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Abstract. Ring signatures, as introduced by Rivest, Shamir, and Tau-
man (Asiacrypt ’01), allow to generate a signature for a message on behalf
of an ad-hoc set of parties. To sign a message, only the public keys must
be known and these can be generated independently. It is furthermore
not possible to identify the actual signer based on the signature. Ring
signatures have recently gained attention due to their applicability in
the construction of practical anonymous cryptocurrencies, where they
are used to secure transactions while hiding the identity of the actual
spender. To be applicable in that setting, ring signatures must allow to
determine when a party signed multiple transactions, which is done using
a property called linkability.

This work presents a linkable ring signature scheme constructed from
a lattice-based collision-resistant hash function. We follow the idea of
existing schemes which are secure based on the hardness of the discrete
logarithm problem, but adapt and optimize ours to the lattice setting.
In comparison to other designs for (lattice-based) linkable ring signa-
tures, our approach avoids the standard solution for achieving linkabil-
ity, which involves proofs about correct evaluation of a pseudorandom
function using heavy zero-knowledge machinery.

1 Introduction

Digital signatures are one of the most important concepts in the area of cryp-
tography. They permit a party to generate a key pair (SK,PK), give PK to
the public and add certain information Ω - called the signature - to a message
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m. Ω is derived using the private (or signing) key SK and later allows a verifier,
equipped with the public verification key PK, to attest that the signer indeed
generated Ω for this specific message m. Verification is done in a way such that
only a party who possesses certain secret information that only the signer has,
namely the secret signing key SK, can generate a valid signature for PK.

Ring signatures, which were first suggested by Rivest, Shamir, and Tauman
[40], relax the condition of having exactly one pair (SK,PK) for signing and
verification to a certain extent. They allow a party among a set of N participants
to sign a message on behalf of all of them. Here it is crucial that the verifier
cannot identify the party that signed the message, while nobody outside of the
N participants should be able to sign a message as if he was a participant
himself. In comparison to group signatures, the set of parties does not need to
be known ahead of time, but only when the signature is generated. Therefore,
no key-generation algorithm which generates correlated randomness for all N
parties needs to be involved and the rings can be set up ad-hoc1.

For such a ring signature, each signer could issue an arbitrary number of
signatures. Fujisaki and Suzuki introduced the notion of traceable ring signatures
[17], where the signer signs a message with respect to a list of ring members and
a public issue such as an election. There is a public procedure to determine
whether two signatures come from one signer, i.e., the signer is linked if a signer
signs the same message with respect to the same list of ring member and same
issue twice [16]. A related idea is so-called linkable ring signatures, in which
case the true signer will be linked when he signs two messages (different or
identical) with respect to the same ring. In a more restricted version of linkable
ring signatures, one-time linkable ring signatures, a signer is linked as soon as he
reveals two signatures. This property has proven to be vital in the construction
of cryptocurrencies, such as to prevent double spending attacks and to preserve
the anonymity of a spender since the address or the respective secret key in the
design of the anonymous cryptocurrency is supposed to be one-time [37].

1.1 Related Work

Lattice-Based Signature Schemes. The line of work on lattice-based signature
schemes was, to the best of our knowledge, initiated by Goldreich et al. [19],
while the first practical construction was based on NTRU [22]. A scheme that
fits into this line of work is the provably secure construction due to Gentry et al.,
also called hash-and-sign [18]. This approach, where the signing key is a secret
trapdoor which is used to sample a short lattice vector, was further developed in
[9,15]. A different direction, called Fiat Shamir with Aborts, was first explored
by Lyubashevsky [28,29]. Very efficient signature schemes such as Tesla [21] and
Dilithium [14] have been designed within this framework.

1 We relax this a bit and assume that there exists a CRS which is known to all parties
and which allows them to derive their respective key pairs (SK, PK).
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(Linkable) Ring Signature Schemes. There exists a wealth of literature on ring
signature and linkable ring signature schemes such as [6,16,17,27,40] and we
only list some of the relevant works here. However, the above mentioned sig-
nature schemes have a signature size that is linearly dependent on the number
of users N in the ring. The Groth-Kohlweiss framework [20] is based on homo-
morphic commitments and provides a ring signature scheme with a logarithmic
signature size. Franklin and Zhang [16] propose a general framework for link-
able ring signatures. They extend the “PRF made public” paradigm by Bellare
and Goldwasser [5] in order to provide linkability by combining a PRF evalu-
ation of the secret key with a NIZK proof of correct evaluation. The smallest
ring signatures to date have constant signature size and are based on accumu-
lators. The construction by Dodis et al. [13] uses accumulators based on the
strong RSA assumption, while Nguyen’s [36] relies on pairing-based cryptog-
raphy. There exists also a linkable version of [13] by Tsang and Wei [42] that
retains the constant-sized signatures. There exist candidates for post-quantum
ring signature schemes such as hash-based [12,23] or multi-variate-quadratic-
equation based constructions [35]. Neither of them provide linkability in their
current form, but they can potentially be extended to do so.

Lattice-Based Ring Signature Schemes. Lattice-based ring signatures were first
introduced explicitly through the work of Brakerski and Tauman-Kalai [10] who
proposed a general framework for ring signatures in the standard model and
showed how to instantiate it based on the SIS assumption. The resulting sig-
natures have size O(mN) for message length m and ring size N . Subsequently,
Wang and Sun [43] proposed two ring signatures schemes from the SIS assump-
tion in the random oracle and standard model, respectively, both of linear sig-
nature size. The first ring signature scheme based on the LWE assumption was
proposed by Melchor et al. [33] and is an extension of [28] to the ring signature
setting. Like the previous schemes, it yields signatures of linear size. Recently,
Libert et al. [25] proposed the first lattice-based ring signature scheme with only
logarithmic signature size using a Merkle-tree based construction.

Concurrent Work. In concurrent work, Torres et al. [41] present a construction
that is very similar to ours. When comparing the actual parameters of both,
we have a larger size of the public keys, but compare favorably in the signature
size.

1.2 Our Contribution

We present a lattice-based linkable ring signature scheme based on the Module-
SIS and Module-LWE problem. Our scheme has a signature size which is linear
in N . It is therefore asymptotically less efficient than e.g. [12,23,25]. However,
we show that in terms of signature size our construction outperforms or performs
as good as [12,25] for comparable security levels for ring sizes N � 128 and beats
[23] for rings of small size. A comparison can be found in Table 1 below.
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Table 1. Comparison with existing work

[25] [12] Sponge/Davies-Meyer [23] Our work

Size of PK 0.5 KB 32 B 32 B 8 KB

Size (N = 8) 1.44 MB 766/477 KB 148 KB 82.5 KB

Size (N = 32) 2.29 MB 1200/719KB 216 KB 305.7 KB

Size (N = 128) 3.14 MB 1.59/0.94 MB 285 KB 1.17 MB

The authors of [12] present two different, highly optimized constructions of
ring signatures in their work. We mention numbers for both to allow for fair
comparison (outperforming one of the two for N = 128). We want to stress that
using known techniques [14] and by choosing parameters more aggressively it is
possible to reduce the public key and signature size in our setting further, but
such optimizations are beyond the scope of this work. Furthermore, [12,23,25]
are not linkable in their current form, so one can expect a further increase in their
proof size to compute a linkability tag. Though our work only outperforms [23]
for small (N ≤ 20) ring sizes, this is exactly the range that cryptocurrencies need:
the recommended ring size of the most popular cryptocurrency using linkable
ring signatures, Monero, at the time of writing was N = 5. As mentioned before,
using [14], would make it possible to reduce the ring signature size further to
also outperform [23] for N � 64.

1.3 Technical Overview

As mentioned before, the standard approach for transforming a ring signature
scheme into a linkable ring signature scheme, following Franklin and Zhang [16],
is to add a PRF evaluation of the signer’s secret key to the signature, as well
as a zero-knowledge proof of correct evaluation of the PRF under one of the
secret keys corresponding to the public keys. This generic approach applies to
any ring signature scheme and was explored for lattice-based PRFs in [25,26,44].
However, such proofs come with quite a substantial overhead. Our construction
instead follows the approach of Liu et al. [27] that avoids this technique. The
main observation is that the signer in their scheme has two “public” keys: One
that is published before signature generation as part of the ring of signers, and
the other one that is appended to each signature. Hence, another“public key”
under different public parameters that corresponds to the signer’s secret signing
key can be used as linkability tag. Since both kinds of public keys share the same
algebraic structure, the two “public keys” of the signer, i.e. the actual public
key and the linkability tag, can be tied together without appending another
non-interactive zero-knowledge proof to the signature.

Since our construction will be based on the (Module-)SIS and (Module-)LWE
problem, the public keys of the parties are of the form PK = Ar for secret
key r and public matrix A. Linkability will be ensured by providing linkability
tags I = Br for another public matrix B. Interestingly, the reason why our
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construction achieves only one-time linkability is inherent in this approach: any
evaluation Br leaks information about r. If a fresh matrix B is generated for
each ring, then a malicious party can receive more leakage on r than intended
and hence may be able to recover the signer’s secret key.

In order to obtain more efficient lattice-based (linkable) ring signatures, it
may be tempting to try to instantiate current sublinear-size ring signatures in
the lattice setting. Note, however, that this is far from trivial, as these solutions
are specifically tailored to a certain assumption like Dodis et al.’s accumulator-
based ring signatures [13], or suffer from the well-known problem that hard
lattice assumptions do not provide enough algebraic structure to support existing
sublinear approaches based on homomorphic operations like that of Groth and
Kohlweiss [20].

Paper Organization
In Sect. 2 we will introduce some definitions and lemmas concerning lattice-based
constructions which we will need throughout this work. Moreover, we will give
definitions for linkable ring signatures (following previous work). Section 3 con-
tains the construction and security statements. The main parts of the proofs are
deferred to AppendixA, whereas we discuss the practicality of our scheme in
Sect. 4. In this Section, we also provide a sample parameter set for our construc-
tion together with estimates for the size of signatures.

2 Preliminaries

We will use [N ] as shorthand for the set {1, . . . , N}. Let R be the cyclotomic
ring R = Z [X]/〈Xν + 1〉, where ν = 2p and p ∈ N

+. Let q be an odd prime and
define Rq = Zq [X]/〈Xν + 1〉. Here Zq denotes the integers modulo q, which will
be represented as elements from the interval

[− q−1
2 , q−1

2

]
. For f =

∑
i fiX

i ∈ R,
the norms of f are defined as

l1 : ‖f‖1 =
∑

i
|fi|, l2 : ‖f‖2 =

(∑

i
|fi|2

)1/2

, l∞ : ‖f‖∞ = max
i

|fi| .

If f ∈ Rq, then we will represent each coset from Zq with its unique represen-
tative from the aforementioned interval and consider the norm of the obtained
Z-vector. Let Sβ denote the set of elements x ∈ R with l∞-norm at most β. Let
0v ∈ Z

v×v and Iv ∈ Z
v×v denote the zero and identity matrix over Z.

Remark 1. We use the following standard relations among different l-norms of
a vector in R as defined above:

1. If f, g ∈ R such that ‖f‖∞ ≤ β, ‖g‖1 ≤ γ, then ‖fg‖∞ ≤ βγ.
2. If f ∈ R, g ∈ Rv satisfy that ‖f‖2 ≤ β, ‖g‖∞ ≤ γ, then ‖fg‖2 ≤ √

vνβγ.

We require a subset D of Rq which consists of short invertible elements such
that the difference of any two distinct elements from this set is also invertible. It
was shown in [32] that as long as q is a prime that satisfies q = 17 mod 32 and
q > 220, then the set D = {d ∈ Rq|‖d‖∞ ≤ 1, ‖d‖1 ≤ κ} satisfies this require-
ment. We use D̄ to denote the set of values D + D excluding 0.
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2.1 Normal Distribution and Rejection Sampling

The continuous normal distribution over R
ν centered at u ∈ R

ν with standard
deviation σ has probability density function

ρν
u ,σ(x) =

1√
2πσ

· exp
(−||x − u||22

2σ2

)

The discrete normal distribution over Rv centered at u ∈ Rv with standard
deviation σ is given by the distribution function (for all x ∈ Rv)

Nu ,σ(x) = ρv·ν
u ,σ(x)/ρv·ν

σ (Rv),

where we omit the subscript u when it is zero. We use the following standard
tail-bound due to Banaszczyk:

Lemma 1. Let Nu ,σ be defined as above. Then

Pr
[‖z‖2 > 2σ

√
vν|z ← N v

σ

]
< 2−vν

For our ring signature scheme, we use rejection sampling to hide the secret
signing key. The basic idea of rejection sampling is to abort the protocol with a
certain probability such that the distribution of the response is independent of
the secret input. We adopt the rejection sampling lemma from [29]:

Lemma 2. Let V be a subset of Rv in such that all elements have ‖·‖2-norms
less than T , σ ∈ R such that σ = ω(T

√
log(vν)), and h : V → R be a probability

distribution. Then there exists an M = O(1) such that the output distribution of
the following two algorithms A, S is within statistical distance 2−ω(log(vν))/M :

A:
1. u ← h
2. z ← N v

u ,σ

3. output (u,z) with probability min
(

1
M

N v
σ (z)

N v
u ,σ(z)

, 1
)

S:
1. u ← h
2. z ← N v

σ

3. output (u,z) with probability 1/M

Moreover, the probability that A outputs a value is at least 1−2−ω(log(vν))

M .

In [29], the author remarks that if σ = αT, α > 0 and M =
exp

(
12/α + 1/(2α2)

)
then the output of both algorithms will be within sta-

tistical distance 2−100/M and A will output a value with probability at least
1 − 2−100

M
. As an example, assume that we want the signing algorithm to suc-

ceed in each iteration with probability 1/3, i.e. we want to set M = 3. Then
following the reasoning in [29], we can set σ = 11 · T . This means that the out-
put of the signing algorithm is indistinguishable from the simulator except with
probability ≈ 2−98, which we deem sufficient for our application.
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2.2 Module-SIS and Module-LWE

The security of our linkable ring signature scheme will be based on the hardness
of two problems, Module-SIS and Module-LWE [24]. These problems are variants
of the well-known SIS [1] and LWE [39] problems, but over modules that are
defined over polynomial rings. This is a generalized version of the Ring-SIS and
Ring-LWE problems [30,31,38]. Using Module-lattice assumptions comes with
two advantages: (i) while they are a generalization of ideal-lattice assumptions,
they still retain some structure which is necessary to construct a large space of
short, invertible elements which is necessary for our construction; and (ii) there
is evidence that module lattices of larger rank are less prone to certain attacks
than ideal-lattices [3,8].

The homogeneous Module-SIS problem consists of finding a vector r of small
norm such that Ar = 0 for a given, structured matrix A.

Definition 1 (MSISh,v,t). Given A ← Rh×v
q , find r ∈ Rv such that

Ar = 0 and 0 < ‖r‖2 ≤ t.

Our scheme also uses the Decisional Module-LWE problem. In D-MLWE,
the problem consists of distinguishing noisy linear equations from random.

Definition 2 (D-MLWEh,v,β). Let A ← Rh×v
q . Then distinguish the

distributions
(A,Ar) and (A,u)

where r ← Sv
β and u ← Rh

q .

Here, we use a special instance of the Module-LWE problem where the secret
has the same distribution as the noise2.

If two samples (with different matrices, but same secret vector r) are issued
by the challenger, then this can still be related to a D-MLWE instance but with
different parameters, as the following proposition shows.

Proposition 1. Let A,B ← Rh×v
q , r ← Sv

β and c,d ← Rh
q . Then

(A,Ar,B,Br) ≈c (A, c,B,d)

given the D-MLWE2h,v,β-problem is hard.

Proof. Consider the matrices E =
[
A
B

]
, and Er =

[
Ar
Br

]
. Then distinguishing

the above distributions is equivalent to distinguishing

(E,Er) ≈c

(
E,

[
c
d

])

This is the definition of the D-MLWE2h,v,β problem. ��
2 This equivalent formulation is possible in our setting, as only one LWE sample will be

issued per secret. The definition might seem unusual at first, as one regularly defines
the LWE distribution as As1+s2. We can use the following transformation, which is
well-known: note that the given equation is equivalent to writing As1+Ihs2 instead.
By aligning this into a single matrix product of A′ with (s1|s2) and multiplying the
resulting challenge with a uniformly random r ∈ Rq, we obtain Definition 2.
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Our construction will moreover rely on a third problem, namely the Search
Module-LWE problem. It can be seen as an inhomogeneous MSIS instance where
the target is known to have a short preimage under A.

Definition 3 (S-MLWEh,v,β). Sample a uniformly random r ← Sv
β. Given(

A ← Rh×v
q , s = Ar) find r′ ∈ Rv such that Ar′ = s and 0 < ‖r′‖∞ ≤ β.

Fixing h, v, β of an S-MLWE-instance, it is easy to see that any algorithm
A that solves S-MLWE-instances can also solve D-MLWE-instances with the
same parameters in comparable time and with similar probability. For the con-
verse direction, Langlois and Stehlé [24] showed that, for certain parameter sets,
S-MLWE can be reduced to D-MLWE.

2.3 Linkable Ring Signatures

The formal syntax and security model of linkable ring signatures, sometimes also
called linkable spontaneous anonymous group signatures, can be found in [17,27].
Definitions of linkable ring signatures with adaptation to the cryptocurrency
scenario can be found in [37]. Our definitions are in the spirit of [17,20,27].

Definition 4 (Linkable Ring Signature). A linkable ring signature scheme
consists of five algorithms:

Setup(1λ): Generates and outputs public parameters PP available to all users.
KGen(PP ): Generates a public key PK and a private signing key SK.
SignPP,SK�

(m,L): Outputs a signature Ω on the message m ∈ {0, 1}� with
respect to the ring L = (PK1, . . . , PKN ). Here, (PK�, SK�) is a valid key
pair output by KGen(PP ), and PK� ∈ L.

Vfy(m,L,Ω): Verifies a purported ring signature Ω on a message m with respect
to the ring of public keys L. It outputs a bit b ∈ {0, 1}.

Link(m1,m2, Ω1, Ω2)3: Takes as inputs two messages m1,m2 as well as two
signatures Ω1 and Ω2 and outputs b ∈ {0, 1}.
The above algorithms form a linkable ring signature scheme if the following

three definitions of correctness, signer anonymity, linkability and exculpability
are fulfilled.

Definition 5 (Correctness). Let N ≥ 1. Then ∀t ∈ [N ], ∀{i1, . . . , it} ⊂
[N ], k ∈ {i1, . . . , it} and ∀m ∈ {0, 1}∗ it holds that

Pr

⎡

⎢
⎢
⎣Vfy(m,L,Ω) = 0

PP ← Setup(),
{PKi ← KGen(PP )}i∈[N ],
L = (PKi1 , . . . , PKit

),
Ω = SignPP,SKk

(m,L)

⎤

⎥
⎥
⎦ ≤ negl(λ)

3 Different from the definition of Link algorithm in the existing linkable ring signature
schemes [17,27], our definition does not take L as inputs since we are talking about
one-time linkable ring signature.
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Signer anonymity captures the intuition that if the targeted signer is not
corrupted, then the probability that the adversary can identify him as the true
signer among all uncorrupted parties is negligible.

Definition 6 (Signer Anonymity). Let L = (PK1, . . . , PKN ) be a list of
public keys and Dt be any set of 0 ≤ t < N signing keys such that ∀SKi ∈
Dt ∃PKi ∈ L : (PKi, SKi) is generated by KGen. A ring signature scheme is
signer anonymous if for any PPT algorithm E, on inputs of any message m,
sets L,Dt as defined above and any valid signature Ω on L and m generated
using SK� �∈ Dt, then

∣
∣
∣
∣Pr [E (m,L,Dt, Ω) = ] − 1

N − t

∣
∣
∣
∣ ≤ negl(λ).

Let PP ← Setup(1λ). For the following two definitions we assume the exis-
tence of two oracles OK ,OS :

Key generation oracle OK : On input of a bit b generate a random keypair
(PK,SK) ← KGen(PP ). If b = 0 then output PK, otherwise (PK,SK).

Signing oracle OS: On input (L,m, i) where L = (PK1, . . . , PKN ) are public
keys generated by OK , i ∈ [N ] and OK did not output SKi and m ∈ {0, 1}∗,
return Ω ← SignPP,SKi

(m,L). If a key in L was not queried before, then
output ⊥.

The idea behind the Linkability definition is as follows: if the same signer
generates two signatures, then the algorithm Link will identify this with over-
whelming probability. It is important that this not only holds against honest use
of the algorithm Sign, but arbitrary adversaries.

Definition 7 (Linkability). Let A be a PPT algorithm with oracle access to
OK ,OS. A is given 1λ and PP as input and outputs a list L ⊆ L (where L
is the set of all keys queried from OK) of length N together with N + 1 values
{(mi, Ωi)}i∈[N+1]. Then the scheme is linkable if, for every such A,

Pr
[∀i ∈ [N + 1] : Vfy(mi, L,Ωi) = 1,

∀i, j ∈ [N + 1], i �= j : Link(mi,mj , Ωi, Ωj) = 0

]
≤ negl(λ).

The above only talks about the setting of generating signatures without being
traceable. Equally important is the setting where signatures are signed by two
different parties, where we require that their tags must be distinct. This then,
of course, in particular includes the case of the Sign algorithm. This property is
important in the setting of cryptocurrencies where one might otherwise be able
to issue fake transactions on behalf of another party.
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Definition 8 (Exculpability). Let A be a PPT algorithm with oracle access
to OK ,OS. A is given 1λ and PP as input and outputs a list L ⊆ L (where
L is the set of all keys queried from OK) of length N together with two pairs
(m1, Ω1), (m2, Ω2) with Vfy(m1, L,Ω1) = Vfy(m2, L,Ω2) = 1, not both queried
to OS. Let M ⊂ L be set of PKi for which A did not obtain SKi from OK .
Then

Pr

⎡

⎢
⎢
⎣Link(L,m1,m2, Ω1, Ω2) = 1

∃PKi ∈ M,∃m ∈ {0, 1}∗,
∃j ∈ {1, 2} :[
Ω ← SignPP,SKi

(m,L),
Link(m,mj , Ω,Ωj) = 1

]

⎤

⎥
⎥
⎦ ≤ negl(λ).

Remark 2. In our scheme, we do not give a definition and proof for existential
unforgeability. As was observed in [17] the above definitions imply this property,
as any algorithm breaking existential unforgeability can be used in a black-box
setting to break exculpability (see [17, Theorem 2.6]).

3 Constructing Linkable Ring Signatures

In this section, we will describe our linkable ring signature scheme and prove its
security. Our proposed scheme can be considered as an adaption of the linkable
ring signature scheme proposed in [27] to the lattice setting. However, while most
linkable signature schemes such as the one proposed in [16] require the use of a
pseudorandom function to achieve linkability, our scheme demonstrates that the
linkability for one-time ring signature schemes can be obtained without using a
pseudorandom function to generate the tag.

If a scheme is not one-time, then this PRF is evaluated on the secret (or
public) key of the signing party and a description of the actual ring L. In our
case, it is not necessary to include the ring L into the tag computation (as
the scheme is one-time) and we attach a tag derived from the secret key only.
Concretely, each party will have a private key ri together with a public key
PKi = Ari, where A is a random length-compressing matrix and ri is a vector
of small norm. Thus, PKi is an evaluation of the public collision-resistant hash
function fA (·) : x �→ Ax on the private input ri.

During the signing process, the signer will generate two rings of signatures
(similar to [27,40] but twice): the first is a ring consisting of signatures for all the
N public keys and generated using fA whereas the second ring uses a different
CRHF fB . This function fB (·) : x �→ Bx uses a different public matrix B
having the same dimensions as A. The crucial point to interleave these rings
is that they are built simultaneously, using the same challenges and blinding
value in each step. For this to be verifiable, the signer must now include his Ii in
the signature, which serves the same purpose as the public key PKi in the first
ring. We will show that the signer is bound to use his own value Ii if he wants
to generate a valid signature and will therefore produce a collision if a second
signature is revealed.
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Let H : {0, 1}∗ → D be a cryptographic hash function where D is the
challenge space defined in Sect. 2. The algorithms of our scheme are defined as
follows:

Setup(1λ): Sample two random matrices A,B ← Rh×v
q and set PP = (A,B).

KGen(PP ): Sample r ← Sv
β and then generate the public key PK = Ar as

well as the signing key SK = r.
SignPP,SK�

(m,L):
1. Compute the tag I� = Br�.
2. Sample u ← N v

σ and set d�+1 ← H(L, I�,m,Au,Bu).
3. For each i =  + 1, . . . , N, 1, . . . ,  − 1:

(a) Sample rz,i ← N v
σ .

(b) Set ti,1 = Arz,i − diPKi and ti,2 = Brz,i − diI� as well as
d(i mod N)+1 ← H(L, I�,m, ti,1, ti,2).

4. Compute rz,� = u + d�r�.

5. Abort with probability 1−min
(

1,
N v

σ (rz,�)
M ·N v

d�r �,σ(rz,�)

)
, otherwise output the

signature Ω =
(
d1, (rz,i)i∈[N ] , I�

)
.

Vfy(m,L,Ω):
1. For i ∈ [N ], check whether ‖rz,i‖2 ≤ 2σ

√
νv, else output 0.

2. For i ∈ [N ], compute t′i,1 = Arz,i − diPKi, t′i,2 = Brz,i − diI� as well as
di+1 =H

(
L, I�,m, t′i,1, t

′
i,2

)
.

3. If d1 =H
(
L, I�,m, t′N,1, t

′
N,2

)
= dN+1 then output 1, else output 0.

Link(Ω1, Ω2): Given

Ω1 =
(

d
(1)
1 ,

(
r
(1)
z,i

)

i∈[N ]
, I

(1)
�

)
and Ω2 =

(
d
(2)
1 ,

(
r
(2)
z,i

)

i∈[N ]
, I

(2)
�

)
,

return 1 if I
(1)
� = I

(2)
� and 0 otherwise.

Correctness can easily be verified using Lemmas 1 and 2.

3.1 Security

We now give the security statements of our construction. Due to length con-
straints, the proofs for these can be found in AppendixA.

Theorem 1 (Signer Anonymity). The proposed ring signature scheme pro-
vides signer anonymity in the (programmable) random oracle model assuming
hardness of the D-MLWE2h,v,β-problem.

Theorem 2 (Linkability). Assume that there exists an algorithm A that
breaks linkability with probability ε, in time at most s, with at most qH queries
to OK and qS queries to OS. Then there exists an algorithm M that breaks

a MSISh,v,t-instance with probability
(
ε − 1

|D|−qH−NqS

)2

/
(
(N2 + N)qH

)2 in

time O(N2 · qH · s) where t = 4σ
√

v · ν + 2 · κ · v · ν1.5 · β.
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Theorem 3 (Exculpability). Assume that there exists an algorithm A that
breaks exculpability with probability ε, in time at most s, with at most qH queries
to OK and qS queries to OS. Then there exists an algorithm M that either breaks
an S-MLWE2h,v,β instance or an MSISh,v,t-instance with probability

(
(N − 1)ε

N
− 1

|D| − qH − NqS

)2

/
(
(N2 + N)(qH + N · qS)

)2

in time O(N · qH · s) where t = 4σ
√

v · ν + 2 · κ · v · ν1.5 · β.

4 Discussion

We now discuss questions surrounding the practicality of our scheme and hint
at future research directions.

Practical Considerations. The runtime of Vfy is essentially the N -fold runtime
of the verification of a regular lattice-based signature scheme. For signing, the
computation and sampling of I�,u as well as rr,j ,Arz,j ,Brz,j for j �=  can
be done offline. The size of the total signature is approximately the size of N
individual lattice-based signatures, as can be seen in Table 2.

As the basis of our construction, we chose a simple signature scheme without
optimizations. Following the outline of our algorithms, one can instantiate it
with e.g. [14] and then use their key-compression technique: this optimization is
important when it comes to signature size.

Parameter Selection. In our construction, the D-MLWE-instance from Theo-
rem 1 and the S-MLWE-instance in Theorem 3 have the same dimensions and
bounds. Moreover, it was already mentioned in Sect. 2.2 that any algorithm
which solves the S-MLWE problem in time h with success probability ε can be
turned into a distinguisher for D-MLWE for the same dimension with essen-
tially the same runtime and success probability. It thus suffices in the parameter
selection to look at the D-MLWE-instance only.

Unfortunately, it seems like the security reduction cannot be used for the
choice of parameters, as it is inherently non-tight: from the proofs in Sect. 3, we
see that the reductions have a huge loss in terms of success probability (both
due to the use of the Forking Lemma and because the runtime is proportional
to the number of queries of A to H). If one attempts to obtain a good success
probability of the reduction, the estimated runtime gets rather large. We leave a
proof with a tighter reduction that can be used to instantiate our construction
as an open problem.

Instead, we chose the parameters of our scheme such that the
MSIS,D-MLWE-problems are hard given that the reduction succeeds (see
Table 2). As baseline, we assume hardness of at least 128 bits using all currently
known lattice reduction attacks. This is reflected by requiring that lattice reduc-
tion will have to achieve a Root Hermite factor of less than 1.003 to break our
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Table 2. Parameter settings for our scheme

Parameter Recommended choice

q ≈232

ν 1024

h 1

v 4

κ 45/90

β (in Sβ) 1

σ 31680/63360

t (�2 MSIS-bound) ≈224/225

Root Hermite factor <1.0030

Public key size (per party) ≈8 KB/8 KB

Signing key size (per party) ≈8.8 KB/8.8 KB

Signature (N = 1) ≈17.4 KB/17.9 KB

Signature (N = 8) ≈82.5 KB/86.5 KB

Signature (N = 32) ≈305.7 KB/321.7 KB

Signature (N = 128) ≈1.17 MB/1.23 MB

scheme. For the given parameters, the security relies only on Module-SIS/LWE
with h = 1 i.e. Ring-SIS/LWE, but increasing h, v, κ and thus decreasing ν would
allow to base the hardness on Module-SIS/LWE with a larger rank with only a
minor increase in the size of the signature.

To choose actual parameters, we use the LWE simulator with sparse secrets
from [2,4] for D-MLWE. Moreover, we use [34] to assess the hardness of our
obtained SIS instance4. The size estimates in Table 2 are in Kilobytes/Megabytes
(as in related work), we bound the size of each coefficient of rz,i assuming it is
within a 6σ-interval.

Post-Quantum Security. It is widely believed that hardness assumptions used
in our scheme may offer security in a post-quantum era. On the other hand, it
is unlikely that our security proofs carry over to the Quantum Random Oracle
Model (QROM, see e.g. [7]): we use adaptive programming of the RO H in
Theorem 1, and adaptive rewinding in Theorems 2 and 3. Both of these proof
techniques are somewhat inherent to the construction.

4 While there might be newer methods to assess the hardness of SIS more precisely,
[34] suffices for an estimation of parameters. Moreover, it turned out that using
different methods yields hardness estimates (in terms of the Root Hermite factor)
that are very close to [34]. Our parameter choices were considered secure at the time
of writing, but the reader should refer to the full version of this work for updated
parameters.
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We note that other candidate constructions in the QROM such as [11,14]
also use a form of RO programming (even though not adaptively). Moreover,
though it seems unlikely that the Forking Lemma can be proven in the QROM,
there exist no attacks on protocols using these proof techniques which stem from
this use of the RO, to the best of our knowledge.

A Proof of Security

A.1 Simulation

The simulation strategy follows a similar pattern as in [27,40]. In an honestly
generated ring signature (where the secret key SK� is known) the Sign algorithm
simulates N − 1 individual signatures consecutively for all public keys but the
one to which its secret key SK� belongs. For this last public key, it uses the
challenge d� that is obtained for the last signature to close the ring using the
secret key SK�. A simulator has no secret key and will instead generate all
N individual signatures consecutively this way. To close the ring, it needs to
reprogram the random oracle H on the last query to exactly yield the challenge
d1 that is necessary to make all tests in Vfy go through. Even though this
reprogramming takes place, the challenge d1 that the RO returns will be fixed
in the simulation ahead of time but be chosen uniformly at random. This means
that the reprogramming is not detectable. Furthermore, Lemma2 ensures that
the simulation of the ring is indistinguishable.

Concerning the simulation and consistency of the second ring which involves
I we note that here I is not obtained from the same secret input r that is used
to derive PK from A since the simulator does not know SK. Instead, it will
choose this value I uniformly at random from the appropriate set. An adversary
cannot distinguish between I and the correctly generated counterpart due to
Proposition 1.

In fact, the D-MLWE2h,v,β assumption of Proposition 1 attests to the indis-
tinguishability of a pair of quadruples: (A,B,A · r,B · r) ∼ (A,B, u, v), where
u, v are random. One can further reduce the indistinguishability of another
pair of quadruples: (A,B, u, v) ∼ (A,B,A · r, v) to D-MLWEh,v,β problem,
the hardness of which can be deduced from that of D-MLWE2h,v,β . Based
on hybrid argument, the indistinguishability of the following two quadru-
ples (A,B,A · r, v) ∼ (A,B,A · r,B · r) is reduced to the D-MLWE2h,v,β

assumption.

A.2 Linkability

Assume that a PPT algorithm A is run with some certain input and that it
generates an output as in the linkability definition. A makes queries to both the
random oracle H and to the two oracles OK ,OS in order to generate these signa-
tures. We construct an algorithm R which will run A with multiple inputs and
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will attempt to rewind it on one of these inputs with different outputs from the
random oracle. During a run, A will be allowed to make qH queries to the random
oracle directly, but also OS indirectly5 makes N · qS queries to H to generate
all the queried signatures. R will simulate H,OS ,OK honestly and will rewind
A with the goal of finding two signatures Ω, Ω̂ that for some index π ∈ [N ]
used in signature verification have the same RO query (L, I,m, tπ, t′π), but dif-
fering d, d̂, r, r̂ which go into generating this query for each individual signature.
Furthermore, we require that the used I has a public key PKπ that was not gen-
erated by the simulated oracle6. In the full version, we show how to construct

such R that succeeds with probability
(
ε − 1

|D|−qH−NqS

)2

/
(
(N2 + N)qH

)2 in

time O(N2 · qH · s).
Using this algorithm R, we construct another PPT TM M. This algorithm

will obtain a MSIS-challenge A, use it as the matrix that generates public keys
and uses R to compute the aforementioned signatures. We obtain d, d̂, r, r̂, π
such that (d − d̂)PKπ = A(r − r̂) and (d − d̂)I = B(r − r̂).

PKπ was generated honestly by OK and we have rπ such that PKπ = Arπ.
Rewrite the above asA(d−d̂)rπ = A(r−r̂). Assume that (d−d̂)rπ = (r−r̂) then
by the invertibility of (d−d̂) it holds that Iπ = Brπ = B

(
(r − r̂) · (d − d̂)−1

)
= I

which contradicts the assumption that I is different from all honestly generated
tags. Hence (d − d̂)rπ �= (r̂ − r) and thus s = (d − d̂)rπ − (r̂ − r) �= 0, while
0 = As which yields a solution s to the MSIS-instance as in Definition 1.

A.3 Exculpability

The algorithm M which we will construct in the course of this proof will either
use the matrix A in Setup to implant an MSIS-challenge or alternatively choose
A,B from an S-MLWE instance. Whereas in the former case the proof works
as above, in the latter one we use a randomly chosen public key and its corre-
sponding tag to embed an S-MLWE challenge. This then means that we cannot
correctly simulate the OS-oracle as we would need the secret key for it - which is
the secret we want to extract! Instead, the proof uses a version of the simulator
from signer anonymity.

With respect to the Link algorithm from our construction, the definition
translates into the requirement that the tags I(1), I(2) from Ω1, Ω2 are equal.
Moreover, each I(i) must be identical to an honestly generated identification tag
for one of the public keys in L, and A did not obtain both signatures from OS

and does not possess the secret key for this public key. Let I = I(1) = I(2).

5 These indirect queries are not important when we discuss a signature that does not
correspond to any public key.

6 We will describe the explicit construction of R in the full version of this work, but
it follows a standard approach using a version of the Forking Lemma.
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The algorithm M will first fairly flip a bit b ← B1/2. Then it does the following,
based on the value of b:

b = 0: M will take a S-MLWE instance (D, t) where D =
(
A
B

)
∈ R2h×v

q

and t =
(
t0
t1

)
∈ R2h

q such that A,B ∈ Rh×v
q and t0, t1 ∈ Rh

q . Assign

PP = (A,B) and choose an index k ∈ [N ]. For j ∈ [N ] set

(PKj , SKj) =

{
(Arj , (rj ,Brj)) if k �= j and for rj ← Sv

β

(t0, (⊥, t1)) if k = j

We then set the counter j = 1. Whenever A requests a public key from OK ,
then output PKj and increase j by 1. If j = k and A requests the secret key
then abort. Whenever OS is queried, then sign the signature for the queried
key s correctly if s �= k, otherwise use the back-patching simulator from the
Signer Anonymity proof7, but with Ij = t1.

b = 1: M will take a MSIS instance A ∈ Rh×v
q as input, sample B ← Rh×v

q

uniformly at random and set PP = (A,B). It will additionally choose k ∈ [N ]
uniformly at random. OK will generate all keys honestly, but abort if A
queries SKk. OS will run Sign honestly.

Assume that A does not query for SKk, then the output of A will be independent
of the choice of b due to Theorem 1. If b = 0 then A will be stopped if SKk is
queried, but observe that this abort probability is the same in case b = 1 as
the key PKk is perfectly indistinguishable from honestly generated public key
PKj . Moreover, the abort probability in the presence of OS is identical due to
the construction of the oracle, so the probability that A outputs something is
independent of b. This output probability is ε′ = ε · (N − 1)/N by the random
choice of k.

In the next step, M now runs A using the algorithm R′ (similar to R from
the previous proof it implements a Forking Lemma-type algorithm) which suc-

ceeds with probability
(
ε − 1

|D|−qH−NqS

)2

/
(
(N2 + N)(qH + N · qS)

)2 in time
O(N ·qH ·s) to obtain signatures that have identical inputs to the random oracle.
From R′ obtain values d, d̂, r, r̂, π such that (d−d̂)Arπ = (d−d̂)PKπ = A(r−r̂)
and (d− d̂)I = B(r− r̂) where rπ is the secret key belonging to PKπ. We might
either have that (d − d̂)rπ = r − r̂ or that inequality holds. Now if the values
are not equal, then we can use the same argument as in linkability to extract
a MSIS solution (this covers the case when b = 1). But in case of equality the
approach does not work - unless we are in the setting where the algorithm M
chose b = 0. Now we know that equality holds and rπ is known to exist as PKπ

is a S-MLWE challenge, which we can therefore extract.

7 The anonymity simulation does only provide computational indistinguishability as
it uses Proposition 1. Here the correctly generated Ij is known and the simulation is
statistically indistinguishable, not just computationally.
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More formally, if b = 0 and k = π then M will output rπ = (r−r̂)·(d−d̂)−1 as
d− d̂ ∈ D′. If b = 1 then it will instead output (d− d̂)rπ +r̂−r. We now calculate
the probability that the algorithm M will output a correct answer to either of the
two challenges. Therefore, denote with X= the event that (d− d̂)rπ = r− r̂, and
with X�= the opposite event. Let M denote the event that M outputs something.
As our goal is to lower-bound the probability that the output of M is correct,
we need to determine

Pr [M gives correct output] = Pr [X=, b = 0|M] + Pr [X�=, b = 1|M]

If b = 0, then by the choice of k, the probability that π = k is at least 1/|L|
and therefore Pr [M|X=, b = 0] ≥ 1/N . Using Bayes’ Theorem, we obtain that

Pr [X=, b = 0|M] =
Pr [M|X=, b = 0] · Pr [X=, b = 0]

Pr [M]
≥ Pr [M|X=, b = 0] · Pr [X=, b = 0]
≥ 1/N · Pr [X=] · Pr [b = 0] = 1/2N · Pr [X=]

where we use in the last step that the occurrence of X= is independent of b.
In case of b = 1 we always give output, so we have that Pr [M|X�=, b = 1] = 1.

Using the same reasoning as above, we obtain that Pr [X�=, b = 1|M] ≥ 1/2 ·
Pr [X�=] which yields an overall bound of Pr [M gives correct output] ≥ 1/2N .
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