need a threshold to
determine when an LCS can be regarded as a message type. In the rest of this
paper, we use lij to denote the length of LCS between log messages mi and mj ,
and ω to denote the threshold. That is, if and only if the length of the LCS is
greater than the threshold ω, these two log messages can be regarded to belong
to the same message type.

However, how to decide a proper threshold criterion is a core and difficult
problem. Spell introduces a linear threshold criterion which is defined as ω =
|mi|/2 [10], where |mi| is the length of mi. For example, the length l34 of the
LCS of m3 and m4 is 1, and ω = 3 (i.e., 6/2). Since l34 is not greater than ω,
the LCS “INFO” of m3 and m4 cannot be regarded as a message type.

Such a threshold criterion works well for specific log systems. However, it
encounters serious problems when applied to other log systems. For example,
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Table 1. Statistical results for different log systems

Log systems Logs Logs (lij � ω) MT MT (lij � ω)

BlueGene/L 2000 1297 (65%) 112 29 (26%)

HDFS 2000 1061 (53%) 14 5 (36%)

HPC 2000 1331 (67%) 44 27 (61%)

Proxifier 2000 1958 (98%) 7 3 (43%)

Zookeeper 2000 324 (16%) 46 12 (26%)

the lengths of log messages m1 and m2 in Fig. 1 are both 7, and their LCS
l12 is of length 3. Thus, the log parser will determine that the two messages
belong to different message types. We investigate such a problem in five log
systems, namely BlueGene/L, HDFS, HPC, Proxifier, and Zookeeper. He et al.
provide the datasets for the five system logs with ground-truth message types in
their work [13]. They randomly select 2000 log messages from every dataset and
extract their message types. We then examine how many logs and message types
that violate the linear threshold criterion. The results are presented in Table 1.
It is found that a large fraction of logs (the 3rd column) and message types (the
5th column) disobey the criterion. For instance, nearly 65% log messages have
an LCS whose length is not greater than half the length of the message. These
messages are generated from about 26% message types. The statistical results
clearly show such a linear threshold criterion will result in high message type
extraction errors. It is necessary to find a proper threshold criterion which is
adaptive to different system logs.

4.2 Nonlinear Threshold

In order to find a proper threshold criterion, we look insight into the relationship
between the length of log messages and the length of its corresponding message
types based on the above five log systems. The results are shown in Fig. 4. The
x-axis represents the length of log messages and the y-axis is the length of mes-
sage types. We also plot the linear threshold criterion in the figures. It is shown
that when the length of log messages is small, the length of most message types
is below the line of the linear threshold. This indicates that short message types
have a big chance to violate the criterion. Therefore, we should find a proper
threshold criterion that satisfies: (i) The threshold curve should approximate to
the message type curve and (ii) it should not surpass above the message type
curve.

Take the above analysis into consideration, we find a proper nonlinear thresh-
old criterion:

ω(mi) =
1

2
|mi| tanh(

|mi|
max(|m|)T ), (1)
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(a) BlueGene/L (b) HDFS

(c) HPC (d) Proxifier (e) Zookeeper

Fig. 4. Effectiveness of tanh.

where |mi| is the length of log messages, max(|m|) is the maximum length of log
messages for a specific log system, T is an adjustable constant, and

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
. (2)

The motivation of the above nonlinear threshold criterion is to reconcile the
linear one with a tanh(x) function. However, we have to determine a proper value
of the parameter T in order to satisfy the previously mentioned two constraints.
The curve of the tanh(x) function is plotted in Fig. 5. We focus on the first
quadrant of the tanh(x) function since the length of log messages are always
positive. It is shown that the value of tanh(x) increases with the increase of x
with a decreasing rate. The values of tanh(x) approximate to 1.0 when x is large
enough. In fact, we want to apply the nonlinearity of tanh(x) when the length
of a log message |mi| is small. Therefore, we have to scale the value of |mi|

max(|m|)
in order to satisfy the constraints. We find that when x � 2.64, it is enough to
guarantee the value of tanh(x) approximate to 1.0. Hence, in this paper we set
T = 2.64.

We also plot the nonlinear threshold criterion in Fig. 4. We can see that
in all datasets, our nonlinear threshold criterion works very well with only one
exception in the HPC log system [14]. The exceptional message type has a length
of 44, and the logs corresponding to this message type just appear only once in
the 2000 log messages.
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Fig. 5. The Tanh function

5 Experiments

In this section, we first introduce the datasets to conduct the experiments. Then
we evaluate the effectiveness and efficiency of our approach by comparing with
the state-of-the-art methods.

5.1 Datasets Description

We employ datasets collected from 5 real log systems for the experiments. Table 2
shows the statistical information of the datasets. BlueGene/L is collected by
LLNL (Lawrence Livermore National Labs). It contains logs collected from a
supercomputer called BlueGene/L [11]. HDFS is collected from a 203 nodes
cluster which is deployed on the Amazon EC2 platform [12]. HPC is collected
from a cluster, too, which has 49 nodes [14]. Proxifier is collected from a software
called Proxifier. Zookeeper is a dataset used in [9] and it is collected from a
32-node cluster. These datasets can be obtained from [15].

Table 2. Datasets information

System Log messages Message types

BlueGene/L 4,747,963 183

HDFS 11,175,629 39

HPC 433,490 50

Proxifier 10,108 9

Zookeeper 74,380 64

5.2 Parameter Settings

We compare Slop with four log parsers namely IPLoM [7], LogSig [5], Spell [10],
and Drain [9], which are proposed in 2009, 2011, 2016, and 2017, respectively. We
left those methods that are very old like SLCT [6] which is proposed in 2003. We
have tuned the parameters of these methods to achieve their best performance.
Table 3 shows the parameters for different datasets. For IPLoM, ct is used to
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avoid further partitioning. Its value ranges in (0, 1]. LB is the lower bound
to control how to find a bijective [7]. For LogSig, k is the number of message
types [5,9,13]. Drain [9] has two parameters named depth (depth of fixed tree)
and st. Depth is the depth of the fixed tree and st is the similarity threshold [9]
which is used to select the most suitable log group for a log message. Spell and
Slop need no parameters.

Table 3. Parameters of IPLoM, LogSig and Drain

Methods Parameters BlueGene/L HDFS HPC Proxifier Zookeeper

IPLoM ct 0.4 0.35 0.18 0.55 0.4

LB 0.01 0.25 0.25 0.25 0.65

LogSig k 183 39 50 9 64

Drain Depth 3 4 3 3 4

st 0.3 0.4 0.5 0.3 0.3

5.3 Effectiveness Evaluation

In this experiment, we evaluate the effectiveness of Slop. The ground-truth of
message types for each dataset is obtained as follows: First, we obtain four sets of
message types by applying IPLoM [7], Drain [9], Spell [10] and Slop, respectively.
We do not use LogSig because it needs the number of message types as its
input [5]. If a message type is obtained by more than two methods, we regard
it as a ground-truth. For each of the types extracted only by one method, we
calculate its similarity with each of the previously obtained ground-truth. The
similarity between two message types is defined as follows:

s =
|{t1} ∩ {t2}|
|{t1} ∪ {t2}| (3)

where {t1} is the set of constant tokens contained in t1. A message type is added
as a ground-truth if its similarity with any ground-truth message types is smaller
than 0.5.

We first examine the performance of the methods for different log systems. We
use nMT to denote the number of message types generated by each method and
nG to denote the number of message types in the ground-truth. We then calculate
|nMT −nG| to see which method performs the best for different log systems. The
result is shown in Fig. 6. The red line represents the baseline, which is always
zero. It is shown that Slop performs better than other methods in almost every
dataset. Spell [10] generate much more message types for HDFS [12] because
the threshold criterion is not a suitable choice. Log messages whose constant
tokens are less than half the length of the log messages will be regarded as a new
message type. Thus, Spell extracts many redundant message types which belong
to the same message type. Drain [9] also generates too many message types for
Proxifier.
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Fig. 6. Number of message types generated by each method (Color figure online)

We then employ the F1-score to evaluate the accuracy of these methods.
F1-score is defined as follows:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
. (4)

where Precision and Recall are defined as:

Precision =
TP

TP + FP
. (5)

Recall =
TP

TP + FN
. (6)

where TP, FP, and FN in the equations are True Positive, False Positive and False
Negative, respectively. True Positive means that log messages generated by the
same message type are correctly grouped together. False Positive is the case that
log messages not belonging to the same message type are misclassified together.
False Negative represents that message types belonging to the same message type
are parsed as different message types. Table 4 shows the performance of each
method on different datasets. It is shown that Slop achieves the highest scores
on Precision, Recall and F1-score on all log systems except for the Zookeeper.
Although Slop is not as good as IPLoM [7] and Drain [9] on Zookeeper [9], it
still has good performance which is close to the highest score. Spell has very low
recalls on most datasets because its FNs are too high. Slop reduces the FNs by
the employment of the nonlinear threshold criterion.

5.4 Efficiency of Slop

To evaluate the efficiency of Slop, we randomly sample 20%, 40%, 60%, 80%, and
100% log messages from each dataset, respectively. The numbers of log messages
in the sampled datasets are shown in Table 5. Figure 7 shows the running time
of each log parser. We observe that, compared with other methods, the running
time of LogSig [5] increases faster as the log size increases. This is because it uses
a matrix to generate message types, whose time complexity is O(n2). IPLoM [7]
shows the best performance on BlueGene/L [11]. This is because log messages
from BlueGene/L are more structured than other datasets. So it is faster to count
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Table 4. Precision, Recall, F1-score of each methods

Dataset Metrics LogSig IPLoM Spell Drain Slop

BlueGene/L Precision 0.83 0.97 0.91 0.97 0.99

Recall 0.25 0.8 0.87 0.72 0.9

F1-score 0.39 0.87 0.89 0.83 0.94

HDFS Precision 0.82 0.92 0.92 0.92 0.93

Recall 0.75 0.86 0.06 0.86 0.93

F1-score 0.78 0.88 0.11 0.89 0.93

HPC Precision 0.81 0.33 0.82 0.85 0.97

Recall 0.56 0.25 0.73 0.69 0.83

F1-score 0.66 0.29 0.77 0.76 0.9

Proxifier Precision 0.73 0.89 0.86 0.88 0.89

Recall 0.73 0.33 0.38 0.1 0.78

F1-score 0.73 0.48 0.52 0.19 0.82

Zookeeper Precision 0.82 0.95 0.97 0.95 0.94

Recall 0.7 0.95 0.68 0.95 0.86

F1-score 0.76 0.95 0.8 0.95 0.9

the token frequency at each position and search for bijections [7]. However, this
method requires more memory than others. Spell [10] is more time-consuming
than Drain [9]. Since when there is no matched message type in the prefix tree for
a coming log message mi, it has to calculate the LCS between mi and each of the
extracted message types tij . The time complexity of calculating LCS between mi

and tij is O(|mi||tij |). On the other hand, the depth of the prefix tree increases
as the parsing process goes on. Drain [9] consumes slightly more time than Slop.
Drain divides all log messages that contain digits to a same group. Although it
restricts the maximum width and depth of the tree, there may be too many logs
in a group [9]. So it costs more time for systems whose log messages contain too
many digits. As shown in Fig. 7, except for the BlueGene/L dataset, Slop has
the best performance among all the methods. This is because Slop partitions log
messages by length, which reduces many unnecessary comparisons between log
messages and message types.

Table 5. Different sizes of sample datasets

Dataset 20% 40% 60% 80% 100%

BlueGene/L 0.9m 1.8m 2.7m 3.6m 4.5m

HDFS 2.1m 4.3m 6.4m 8.5m 10.7m

HPC 84.7k 169k 254k 338.7k 423k

Proxifier 2k 3.9k 5.9k 7.9k 9.9k

Zookeeper 14.5k 29k 43.6k 58k 72.6k
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(a) BlueGene/L (b) HDFS (c) HPC

(d) Proxifier (e) Zookeeper

Fig. 7. Efficiency of each method on different log size.

The time complexity of Slop is O(|Pj ||mi| + |tij ||mi|)n, where |Pj | is the
number of message types in one partition, |mi| is the length of the log message,
|tij | is the length of the message type, and n is the number of log messages. For
every log message, |Pj ||mi| is the time complexity of prematching, and |tij ||mi|
is the time complexity of calculating LCS. These are only one calculation of
LCS for a log message. Obviously, |mi| and |tij | can be regarded as constants
since they are far less than the number of log messages. The number of message
types |Pj | in each partition can also be regarded as a constant. Figure 8 plots
the number of message types in each partition. Take the BlueGene/L dataset
which has the most message types among the five datasets as an example, Slop
produces 173 message types totally. With partitioning, it only needs to compare
at most 35 times instead of 173 times in the stage of prematching. In the other
four datasets, the number of message types in almost all partitions are less than
20. The number of message types |Pj | in each partition is much smaller than
non-partition, which greatly reduces the time complexity.

We also evaluate the average time for each online method to find the message
type of a newly incoming log message. Table 6 shows the results. It is shown
that Slop has the best performance to find or generate the message type of
a log message. Such results clearly demonstrate that Slop satisfies the online
processing requirement.
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(a) BlueGene/L (b) HDFS (c) HPC

(d) Proxifier (e) Zookeeper

Fig. 8. Number of message types in different partitions.

Table 6. Average lookup time of online methods

Method BlueGene/L HDFS HPC Proxifier Zookeeper

Spell (ms) 0.246 0.067 0.201 0.149 0.083

Drain (ms) 0.083 0.031 0.033 0.035 0.03

Slop (ms) 0.074 0.031 0.032 0.032 0.029

6 Related Work

There have been many researches on log parsing, which is critical for log anomaly
detections such as DDoS attack detections [3] and performance failure detec-
tions [16–20]. To the best of our knowledge, the first log parser is called SLCT [6].
SLCT first calculates the distance between log messages and then employs a clus-
tering technique to divide log messages into different groups, and finally extract
the message types. Xu et al. [17,21] proposed a method to automatically generate
message types through source code. However, in practice source codes are often
not available in most cases. Through pre-defined regular expressions, message
types could also be extracted from raw logs [4]. However, the definition of reg-
ular expressions needs domain knowledge, which is a high requirement for most
log parser users. IPLoM [7] consists of three steps to group raw logs iteratively
and search for bijective relationships between logs. LogSig [5] uses a metric to
determine which message type the raw log belongs to. It requires the number of
message types as input. However, in practice, it is hard to determine how many
message types a specified system has.
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To the best of our knowledge, Drain is the latest log parser proposed by He
et al. in 2017 [9]. It is an online streaming log parser which parses raw logs using
a fixed depth tree. It also needs the user to write regular expressions to pre-
process the raw logs, which need domain knowledge like LKE [4]. Moreover, the
parameter configurations of Drain [9] varies from system to system. It is usually
hard to specify the parameters for different log systems. Spell [10] is another
online streaming log parser. It parses log messages through computing longest
common subsequence between log messages and message types. Every incoming
log message needs to be compared with all message types until the message type
of the log message is found. As the number of message types increases, this
process becomes time-consuming and there are many unnecessary comparisons
between log messages and message types.

In summary, all these methods face a common problem: different log systems
need different parameters. However, we often do not know how to specify these
parameters for different log systems. Although Spell does not need to tune the
parameters by users, it is not adaptive to other systems. In our method, we
design a nonlinear threshold criterion which is adaptive to most systems. We also
partition the log messages according to their lengths to improve the efficiency.

7 Conclusion

With the continuous increase of log scale, online log parser is greatly desired
now. In this paper, we propose Slop, an efficient and universal online stream-
ing log parser. We improve the efficiency of Slop by grouping log messages into
partitions. The message types extracted from different partitions are then com-
bined and merged to guarantee its accuracy. We improve the universality of
Slop by employing a nonlinear threshold criterion for message type extraction.
We implement a prototype of Slop and conduct extensive experiments to eval-
uate its effectiveness and efficiency. The experimental results show that Slop
outperforms the state-of-the-art log parsers in terms of accuracy and efficiency.
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