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Abstract. Group signatures are important when it comes to authenti-
cation with privacy. Hierarchical group signatures, as a proper general-
ization of group signatures, have splendid applications in e-commerce.
One key issue for such schemes is to support membership revocation
in an efficient as well as secure way. To this end, the notion of group
signatures with verifier-local revocation was proposed and well-studied,
where the revocation messages are sent only to verifiers. However, such
issue has not been formally studied in the context of hierarchical group
signatures. In this paper, we raise and formalize the new notion of hierar-
chical group signatures with verifier-local revocation, and propose a semi-
generic construction from group signatures with verifier-local revocation.
When instantiating it with a variant of the group signature scheme pro-
posed by Gordon, Katz and Vaikuntanathan, a lattice-based construction
is implicitly given.

Keywords: Group signatures · Authentication with privacy
Lattice-based cryptography

1 Introduction

Digital signatures are ubiquitous as a main approach for authentication. How-
ever, ordinary digital signatures (via PKI) inherently expose signers’ identities,
and such privacy is much desired in many real-world scenarios, e.g., e-commerce,
e-cash, anonymous online communications and more. To solve this issue, several
privacy-oriented signatures were proposed, such as ring signatures [25], trace-
able signatures [13], domain-specific pseudonymous signatures [6], and especially,
group signatures (GS) [9]. Loosely speaking, a group signature scheme has both
anonymity and traceability. The former means that group members can sign
on behalf of the group, without leaking out their identities; on the other hand,
given some valid message-signature pair, traceability enables some designated
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manager to run a open algorithm using some secret tracing key and figure out
the actual signer.

Up to now, many generalized notions of group signatures were proposed, such
as sub-group signatures [4], multi-group signatures [4], group blind signatures
[22] and hierarchical group signatures (HGS) [26]. Hierarchical group signatures
was brought up by Wikström et al. in the context of anonymous credit card
systems. Imagine a balanced tree of depth two. The root stands for some payment
network, and nodes at depth one are distinct card-issuing banks, while leaves
are their users (card-holders). In a transaction, a user signs on the transaction
information to generate a signature, of which the validity with respect to some
single public verification key can be easily checked by the merchant; the merchant
sends the message-signature pair to the payment network, and the latter will
figure out then route it to the user’s bank; eventually, the bank traces to the
user, and debits its account. One admirable feature of such system is that by such
hierarchical tracing, nothing except those absolutely necessary will be revealed
to each party: the merchant is convinced that the transaction information has
been signed by some valid user, but cannot know its issuing bank (let alone its
identity); the payment network can route the transaction to the user’s bank,
but infeasible to figure out its identity; in contrast, the bank must be able to
determine the exact identity to debit the correct account.

Related Work. In their foundational work [5], Bellare et al. formalized
two properties for static group signatures, namely full-anonymity and full-
traceability. Plenty of subsequent work has been done within this framework.
They also proposed a generic GS construction from trapdoor permutations,
which essentially reflects a sign-encrypt-proof designing paradigm.

On the other hand, lattice-based cryptography [1] has seen a flourish of
research works in recent years. In our interest, Gordon, Katz and Vaikuntanathan
gave the first group signature scheme from lattice assumptions [12] (abbreviated
as the GKV scheme), and we refer to the full version or the original paper for
a detailed description of their scheme; besides, there are several lattice-based
schemes [8,14–21,23] with different security models, different levels of efficiency
and functionality.

Wikström et al. introduced the notion of hierarchical group signatures [26].
Without loss of generality, they considered a balanced tree depicting the hier-
archy, where inner nodes are managers and leaves are signers. Given a valid
message-signature pair, a path-following tracing, namely an iterative process
where some father node (initialized as the root manager) traces then routes
the pair to some child node, will always locate some signer who is (amongst)
the actual generator(s); on the other hand, nobody can non-trivially figure out
the actual signer without such hierarchical tracing. These are formalized into
the traceability and anonymity properties for HGS in the framework of Bellare
et al. [5]. Moreover, Wikström et al. gave a generic construction assuming the
existence of a family of trapdoor permutations.
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Motivations. Wikström et al. did foundational works for HGS in the static
setting, where no dynamic joining or revocation will be allowed once the system
is set up. However in practice, there are scenarios where revocation is desired or
even necessary, for example, when some signer misbehaves or accidently exposes
its secret signing key and thus has to be removed from the original hierarchy.
Verifier-local revocation is a highly efficient approach early brought up in the
setting of group signatures, with which revocation messages are only sent to
signature verifiers. Naturally, we wonder how to make an HGS scheme efficiently
revocable.

Our Contributions and Main Techniques. We formalize the new notion
of hierarchical group signatures with verifier-local revocation (HGS-VLR) and
propose a semi-generic construction from the existing notion of group signa-
tures with verifier-local revocation (GS-VLR). Moreover, we implicitly provide
an instantiation from lattice assumptions, using a variant of the GKV group
signature scheme.

An HGS-VLR scheme consists of three algorithms: a key generation algo-
rithm, a signing algorithm and a verification algorithm. Unlike regular HGS,
HGS-VLR has no explicit tracing algorithm. A father node possessing all chil-
dren’s revocation tokens can trace implicitly using the verification algorithm.
Correctness says that for any honestly generated message-signature pair, it will
pass the verification if and only if no ancestor of the signer (including itself)
has been revoked. As for anonymity, we propose the full-version of anonymity
for HGS-VLR where the adversary is given all signers’ secret keys. In contrast,
an insider-version of anonymity is usually considered in the context of GS-VLR,
namely the adversary cannot obtain the secret keys of challenge identities.

The main difficulties lie in how to properly define the traceability property
for HGS-VLR. If we stick to the original path-following tracing as in defining
traceability for HGS, inconsistencies will occur. Instead, we introduce a whole-
depth tracing in the model, which involves all managers at the penultimate depth
in a joint and independent tracing of some valid message-signature pair. In our
model, the adversary is claimed a success if it comes up with some valid message-
signature pair, and it holds either all managers at the penultimate depth cannot
open this pair, or there exists some manager at the penultimate depth traces
it to some honest signer. The implications and rationalities of the traceability
property as such defined will be detailed in Sect. 4.

With our new notions and models, a semi-generic HGS-VLR construction
from GS-VLR naturally arises. We regard all parties at the same depth as a
group respectively, and generate keys and revocation tokens for them. A signer
is given all signing keys of its ancestors (including itself), and for tracing pur-
poses, a manager is given all revocation tokens of its direct children. To generate
a signature, the signer produces compositional group signatures for all its ances-
tors. The correctness, anonymity and traceability can be easily reduced to those
of the underlying GS-VLR respectively.
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Outline of This Paper. We first recall some lattice knowledge. In Sect. 3,
we recall the notion of GS-VLR, and show that a variant of the GKV scheme
is a fully-anonymous GS-VLR scheme. In Sect. 4, we introduce and formalize
our new notion, and give a semi-generic construction. Its GKV instantiation is
straightforward, when combining work done in Sect. 3. We conclude this paper
in Sect. 5. Due to lack of spaces, we refer interested readers to the full version
for all proofs.

2 Preliminaries

In this section, we briefly introduce some background on lattice.

2.1 Notations

Let x‖y denote the concatenation of two binary strings x and y. Vectors are
assumed to be in column form and are written using bold lower-case letters, e.g.
x, and let ‖x‖ denote the Euclidean norm of a vector x. Matrices are written
as bold capital letters. For a matrix X, let ‖X‖ denote the maximum of the
Euclidean norms of the columns of X and ˜X is the Gram-Schmidt orthogonal-
ization of X.

We denote the set {1, · · · , N} by [N ], where N ∈ N. If S is some finite set, we
denote its cardinality by |S|, and denote choosing a uniformly random element

from S by s
$←− S; the uniform distribution on S is denoted U(S). If A is a

randomized algorithm, then [A(x, y, . . . )] denotes the set of all outputs having
positive probability on inputs x, y, . . . . We use the standard big−O notation to
classify the growth of functions. Oracles are written bold to be distinguished
from algorithms.

2.2 Lattices

Definition 1 (Lattice). Let B = {b1, . . . ,bn} be n (� m) linearly indepen-
dent vectors in R

m. The lattice generated by B, denoted by L(B), is the set of
all the integer linear combination of the vectors in B, and B ∈ R

m×n is called

a basis of L(B). Namely, L(B) = {
n
∑

i=1

xibi | xi ∈ Z} = {Bx | x ∈ Z
n}.

Definition 2 (Shortest Vector Problem, SVP). Given a basis B ∈ R
m×n

of L(B), find the shortest nonzero vector in L(B), denoted by λ1(L(B)).

It has been proved that the SVP problem is NP-hard under randomized
reduction [2]. We use its promise variant, namely the GapSVPγ problem.

Definition 3 (GapSVPγ). An instance of the problem is given by a pair (B, r)
where B ∈ Z

m×n is a lattice basis and r ∈ Q. In YES instance, λ1(L(B)) � r.
In NO instance, λ1(L(B)) > γ · r. The goal is to determine which case the input
instance is.



Hierarchical Group Signatures with Verifier-Local Revocation 275

Two classes of random lattices are widely used in cryptography:

Definition 4 (L⊥(B)). Fixing q,m, n ∈ N and given a matrix B ∈ Z
n×m
q , the

m-dimensional lattice L⊥(B) is defined as:

L⊥(B) = {ω ∈ Z
m | Bω ≡ 0 (mod q)}.

Definition 5 (L(BT )). Fixing q,m, n ∈ N and given a matrix B ∈ Z
n×m
q , the

m-dimensional lattice L(BT ) is defined as:

L(BT ) = {y ∈ Z
m | ∃s ∈ Z

n, s.t. y ≡ BT s (mod q)}.

Alwen et al. have given an efficient algorithm to generate a random lattice
along with its trapdoor basis:

Theorem 1 [3]. There is a P.P.T algorithm TrapSamp that, on input 1n, 1m, q,
with q � 2 and m � 8n log q, outputs (A,T) ∈ Z

n×m
q × Z

m×m such that the
distribution on A is statistically close to U(Zn×m

q ), and with probability all but
negligible in n:

1. the columns of T form a basis of the lattice L⊥(A);
2. ‖T‖= O(n log q) and ‖˜T‖= O(

√
n log q).

Gentry, Peikert and Vaikuntanathan [10] focused on the applications of such
short bases. Specifically, taking q = poly(n),m � 8n log q, s = ω(

√
n log q log n),

a family of one-way preimage-sampleable functions is defined in the following:

1. GPVGen(1n):
(1) run (A,T) ← TrapSamp(1n, 1m, q);
(2) define the function: fA(e) = Ae (mod q), with domain {e ∈ Z

m | ‖e‖�
s
√

m} and range Z
n
q .

2. SampleISIS(A,T, s,u):
(1) compute some t ∈ Z

m such that At ≡ u (mod q) using standard linear
algebra;

(2) sample e ← DL⊥(A)+t,s using the trapdoor basis T.

The above function is one-way if GapSVPγ is hard in the worst case for
polynomial approximation factor γ [3].

Theorem 2 [12]. There is a P.P.T algorithm SuperSamp that, on input
1n, 1m, q, with q � 2 and m � n + 8n log q, and B ∈ Z

n×m
q whose columns

span Z
n
q , outputs (A,T) ∈ Z

n×m
q × Z

m×m such that ABT = 0 (mod q) and
the distribution on A is statistically close to uniform over Z

n×m
q subject to this

condition. Moreover, with probability all but negligible in n:

1. the columns of T form a basis of the lattice L⊥(A);
2. ‖˜T‖= O(log n ·

√
mn log q).
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We now describe the LWE problem. Fix a positive integer n, integers m � n
and q � 2, a vector s ∈ Z

n
q , and a probability distribution χ on R

m. Define the
following two distributions over Z

n×m
q × [0, q)m :

1. LWEm,q,χ is the distribution obtained by choosing uniform A ∈ Z
n×m
q , sam-

pling e ← χ, and outputting (A,AT s + e (mod q)).
2. Um,q is the distribution obtained by choosing uniform A ∈ Z

n×m
q and uniform

y ∈ [0, q)m, and outputting (A,y).

Formally, for m, q and χ that may depend on n, we say the LWEm,q,χ problem
is hard, if the following is negligible for any P.P.T algorithm D:

|Pr[s ← Z
n
q ; (A,y) ← LWEm,q,χ(s) : D(A,y) = 1] − Pr[(A,y) ← Um,q : D(A,y) = 1]|

The error distribution χ we will use in this paper is the discrete Gaussian dis-
tribution DZm,αq. We write LWEm,q,α(s) as an abbreviation for LWEm,q,Dαq

(s),
and ̂LWEm,q,α(s) for LWEm,q,DZm,αq

(s), where Dαq is the continuous Gaussian
distribution.

Lemma 1 [12]. For any m = m(n), q = q(n), α = α(n) satisfying αq =
ω(

√
log n), hardness of the LWEm,q,α problem implies hardness of the ̂LWEm,q,α

√
2

problem.

3 A Fully Anonymous Group Signature
with Verifier-Local Revocation

In this section, we present a lattice-based group signature scheme with verifier-
local revocation (GS-VLR) holding full-anonymity and traceability as defined
by a variant of the GKV scheme. Note that a lattice-based GS-VLR scheme
has already been proposed by Langlois et al. [15] at PKC 2014. However, that
scheme only holds some weaker insider-anonymity, and cannot be used in initial-
izing our semi-generic construction. Now, we begin with recalling the notion of
GS-VLR [7].

3.1 Group Signatures with Verifier-Local Revocation

Formally, a GS-VLR scheme GS = (GKg,GSig,GVf) is a tuple of three poly-time
algorithms:

1. GKg(1n, 1N ). The randomized key generation algorithm takes as input the
security parameter n ∈ N, and the group size N ∈ N. It outputs a group
public key gpk, all members’ secret keys gsk := (gsk1, · · · , gskN ), and all
members’ revocation tokens grt := (grt1, · · · , grtN ).

2. GSig(gpk, gski,m). The randomized signing algorithm takes as input the
group public key gpk, the signing key gski of member i ∈ [N ], and a message
m ∈ {0, 1}∗. It outputs a signature σ.



Hierarchical Group Signatures with Verifier-Local Revocation 277

3. GVf(gpk,RL,m, σ). The deterministic verification algorithm takes as input
the group public key gpk, a set of revocation tokens RL, a message m, and
a candidate signature σ. It returns either 1 or 0. The latter indicates that
either σ is not a valid signature, or the member who generated it has been
revoked.

Correctness. For all n,N ∈ N, all (gpk, grt, gsk) ← [GKg(1n, 1N )], all i ∈ [N ],
and all m ∈ {0, 1}∗, the following holds with overwhelming probability:

GVf(gpk,RL,m,GSig(gpk, gski,m)) = 1 ⇐⇒ grti /∈ RL.

Implicit Tracing Algorithm. Given a valid message-signature pair (m,σ)
with respect to some revocation list RL, the one possessing all revocation tokens
grt traces by the following algorithm: for i ∈ [N ], run the verification algorithm
GVf(gpk,RLi := {grti},m, σ), and output the first index for which the verifica-
tion algorithm outputs 0; otherwise output a symbol ⊥. Apparently, if a GS-VLR
scheme is correct, so is the above implicit tracing algorithm (the honestly gen-
erated signature will always trace to its originator).

Oracles. To formalize the security properties, the following oracles are used:

1. GSig(·, ·): for queries (m, i) ∈ {0, 1}∗×[N ], it returns σ ← GSig(gpk, gski,m).
2. Corrupt(·): a corrupt set C is initialized as empty; for queries i ∈ [N ], it

responds with gski, and add i into C.
3. Revoke(·): for queries i ∈ [N ], it answers with grti.

Anonymity. In the insider-anonymity experiment as shown in Fig. 1, the adver-
sary’s goal is to determine which of two keys generated a signature. He is not
given access to either key or revocation token. The deprivation of the challenge
revocation tokens is necessary, if the GS-VLR scheme is correct. In contrast, the
deprivation of the challenge signing keys may not be a must.

Actually, in the constructions proposed by Boneh et al. [7], the revocation
token grti of some member i can be derived from its secret signing key gski.
This is an admirable feature on aspect of efficiency, however leaving room for
improving security. Specifically, a stronger version of anonymity for GS-VLR,
called full-anonymity can be considered.

Definition 6 (Full-Anonymity). A GS-VLR scheme GS holds full-
anonymity if for all P.P.T adversaries A, the following advantage function is
negligible in n:

AdvGS−V LR−full−anonymity
A,GS (n) = |Pr[1 ← ExptGS−V LR−full−anonymity

A,GS (1n, N)] − 1

2
|.

The full-anonymity differs from the insider-version in that the adversary as
shown in Fig. 2 is equipped with all members’ secret signing keys.
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ExptGS−V LR−insider−anonymity
A,GS (1n, N)

: (gpk, grt, gsk) GKg(1n, 1N )

: (i0, i1, m, st) (·,·), (·), (·)(gpk)

: b
$ {0, 1};σ GSig(gpk, gskib , m)

: b′ (·,·)(st, σ)

: return 1 if :

: b == b′

: i0, i1 /∈ C (·)
: else return 0

A

A

Fig. 1. Insider-anonymity for GS-VLR.

ExptGS−V LR−full−anonymity
A,GS (1n, N)

: (gpk, grt, gsk) GKg(1n, 1N )

: (i0, i1, m, st) (·)(gpk, gsk)

: b
$ {0, 1};σ GSig(gpk, gskib , m)

: b′

A

A(st, σ)

: return 1 if :

: b == b′

: i0, i1 (·)
: else return 0

Fig. 2. Full-anonymity for GS-VLR.

Traceability. In the traceability experiment as shown in Fig. 3, the adversary’s
goal is to forge a signature that cannot be traced to one of unrevoked malicious
members in his coalition using the implicit tracing algorithm.

ExptGS−V LR−traceability
A,GS (1n, N)

: (gpk, grt, gsk) GKg(1n, 1N )

: (m, σ, RL) A (·), (·,·)(gpk, grt)

: return 1 if :

: GVf(gpk, RL, m, σ) = 1

: σ C\RL,

: (m, i) i /∈ C
: else return 0

Fig. 3. Traceability for GS-VLR.

Definition 7 (Traceability). A GS-VLR scheme GS holds traceability if for
all P.P.T adversaries A, the following advantage function is negligible in n:

AdvGS−V LR−traceability
A,GS (n) = Pr[1 ← ExptGS−V LR−traceability

A,GS (1n, N)].

Note that if the verification algorithm satisfies that GVf(gpk,RL,m, σ) =
1 ⇐⇒ GVf(gpk, {grti},m, σ) = 1 for all grti ∈ RL, the success condition that
σ traces to someone out of C\RL can be equivalently modified as that σ traces
to someone out of C. This is because σ will never be traced to some i∗ ∈
(C

⋂

RL), otherwise by the definition of the implicit tracing algorithm, we have
GVf(gpk, {grti∗},m, σ) = 0 which contradicts with GVf(gpk, {grti∗},m, σ) = 1.
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3.2 A Fully Anonymous GS-VLR Scheme from Lattice Assumptions

Let n be the security parameter, q = poly(n),m � 8n log q and s � C
√

n log q ·
ω(

√
log m) be parameters of the system. Let H : {0, 1}∗ → Z

n
q be a hash function,

to be modeled as a random oracle. The GS-VLR scheme is demonstrated as
follow:

1. GKg(1n, 1N ): for i ∈ [N ], compute (Bi,Si) ← TrapSamp(1n, 1m, q), (Ai,
Ti) ← SuperSamp(1n, 1m, q,Bi). Output gpk := ((Ai,Bi))N

i=1 as the group
public key, gsk := (Ti)N

i=1 as members’ signing keys, grt := (Si)N
i=1 as mem-

bers’ revocation tokens.
2. GSig(gpk, gski,m): it works exactly the same as the signing algorithm of the

GKV scheme.
3. GVf(gpk,RL,m, σ): parse the signature σ as (r, c1, · · · , cN , π). If π is not

valid, output 0; for i ∈ [N ], calculate hi ← H(m‖r‖i), if the equation
Aici ≡ hi (mod q) does not hold, output 0; for Si�

∈ RL (	 = 1, · · · , |RL|),
calculate e′

i�
← ST

i�
ci�

(mod q), ei�
← ST

i�

−1e′
i�

, and if ‖ei�
‖� s

√
m, output

0. Otherwise output 1.

The only difference between the GKV scheme and ours lies in the verification
procedure. Namely, we incorporate the original GKV verification algorithm and
open algorithm into our new verification algorithm.

For the correctness and security of our scheme, we have the following
theorems.

Theorem 3. Our GS-VLR scheme is correct.

Theorem 4. Let m, q, s be described as above. If LWEm,q,α is hard for α =
s/(q

√
2), and GapSVPγ is hard for γ = O(n log4 n), and the proof system used is

witness-indistinguishable, our GS-VLR scheme is fully anonymous and traceable.

4 Hierarchical Group Signatures with Verifier-Local
Revocation

In this section, we formalize the new notion of hierarchical group signatures with
verifier-local revocation (HGS-VLR), and propose a semi-generic construction
from GS-VLR.

4.1 Syntax and Correctness

We follow the notations from [26]. There are two types of parties: signers
denoted as Sα for α in some index set I and managers denoted as Mα for
indices α described below. If a manager directly manages a set of signers
{α | α ∈ β ⊂ I}, we denote it by Mβ ; if a manager directly manages a set
of managers {Mβ1 , · · · ,Mβ�

}, we denote it by Mγ where γ = {β1, · · · , β�}.
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All parties are organized in a balanced tree T of depth δ ∈ N, where signers
are leaves and managers are inner nodes. For i ∈ {0, · · · , δ}, let T i denote all
nodes at depth i; we denote all leaves by L(T ) and the root by ρ. When there
is no risk of confusion, we write α instead of Mα or Sα.

An HGS-VLR scheme HGS = (HKg,HSig,HVf) consists of three poly-time
algorithms:

1. HKg(1n, T ). The randomized key generation algorithm takes as input the
security parameter n ∈ N, and a balanced tree T of size polynomially bounded
in n. It outputs a tuple of maps (hpk, hrt, hsk), where hpk and hrt associates
each node α ∈ T with a public value hpk(α) and a revocation token hrt(α),
and hsk associates each leaf α ∈ L(T ) with a secret signing key hsk(α).

2. HSig(hpk(T ), hsk(α),m). The randomized signing algorithm takes as input
the public map hpk(T ), a message m ∈ {0, 1}∗, and the secret signing key
hsk(α) of some signer α ∈ L(T ), and returns a signature σ.

3. HVf(hpk(T ), RL,m, σ). The deterministic verification algorithm takes as
input the public map hpk(T ), a revocation list RL ⊂ hrt(T ) composed of the
tokens associating with already revoked parties, a message m, and a candi-
date signature σ. It returns either 1 or 0, and the latter means either that σ
is not a valid signature, or (at least) one on the path from the signer to the
root (both are included) has been revoked.

The key generation algorithm HKg is run by some trusted key generator
T KG, akin to the circumstance in HGS. The map hpk(T ) is made public, and
each signer α ∈ L(T ) is given its secret signing key hsk(α). We initialize the
public revocation list RL as empty, and any party α ∈ T can be revoked by
simply adding its revocation token hrt(α) into RL.

Correctness. An HGS-VLR scheme is correct, if for all n ∈ N, all balanced
trees T of depth δ ∈ N and size polynomially bounded in n, all (hpk, hrt, hsk) ∈
[HKg(1n, T )], all m ∈ {0, 1}∗, and all α ∈ L(T ), the following holds with over-
whelming probability:

HVf(hpk(T ), RL, m,HSig(hpk(T ), hsk(α), m)) = 1 ⇐⇒ {hrt(γ)}γ∈Ancestor(α)

⋂
RL = φ,

where Ancestor(α) denotes all nodes on the path from α to ρ with both included.
We highlight that, if some manager β ∈ (T − L(T )) is ever revoked by adding
hrt(β) into RL, all signers whom β (maybe indirectly) manages are no longer
valid, even without adding their tokens into RL explicitly.

Implicit Tracing Algorithm. Each manager β ∈ (T − L(T )) is given all
revocation tokens {hrt(γ)}γ∈β of its direct children, to run an implicit tracing
algorithm inherent to HGS-VLR. Specifically, given a valid message-signature
pair (m,σ), a manager β does the following:

1. For γ ∈ β, run HVf(hpk(T ), RLγ := {hrt(γ)},m, σ);
2. Output the first index for which the verification algorithm says 0 and termi-

nate; if the pair (m,σ) passes all verifications, output a symbol ⊥.
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This algorithm is correct, if the HGS-VLR scheme is correct as defined.
Namely, given a valid message-signature pair (m,σ) honestly generated by some
signer α ∈ L(T ), a path-following tracing, where some father node (initialized as
the root) traces then passes the pair to some child, will always locate the signer
α eventually.

To explain, let β0 := ρ  β1  · · ·  βδ := α be the path. If the HGS-
VLR scheme is correct, then by definition HVf(hpk(T ), RL,m, σ) = 1 ⇐⇒
{hrt(βi)}δ

i=0

⋂

RL = φ holds with overwhelming probability; it follows that
with overwhelming probability, HVf(hpk(T ), {hrt(β)},m, σ) = 0 ⇐⇒ β = βi

for some i ∈ {0, 1, · · · , δ}. Then for i from 0 to δ − 1, the manager βi will always
trace (m,σ) to βi+1 independently with probability (1−negl(n)), where negl(n)
is a negligible function with respect to n. Then the probability of locating α is
(1 − negl(n))δ, which is still overwhelming since δ is polynomial in n. 1

4.2 Security Model

We formalize two security requirements for HGS-VLR, namely full-anonymity
and traceability using the experiments as shown in Fig. 4 and Fig. 5 respectively.
Overall, we use the framework of Bellare et al., and thus these two properties are
strong enough to capture all related security requirements, e.g., unforgeability,
exculpability, collision resistance, framing, unlinkability and so on as argued by
Bellare et al. [5]. To begin with, we specify the following oracles:

1. HCorrupt(·): a corrupt set C is initialized as empty; for queries α ∈ L(T ),
it responds with hsk(α), and adds α into the set C.

2. HRevoke(·): for queries α ∈ T , it returns hrt(α).
3. HSig(·, ·): for queries (m,α) ∈ {0, 1}∗ × L(T ), it returns σ ←

HSig(hpk(T ), hsk(α),m).

Full-Anonymity. Assume that a message m has been signed by either α(0) or
α(1) ∈ L(T ). Let B denote all nodes on paths from α(0) and α(1) up to their first
common ancestor αt, including α(0) and α(1) but excluding αt. One having access
to arbitrary element of {hrt(β)}β∈B can trivially determine who the signer is, if
the HGS-VLR scheme is correct. Full-anonymity says that nobody can determine
whether α(0) or α(1) signed the message without access to {hrt(β)}β∈B , even if it
is given all secret signing keys hsk(L(T )), and is allowed to select the challenge
identities α(0) and α(1) as well as the challenge message m by itself.

Note that no generality is lost by having access to the oracle HRevoke only
before σ is computed, since A has decided on α(0) and α(1) and can obtain
any hrt(α) with α /∈ B before it receives σ. When T is a depth one tree, the
experiment in Fig. 4 reduces to the experiment in Fig. 2 for GS-VLR.

1 The negligible functions might be different for different βi, however, we express them
uniformly by nelg(n) for simplicity, since both lead to a overwhelming probability.
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ExptA, (1n, )

: (hpk, hrt, hsk) HKg(1n, )

: (α(0), α(1), m, st) (·)(hpk( ), hsk(L( )))

: b
$ 0, 1};σ HSig(hpk( ), hsk(α(b)), m)

: b
′

A
{
A(st, σ)

: return 1 if :

: b == b′

: (β) β ∈ B

: else return 0

Fig. 4. Full-anonymity for HGS-VLR.

Definition 8 (Full-Anonymity). An HGS-VLR scheme holds full-anonymity
if for all P.P.T adversaries A, the following advantage function is negligible
in n:

AdvHGS−V LR−full−anonymity
A,HGS (n) = |Pr[1 ← ExptHGS−V LR−full−anonymity

A,HGS (1n, T )] − 1

2
|.

Traceability. In the experiment as shown in Fig. 5, the adversary A is provided
with all revocation tokens hrt(T ) and allowed to adaptively corrupt a coalition of
signers (denoted by C). To win, A must come up with a valid message-signature
pair (m,σ) with respect to some revocation list RL, and one of the following must
hold: (a) all managers at the penultimate depth cannot figure out an identity by
the implicit tracing algorithm; or (b) there exists one manager at the penultimate
depth tracing to someone not in the coalition C\RL. For simplicity, let O denote
the open results of all managers at the penultimate depth, and we formalize (a)
and (b) into two expressions, namely O = {⊥} and O

⋂

(L(T ) − C\RL) �= φ
respectively.

Now we demonstrate the implications. Given some valid message-signature
pair with respect to some revocation list, it is always feasible to figure out the
actual (and unrevoked) generator while nobody will be framed. Specifically, if
the path-following tracing does not fail, it will always locate the actual (and
unrevoked) generator; if the path-following tracing fails somewhere, all managers
at the penultimate depth can do a whole-depth tracing, and figure out some
unrevoked malicious signer, while no honest signer will be traced.

Overall, when the path-following tracing fails, attacks against traceability are
detected, or contradicting with the correctness; on the other hand, the whole-
depth tracing stands for the capability to find out the attackers. Honestly, the
latter is less efficient than the former, but it will merely be used if the punish-
ment of misbehaving is heavily enough (this seems rather sound in the context
of anonymous credit card systems). Note that such detect-and-punish paradigm
is widely used in the e-cash setting, e.g., in solving the double-spending prob-
lem [24].
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ExptA, (1n, )

: (hpk, hrt, hsk) HKg(1n, )

: (m, σ, RL) A (·), (·,·)(hpk( ), hrt( ))

: return 1 if :

: HVf(hpk( ), RL, m, σ) = 1

: O
⋂

(L( ) − C\RL) �= φ, O = {⊥}
: (m, α) α /∈ C
: else return 0

Fig. 5. Traceability for HGS-VLR.

The experiment above reduces to the experiment in Fig. 3 for GS-VLR, when
T is a depth one tree. Moreover, when nobody is corrupted, namely C = φ, the
requirement of unforgeability is reflected.

Definition 9 (Traceability). An HGS-VLR scheme holds traceability if for
all P.P.T adversaries A, the following advantage function is negligible in n:

AdvHGS−V LR−traceability
A,HGS (n) = Pr[1 ← ExptHGS−V LR−traceability

A,HGS (1n, T )].

4.3 A Semi-generic HGS-VLR Construction

As we will see, the construction is quite natural under our model, but defi-
nitely nontrivial. First, we reduce the full-anonymity of HGS-VLR to that of the
underlying GS-VLR; however, similar reduction is not right when it comes to
the insider-anonymity counterpart (we can similarly define insider-anonymity for
HGS-VLR). Second, it essentially reflects a different designing paradigm from
Wikström et al.’s, which adds the capability of revocation to the original notion.
Now we show the semi-generic construction of HGS-VLR from GS-VLR.

Specifically, let T be some balanced tree of depth δ, and let GS =
(GKg,GSig,GVf) be the underlying GS-VLR. We construct the HGS-VLR
scheme as following:

1. HKg(1n, T ): for i ∈ {0, · · · , δ}, run (gpki, grti, gski) ← GKg(1n, 1|T i|), where
grti := {grtβ}β∈T i and gski := {gskβ}β∈T i . The public map hpk is defined
as: hpk(ρ) = {gpki}δ

i=0, hpk(α) = φ for α ∈ (T − ρ); the secret map hsk is
defined as: hsk(α) = {gskγ}γ∈Ancestor(α) for α ∈ L(T ), where Ancestor(α)
denotes all nodes on the path from α to ρ with both included; hrt(β) = grtβ
for β ∈ T .

2. HSig(hpk(T ), hsk(α),m): for i ∈ {0, · · · , δ}, run σi ← GSig(gpki, gskγ ,m),
where {γ} = Ancestor(α)

⋂

T i, and output the signature σ := (σ0, · · · , σδ).
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3. HVf(hpk(T ), RL,m, σ): parse the candidate signature σ as (σ0, · · · , σδ). For
i ∈ {0, · · · , δ}, run GVf(gpki, RLi,m, σi), where RLi := {grtβ ∈ RL | β ∈
T i} denotes all revocation tokens in RL associating with parties at depth i,
and if GVf(gpki, RLi,m, σi) = 0, terminate and output 0; if (m,σ) passes all
verifications, output 1.

For the integrity of the revocation functionality, we generate both token and
signing key for the root ρ. In other words, hrt(ρ) exists only for revocation, while
other tokens are used either in the implicit tracing (thus a manager β is given
all children’s tokens {hrt(γ)}γ∈β), or removing someone out of the hierarchy by
adding its token into RL. If there is no need for revoking the root, the scheme
can be modified by simply dropping the group composed of the root.

For the correctness and security of our construction, we have the following
theorems.

Theorem 5. If the underlying GS-VLR is correct, the HGS-VLR scheme
resulted from our semi-generic construction is also correct.

Theorem 6. The HGS-VLR scheme described above holds full-anonymity
and traceability, if the underlying GS-VLR scheme holds full-anonymity and
traceability.

When we instantiate the semi-generic construction by the variant of the GKV
scheme as shown in Sect. 3.2, a concrete construction from lattice assumptions
is given. Overall, we regard all parties at the same depth as a group respectively.
As for the HGS-VLR scheme, its anonymity is reduced to the anonymity of
all groups; however, its traceability is reduced to the traceability of the group
composed of all leaves. This leaves rooms for improving efficiency, in the meaning
that for the first (δ−1) groups, the underlying scheme may only holds anonymity
and correctness.

5 Summary

The significance of this paper is embodied on two aspects: first, from HGS to
HGS-VLR, we provide the former with efficient revocation approach by introduc-
ing and formalizing the latter new notion; second, in contrast with the generic
HGS construction, we do not employ extra building blocks (e.g., an anonymous
encryption scheme [11]) in our semi-generic HGS-VLR construction, and this
somehow unifies the studies of HGS-VLR and GS-VLR. The expansion of signa-
ture’s size is in proportion to the tree’s depth. However, this won’t bother much
since the depth is usually small in applications. For future works, on one hand,
it is desirable to depict a fully dynamic case by further adding the capability of
dynamic joining; on the other hand, constructing efficient schemes in the lattice
setting seems to be some long-term open problem, as reflected in the studies
of GS.
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