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Abstract. Homomorphic Encryption provides one of the most promis-
ing means to delegate computation to the cloud while retaining data con-
fidentiality. We present a plaintext recovery attack against fully homo-
morphic schemes which have a polynomial time distinguisher for a given
fixed plaintext, and rely on the capability of homomorphically compare
a pair of encrypted integer values. We improve by a constant factor
the computational complexity of an exhaustive search strategy, which is
linear in the recovered plaintext value, and show that it significantly
increases the number of recoverable plaintexts. We successfully vali-
date our attack against two noise-free fully homomorphic encryption
schemes, which fulfill the mentioned requisite and were claimed to be
secure against plaintext recovery attacks.
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1 Introduction

Fully Homomorphic Encryption (FHE) is a powerful cryptographic primitive,
which allows to perform computation on encrypted data, retaining the correct-
ness of the computation once the result is decrypted. The idea of FHE was first
proposed by Rivest in 1978 with the name of Privacy Homomorphisms [20].
Designing a FHE scheme remained an open problem for three decades, during
which only partially homomorphic encryption (PHE) schemes, which allow to
perform only a set of operations (e.g., additions), or SomeWhat Homomorphic
Encryption (SWHE) schemes, which allow to perform only a limited number
of additions and multiplications, were proposed. In 2009 Gentry [10] proposed
the first FHE scheme, allowing to perform an unbounded number of additions
and multiplications on encrypted data. Despite the low computational efficiency,
FHE has gained attention as it provides a way to outsource computation on pri-
vate data to a third party such as a cloud-hosted service without revealing any
information neither about the data involved in the computation nor about its
result, since it is decrypted by the client alone, differently from other primitives
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such as Secure Multi-Party Computation [24] or Functional Encryption [1]. Since
Gentry’s seminal work, several schemes achieving better performances were pro-
posed [6,7,9,12], as well as new techniques to speed up homomorphic computa-
tions, such as batching [11,21]. Nevertheless, FHE schemes still have two practical
concerns to be solved before wide adoption is possible: (i) ciphertext expansion
and (ii) the computational overhead imposed on homomorphic operations to
preserve the correctness of the decrypted result. Indeed, the ciphertext space
of SWHE/FHE schemes is consistently larger than the plaintext one, therefore
even a single operation on ciphertexts is quite time consuming. The preservation
of the correctness of the decrypted result needs to cope with a certain amount
of randomness, typically called noise, that is added to the ciphertext when pro-
cessing it. The amount of noise cannot be too high, lest a decryption failure
occurs. Unfortunately, each homomorphic operation, especially multiplication,
increases the amount of noise in the ciphertexts. Therefore, after a while, the
computation must be halted (as in SWHE schemes), or a procedure to refresh
the ciphertext, i.e., decrease the noise without decrypting, must be run. Such a
procedure, introduced by Gentry in his original scheme [10], is called bootstrap-
ping and it allows to transform a SWHE scheme, satisfying certain constraints,
in a FHE one. However, this procedure is quite cumbersome, and needs to be
periodically performed, slowing down the overall computation. To overcome this
burden, alternative noise management techniques have been proposed, such as
modulus switching [5] and scale-invariant schemes [2,3]. Acknowledging the dif-
ficulties in noise handling, some noise-free schemes have also been proposed:
their ciphertexts have no noise, thus an unbounded number of operations can be
performed without any costly noise management technique being involved. Nev-
ertheless, while common noisy SWHE/FHE schemes are based on well-known
and scrutinized mathematical problems, such as the Learning With Errors prob-
lem [16], noise-free schemes usually rely on less common algebraic trapdoors,
which typically do not have widely scrutinized reductions to hard problems.
Indeed, Liu in [15] proposed a noise-free FHE scheme, based on the approximate
greatest common divisor problem, that was subsequently broken in [23]. Kipnis
in [14] proposed a FHE scheme based on commutative rings, provably secure
against ciphertext-only attacks; however knowing two plaintext-ciphertext pairs
is sufficient to break the scheme [22]. Li in [13] proposed to employ non com-
mutative rings to build FHE schemes, while Nuida [18] introduced a frame-
work to construct FHE schemes based on group presentations obfuscated by
Tietze transformations. The open challenge with schemes in [13,18] resides in
the definition of a mapping between integer plaintext values and the elements of
the mentioned algebraic structures, without losing neither security guarantees
nor homomorphic capabilities. Lastly, Wang in [23] introduced two noise-free
octonion-based FHE schemes (called OctoM and JordanM) with trapdoors based
on solving quadratic modular equations (with a composite modulus) and proved
their security in a ciphertext-only scenario. Due to this property, they are, to
the best of our knowledge, the only noise-free FHE schemes suitable for practical
usage.
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While in general the homomorphic capabilities of a cryptosystem do not
weaken the security guarantees per se, they may increase the adversarial power,
if combined with other vulnerabilities. The advantages provided by homomor-
phic capabilities to the attacker were discussed in [4], focusing on the so-called
linearly decryptable schemes, i.e., cryptosystems whose decryption function can
be expressed as a dot product between key and ciphertext values represented in
a multi-dimensional vector space. Linearly decryptable schemes usually employ
a significant amount of noise to hinder Known Plaintext Attacks (KPAs). Never-
theless, in [4] the authors shown that if the scheme can homomorphically evaluate
the majority function, then a KPA becomes practically viable. Moreover, in [23]
the authors introduced, for linearly decryptable schemes, an algorithm to deter-
mine if the plaintext corresponding to a given ciphertext is equal to the integer
value 1. We remark that noise free OctoM and JordanM FHE schemes are linearly
decryptable, and thus affected by the aforementioned issues.

Contributions. We present a plaintext recovery attack, against FHE schemes
having plaintexts in Zn, with n > 2, and where it is possible to devise an efficient
algorithm able to determine if a generic ciphertext under a given key k is the
encryption of a fixed plaintext m, which we denote as m-distinguisher. Although,
to the best of our knowledge, such a distinguisher has been proposed for linearly
decryptable schemes only, our attack will be applicable to any FHE scheme for
which such a distinguisher can be found. Our attack, which is performed in a
ciphertext-only scenario, leverages the capability to homomorphically compare
two encrypted integer values, obtaining a computational complexity which is lin-
ear in the plaintext integer value being recovered and improving over an exhaus-
tive search strategy by a significant constant factor. We successfully validate the
proposed attack against two linearly decryptable noise free octonion-based cryp-
tosystems [23] (OctoM and JordanM), which were claimed to be computationally
secure in a ciphertext-only attack scenario. Furthermore, we apply our attack
to retrieve enough plaintexts from the said schemes so that mounting a KPA to
recover the key becomes viable.

2 Preliminaries

Definition 1 (Negligible Function). A function ε : N → R is negligible if,
for every univariate positive polynomial, poly(x) ∈ R[x], there exists an integer
c > 0 such that ∀x > c, |ε(x)| ≤ 1

poly(x) .

Definition 2 (Indicator Function). Given a set S and a subset A ⊆ S, the
indicator function of the elements of A over the ones included in S is defined
as: 1A : S → {0, 1}, where 1A(x) = 1 if x ∈ A, 0 otherwise.

2.1 Homomorphic Encryption Algorithms

Our definition of Fully Homomorphic Encryption follows [7], without constrain-
ing the encryption function to deal with a single bit at time.
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An homomorphic encryption (HE) scheme specifies three sets: M, C and F .
The set of plaintexts M usually coincides with the set of integer values ranging
from 0 to n − 1, with n > 2, assumed to be the representatives of the residue
classes modulo n, i.e., Zn ≡ Z/nZ. The ciphertext space C includes elements with
an algebraic representation that depends on the specific HE scheme at hand. The
set of polynomials F ⊆ Zn[x1, x2, . . . , xa], with a ≥ 1 and degree greater or equal
to zero, defines the functions that the HE scheme at hand allows to be evaluated.
That is, each of these polynomials computes a function f : Ma → M, a ≥ 1 over
the plaintexts, and is also referred to as an arithmetic circuit composed by gates
performing multiplications and additions in Zn. We provide the definition of an
HE scheme starting from an asymmetric HE scheme, and describe a symmetric
one by difference.

Definition 3 (Public-key Homomorphic Encryption Scheme). A public-
key Homomorphic Encryption scheme is defined as a tuple of four polynomial
time algorithms 〈KeyGen, Enc, Dec, Eval〉:
– Key Generation. 〈sk, pk, evk〉 ← KeyGen(1λ) is a probabilistic algorithm

that, given the security parameter λ, generates the secret key sk, the public
key pk and the public evaluation key evk.

– Encryption. c ← Enc(pk,m) is a probabilistic algorithm that, given a mes-
sage m ∈ M and the public key pk, computes a ciphertext c ∈ C

– Decryption. m ← Dec(sk, c) is a deterministic algorithm that, given a
ciphertext c ∈ C and the secret key sk, outputs a message m ∈ M

– Evaluation. c ← Eval(evk, f, c1, c2, . . . , ca) is a probabilistic algorithm com-
puting a ciphertext c ∈ C, using an arithmetic circuit f ∈ F with a ≥ 1
inputs, the ciphertexts c1, c2, . . . , ca, and the evaluation key.

The following properties must hold:

– Decryption Correctness. ∀m ∈ M : Dec (sk, Enc(pk,m)) = m.
– Evaluation Correctness. ∀f ∈ F ,m1, . . . ,ma ∈ M:

Pr ( Dec(sk, Eval(evk, f, c1, . . . , ca)) = f(m1, . . . ,ma) ) = 1 − ε(λ),
where c1 = Enc(pk,m1) ∧ · · · ∧ ca = Enc(pk,ma) and ε(λ) is a negligible
function of the security parameter of the scheme.

– Compactness. ∀ f ∈ F , c1, . . . , ck ∈ C:
|Eval(evk, f, c1, . . . , ck)| ≤ poly(λ), where | · | denotes the bit length of a
ciphertext, while poly(·) denotes a positive univariate polynomial.

The requirement on the evaluation correctness trivially states that by decrypting
the output of the Eval algorithm we obtain the correct result of the computa-
tion homomorphically performed by Eval on the ciphertexts. In particular, the
Eval algorithm evaluates a polynomial, defined over the plaintext space, in the
sequence of input ciphertexts by replacing the modular additions and multipli-
cations with the homomorphic operations Add and Mul, respectively, that are, in
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turn, two probabilistic polynomial time algorithms defined over the ciphertext
space C:

– Homomorphic Addition. c ← Add(evk, c1, c2) computes a ciphertext c ∈ C
such that Dec(sk, c) = Dec(sk, c1) + Dec(sk, c2)

– Homomorphic Multiplication. c ← Mul(evk, c1, c2) computes a ciphertext
c ∈ C such that Dec(sk, c) = Dec(sk, c1) · Dec(sk, c2).

When defining a symmetric-key homomorphic encryption scheme, the only dif-
ference is the key generation algorithm KeyGen(1λ) outputting a tuple k =
〈sk, pk, evk〉 with sk = pk. Lastly, We recall the categorization of HE schemes
depending on the specific choice of the set of functions F which can be evaluated.
Specifically, a PHE scheme exhibits a function f ∈ F defined via an arithmetic
circuit including a single type of gate (an additive one or a multiplicative one).
A SWHE scheme exhibits a function f ∈ F defined via an arithmetic circuit
with a depth no higher than a fixed (scheme-dependent) threshold. Finally, a
FHE scheme exhibits a function f ∈ F defined via an unconstrained arithmetic
circuit.

2.2 Homomorphic Comparisons

One of the requirement to apply our attack is the existence of an algorithm
able to determine if a generic ciphertext is an encryption of a fixed plaintext m.
Therefore, we now provide a formal definition for this algorithm, which we refer
to as m-distinguisher.

Definition 4 (m-distinguisher). Let 〈KeyGen, Enc, Dec, Eval〉 be a homomor-
phic encryption scheme with security margin λ, and let M, C be the plaintext
and ciphertext spaces, related by the generated key k = 〈sk, pk, evk〉. Let Am

k ⊂ C,
be the set of ciphertexts corresponding to the encryption of a plaintext m ∈ M,
i.e.: Am

k = {c ∈ C s.t. Dec(sk, c) = m}.
Given a plaintext m ∈ M, an m-distinguisher is a deterministic polynomial

time algorithm Am taking as input a ciphertext c ∈ C and the public portion of
k (i.e., kpub = 〈pk, evk〉 for public-key systems and kpub = 〈evk〉 for symmetric
ones), and computes the indicator function of the elements of Am

k over the set
of ciphertexts, 1Am

k
: C → {0, 1}, in such a way that

|{c ∈ C s.t. Am(c, kpub) = 1Am
k

(c)}|
|C| ≥ 1 − ε(λ),

where ε(λ) is a negligible function of the security margin of the system.

Given the existence of this m-distinguisher, our attack leverages the capability to
homomorphically compare two encrypted integers. Therefore, we now present the
main methods proposed in the literature to compute this functionality, including
the one used in our attack. First of all, performing comparisons requires to
homomorphically evaluate the greater-than function on a chosen integer interval.
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Definition 5 (Greater-than Function). Given a positive integer b and an
interval of integers Dt = {0, 1, . . . , t − 1}, with t ≥ 2, the greater-than function
GTt,b : Dt × Dt → {b − 1, b} is defined as:

GTt,b(x, y) =

{
b if x ≥ y,

b − 1 otherwise

To the extent of evaluating this function with an HE scheme, we need to find a
polynomial fgt ∈ F ⊆ Zn[x, y], such that fgt(x, y) = GTt,b(x, y), with 2 ≤ t ≤ n,
1 ≤ b < n, and x, y being the representatives of residue classes modulo n, (i.e.,
x, y ∈ Zn) considered as integers less than t. Such a polynomial can be easily
found if the plaintext space is Z2: indeed, additions and multiplications become
xor and and gates, while the input variables are the single-bit values in the
binary encodings of x and y, and thus there are many logical circuits computing
GTt,b(·, ·) function.

Considering a plaintext ring M = Zn, with n > 2, which is the case tar-
geted in our work, finding an efficiently computable polynomial for the GTt,b(·, ·)
function is a challenging task. Çetin in [8] reports two methods to compute the
GTt,b(·, ·) function which do not require interaction between the secret key owner
and the party who performs homomorphic evaluation. However, both of these
methods are not suitable for our attack: indeed, the first one is not applicable
to a composite module n; the second method computes an approximation of the
GTt,b(·, ·), while our attack needs an exact computation of this function.

A more effective solution is proposed in [17]: the greater-than function is
computed as GTt,b(x, y) = SIGNt,b(x − y), where SIGNt,b(z) is a function
defined over Dt ⊆ Z = {−t + 1, . . . , 0, . . . , t − 1} such that SIGNt,b(z) = b if
z ≥ 0, b − 1 otherwise. The homomorphic evaluation of the function SIGNt,b(·)
requires a polynomial fsign ∈ F ⊆ Zn[z] fulfilling fsign(z mod n) = SIGNt,b(z),
with 2 ≤ t ≤ n

2 , 1 ≤ b < n and z ∈ Dt. In [17], the polynomial fsign is computed
applying the Lagrange interpolation formula to 2t− 1 points having coordinates
( z, SIGNt,b(z) ), with z ∈ Dt, and considering a prime modulus, i.e., n = p.

As we are considering as a plaintext space the ring Zn with a generic modulus
n > 2, we introduce an additional constraint on the integer t, formalized in
Lemma 1, to extend the applicability of the aforementioned method to a generic
ring Zn:

Lemma 1. Given an integer t ≥ 2, and a set Dt = {−t + 1, . . . , 0, . . . , t − 1},
the polynomial f(z) ∈ Zn[z], with n > 2, interpolating 2t − 1 points having the
x-coordinate ranging over all values in z ∈ Dt exists if t ≤ q

2 , where q is the
smallest prime factor of n.

Proof. Considering 2t − 1 points {(x1, y1), . . . , (x2t−1, y2t−1)} in Zn × Zn, the
interpolating polynomial f ∈ Zn[x], with degree at most 2t−2, can be computed
by the Lagrange interpolation formula:

f(x) =
2t−1∑
i=1

yi

2t−1∏
j=1,j �=i

(x − xj)(xi − xj)−1
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The existence of the multiplicative inverses (in Zn) required in this formula is
ensured if all the values xi −xj are co-prime with n. Assuming the x-coordinates
to be mutually distinct and in Dt, the constraint t ≤ q

2 implies that −q <
−2t + 2 ≤ xi − xj ≤ 2t − 2 < q. Since q is the smallest prime factor of n, then
all the elements in Zn \ {0} ∩ {−q + 1, . . . , q − 1} are co-prime with n, therefore
all the values xi − xj are co-prime with n, and thus invertible, allowing f(x) to
be interpolated by the Lagrange formula. ��

In conclusion, by Lagrange interpolation we can obtain a polynomial fsign ∈
F ⊆ Zn[z] which computes the function SIGNt,b(z),∀z ∈ Dt, and then a poly-
nomial fgt ∈ F ⊆ Zn[x, y], computing the function GTt,b(x, y),∀x, y ∈ Dt,
as fgt(x, y) = fsign(x − y). Since fgt ∈ F , it can be homomorphically eval-
uated by the Eval algorithm of the HE scheme, by replacing addition and
multiplications of the polynomial with corresponding homomorphic operations
(Add and Mul) whose inputs are ciphertexts in C. In the following, we denote
the algorithm Eval(evk, c1, c2, fgt) by HGTt,b(c1, c2), which takes as input two
ciphertexts with corresponding plaintexts m1,m2 ∈ Dt, and outputs an encryp-
tion of GTt,b(m1,m2). In particular, since GTt,b is defined on the interval
Dt = {0, . . . , t − 1}, t ≤ q

2 , with q being the smallest prime factor of n,
then c1, c2 ∈ Ct = {c ∈ C s.t. Dec(sk, c) < t} is a sufficient condition
for Dec(sk,HGTt,b(c1, c2)) = GTt,b(m1,m2). The computational complexity
required to interpolate 2t − 1 points by applying the Lagrange formula is O(t2)
operations in Zn; while the evaluation of the polynomial fsign ∈ Zn[z], whose
degree is at most 2t − 2, has a computational complexity O(t). From this, it is
easy to note that the computational cost of the HGTt,b(·, ·) algorithm is O(t).
We note that, while there are no current algorithms to compute HGTt,b(·, ·) in
less than O(t), research efforts driven by the usefulness of a homomorphic com-
parison may lead to an improvement in this sense. Since our methodology relies
on the computation of HGTt,b(·, ·) as an atomic component, such improvements
will positively affect the efficiency of our attack.

3 Attack Strategy

In the following we detail a plaintext recovery attack which takes as input a
ciphertext and the publicly available evaluation key evk of the HE scheme at
hand (which can be either a FHE, or a SWHE capable of computing HGTt,b).
Since a FHE scheme must allow the evaluation of arbitrary polynomials, then it
must provide to the evaluator a method to obtain encryptions of known values,
preferably avoiding interaction with the key owner. In case the HE scheme is an
asymmetric one, such ciphertexts can be directly obtained employing the public
key encryption algorithm, while for a symmetric scheme, the encryption of any
value can be obtained from a single encryption of m̂ = 1 leveraging homomorphic
operations (we can obtain encryptions of all powers of 2 by iteratively summing
m̂ by itself, and then compute the encryption of any integer value leveraging its
binary representation). Thus, we assume, in case of a symmetric FHE scheme,
that an encryption of m̂ = 1 is embodied in the evaluation key evk to allow the
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computation of encryptions of known values by the evaluator. Such encryption of
m̂ can be used also by the attacker to obtain the ciphertexts required to perform
the attack.

Comparison-Based Attack. The core idea is to perform a homomorphic
binary search over the possible candidates for the value of the plaintext cor-
responding to the ciphertext at hand. To this end, a comparison function CMP ,
taking two ciphertexts as inputs and yielding an outcome in cleartext, is com-
puted leveraging the homomorphic greater-than function HGTt,b (see Sect. 2).
Since the result of the HGTt,b function is still encrypted, the m-distinguisher
is employed to determine its actual (plaintext) value. The attacker can com-
pute the comparison function CMP employing the aforementioned strategy as
follows:

Definition 6 (Comparison Function). Given the ciphertexts c1, c2 ∈ Ct and
Am the algorithm computing the m-distinguisher, where m is a fixed plaintext
value, the function CMP : Ct × Ct → {1, 0,−1} is computed as:

CMP (c1, c2) =

⎧⎪⎨
⎪⎩

1 if v1 = 1 ∧ v2 �= 1,

0 if v1 = 1 ∧ v2 = 1,

−1 otherwise

with v1 = Am(HGTt,m(c1, c2), kpub), v2 = Am(c1 − c2 + cm, kpub) and cm being an
encryption of m computed by the attacker.

Denoting with Td the computational complexity of the m-distinguisher, we
have that the time complexity of CMP is TCMP = O(t + 2Td) as its execution
involves at most two computations of the m-distinguisher plus one computation
of the HGTt,m function, which has complexity O(t). Leveraging the function
CMP , the binary search strategy locates the value of the actual plaintext in
the range Dt, which is t elements wide, with a computational cost of O(TCMP ·
log(t)) = O((t + 2Td) log(t)).

Starting from the strategy which has just been described, we improve its
effectiveness extending the range of the recoverable plaintexts. To this end, we
split the set of recoverable plaintexts into |Dt| = t sized chunks, find into which
chunk the plaintext is likely to be contained, and proceed to retrieve it employing
the binary search approach. We denote with Ds the set of recoverable plaintexts
(Ds = {0, 1, . . . , s − 1}, s ≤ n), and with Cs the set of ciphertexts obtained
encrypting plaintexts in Ds, i.e.: Cs = {c ∈ C s.t. Dec(sk, c) < s}. The recover-
able message space Ds is split into σ chunks containing numerically consecutive
plaintexts, with σ = � s

t �: for instance, the i-th chunk contains plaintexts values
{(i − 1)t, . . . , it − 1}.

Algorithm 1 shows how our improved attack is performed. It iterates over
all the σ chunks, testing, for each one of it, if the plaintext mc, corresponding
to the input ciphertext c, may be contained in the chunk being scanned (lines
2–9). To this end, the algorithm starts by testing if mc may be in a chunk
{(i − 1)t, . . . , it − 1} by verifying if GTt,m(mc, (i − 1)t) = m (lines 3–4). In case
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Algorithm 1. Plaintext Recovery Attack
Input: ciphertext c ∈ Cs, Cs = {c ∈ C s.t. Dec(sk, c) < s}
Output: plaintext mc = Dec(sk, c), mc ∈ Zn

1 begin
2 for i ← 1 to σ do
3 cgt ← HGTt,m(c,Enc(pk, (i − 1)t))
4 if A(m)(cgt,kpub) = 1 then
5 cgt ← HGTt,m(c,Enc(pk, it − 1)) + Enc(pk, 1)
6 if A(m)(cgt,kpub) = 1 then
7 mc ← BinarySearch(c − Enc(pk, (i − 1)t))
8 if mc �= ⊥ then
9 return mc + (i − 1)t

this test succeeds (line 4, case of the if being taken), Algorithm 1 proceeds to test
also if mc is smaller than the upper bound it−1 of the chunk at hand, by verifying
that GTt,m(mc, it − 1) = m − 1 with an analogous approach (lines 5–6). If the
tests at lines 3 – 6 succeed, then the current chunk may contain the plaintext
mc, and so Algorithm 1 attempts a plaintext recovery employing the binary
search approach described in precedence over the current chunk (line 7). We note
that the answer of these tests are subject to potential false positives. Indeed, if
mc /∈ {(i − 1)t, . . . , it − 1}, then mc − (i − 1)t /∈ Dt or mc − (it − 1) /∈ Dt: thus,
it means that the polynomial fsign(z) ∈ Zn[z], obtained by interpolating points
whose x-coordinates range over Dt, is evaluated on a point z /∈ Dt, hence yielding
an outcome which is either outside the set {m− 1,m} or (by coincidence) inside
it. Therefore, it may happen that fgt(mc, (i−1)t) = fsign(mc−(i−1)t) = m and
fgt(mc, it − 1) = fsign(mc − (it − 1)) = m − 1 even if mc /∈ {(i − 1)t, . . . , it − 1}.
In this case, the interval {(i − 1)t, . . . , it − 1} is identified as a false positive.
However, these false positive are filtered out later in the algorithm. Indeed, since
the binary search is effective only under the assumption that the sought plaintext
is in Dt, Algorithm 1 (line 7) exploits the homomorphic operations to subtract
the value of the lower bound of the current chunk from mc, working on its
corresponding ciphertext c, to retrieve the value of mc mod t, provided that the
chunk detection was not reporting a false positive. If a result is returned (line
8), the actual value of mc is reconstructed adding back the lower bound of the
current chunk to the value retrieved by the binary search (line 9), otherwise the
current chunk is a false positive.

We now consider the time complexity of Algorithm 1 as a function of the
value of the plaintext to be retrieved mc. Algorithm 1 is expected to perform
�mc

t � iterations of the outer loop. Each one of the iterations, save for the last
one, will fail the membership tests with very high probability (false positives are
unlikely), thus resulting in a computational effort which is O(t + Td) at each
iteration. However, we now consider the overall worst-case complexity Ta(mc) of
the improved plaintext recovery attack:

O
(
�mc

t
�(t + Td + TBinarySearch)

)
= O

(
log(t)(mc + �mc

t
�Td)

)
(1)
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Therefore, our attack has a linear time complexity, which is the main rea-
son why it is able to practically recover only ciphertexts whose correspond-
ing plaintext is not too big. However, by setting t = 220 (an upper bound
imposed by the O(t2) computational cost of Lagrange interpolation), we see that,
unless Td > 223, recovering plaintexts as big as 232 still retains a computational
complexity Ta(mc) < 240. Since many typical FHE scenarios involve computa-
tions on relatively small values (e.g. power consumption statistics from smart
meters), we deem this plaintext recover capability effective enough to be worth
considering.

To conclude the description of our attack, we now show the speed-up
obtained by Algorithm1 over an exhaustive search strategy leveraging only
the m-distinguisher. This latter attack tries all plaintext values x ∈ Zn in
increasing order, with the recovered plaintext being the first x such that
Am(Enc(pk, x) − c + Enc(pk,m)) = 1. Denoting the value of the recovered plain-
text as mc, with this strategy we employ the m-distinguisher mc times, therefore
the complexity of this approach is O(mcTd). The speed-up of our attack over
this simple strategy can be computed as follows:

mcTd

Ta(mc)
=

mcTd

log(t)(mc + �mc

t �Td)
=

mctTd

log(t)(mct + mcTd)
=

tTd

log(t)(t + Td)

This calculation shows that our attack improves the exhaustive search strat-
egy by a constant factor, thus without changing its asymptotic complexity. In
particular, the speed-up depends on the values of t, chosen by the attacker, and
Td, given by the target scheme. Although this improvement may seem negligible,
we will show, for the FHE schemes targeted by our attack, that the magnitude
of the speed-up may be significant in practice, as it largely increases the number
of recoverable plaintexts.

4 Two Case Studies

In this section, we evaluate our attack against two symmetric noise free FHE
schemes [23], OctoM and JordanM. Although there is an efficient 1-distinguisher
for these schemes, they were claimed to be secure against ciphertext-only adver-
saries aiming to recover either the plaintext or the secret key [23], making them
a proper target for our attack.

4.1 Target Fully Homomorphic Encryption Schemes

We report a description of the two target symmetric FHE schemes, OctoM1 and
JordanM, focusing only on the details which are relevant for our attack: the
characterization of the ciphertext space and the description of homomorphic
operations. We refer the reader to [23] for further details. The plaintext space

1 We find out that, to make OctoM multiplicatively homomorphic, some additional
constraints are needed: they will be shown in the full version of the paper.
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is the ring of integers Zn, with a composite n > 2, for both schemes. The
ciphertext space of OctoM is the set of 8 × 8 matrices with entries in Zn, i.e.,
Z
8×8
n , while the one of JordanM is the set of 3×3 matrices with entries in O(Zn),

where O(Zn) is the non commutative, non associative algebra of octonions whose
support is the vector space Z8

n. Both schemes perform a single matrix addition to
homomorphically add two ciphertexts, while to homomorphically multiply two
ciphertexts C1, C2 the two schemes employ different procedures:

– OctoM Homomorphic Multiplication. Cmul = C2·C1·C−1, where · denotes
the matrix dot product and C−1 ∈ Z

8×8
n is an encryption of the plaintext value

n − 1, embodied in the evaluation key, evk.
– JordanM Homomorphic Multiplication. Cmul = C1 �C2, where � denotes

the Jordan product.

4.2 Security Analysis

As already acknowledged in [23], the target FHE schemes are linearly decrypt-
able, that is their decryption function can be expressed as a dot product between
the key and the ciphertext represented in a d-dimensional vector space defined
over the ring Zn. For the two target FHE schemes, the ciphertext space dimen-
sion d is 64 for OctoM, since a ciphertext is an 8 × 8 matrix, while d = 9 · 8 = 72
for JordanM, since the ciphertext matrix is a 3 × 3 matrix whose entries are
elements of O(Zn). Linearly decryptable schemes are vulnerable to KPAs: if
the attacker has approximately d plaintexts/ciphertexts pairs, then a linear sys-
tem of equations can be built to recover the key and decrypt any ciphertext.
In addition, an efficient 1-distinguisher for any linearly decryptable scheme is
proposed in [23]. We now describe the construction of this distinguisher, since
we leverage it to perform our attack. Given a ciphertext C, represented as a d
dimensional vector, consider the first d + 1 powers of C. Since the ciphertext
space dimension is d, then these d+1 ciphertexts are linearly dependent. There-
fore, by definition, there are non trivial solutions to the system of d equations
with d+1 unknowns ai defined as

∑d+1
i=1 aiC

i = 0. Since the decryption function
is linear and the encryption scheme is multiplicatively homomorphic, the follow-
ing equality also holds:

∑d+1
i=1 aim

i = 0, where m = Dec(sk, C). If m = 1, this
equation becomes

∑d+1
i=1 ai1i = 0 ⇒ ∑d+1

i=1 ai = 0. Therefore, if the additional
constraint

∑d+1
i=1 ai �= 0 is added to the system of equations

∑d+1
i=1 aiC

i = 0, a
solution is found if and only if m �= 1. In conclusion, by looking at the solution
of this system, we can determine if m = 1 or not. The computational complexity
of this 1-distinguisher is O(d3), since solving a system of equations has cubic
complexity. We remark that the system can be solved directly on ciphertexts,
no knowledge about the plaintexts or the key is required. Therefore, this dis-
tinguisher is a particular case of Definition 4, since it does not employ kpub, the
publicly available portion of the cipher key. While the existence of these vulner-
abilities (1-distinguisher and KPA) is acknowledged by designers of OctoM and
JordanM too, their security analysis claims [23, Theorem 7] that the hardness of
solving quadratic equation systems in Zn (with a composite n) guarantees that
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no information about plaintexts can be inferred from ciphertexts. The proof of
this claim is based on two reductions: first, the problem of finding the secret key
is reduced to the problem of solving a system of multivariate quadratic equations
in Zn, then the problem of recovering a plaintext is reduced to the problem of
solving a univariate quadratic equation in Zn. These reductions state that solv-
ing quadratic equations in Zn is sufficient to break the cryptosystems, but they
do not state that recovering the secret key or a plaintext is as hard as solving
quadratic equations in Zn. Thus, there is no contradiction between the existence
of our attack and the hardness of solving quadratic equations in Zn (which is as
hard as factoring n).

4.3 Breaking Target FHE Schemes with Our Attack

As already discussed in Sect. 3, since a FHE scheme must allow the evaluation
of arbitrary polynomials, then it must provide to the evaluator a method to
obtain encryptions of known values, preferably avoiding interaction with the
key owner. Since no method to provide this capability was proposed for the
considered FHE schemes, we assume that an encryption of 1 is embodied in the
evaluation key to provide this capability to users of the FHE scheme. It is worth
noting that an encryption of 1 is not necessary for the OctoM scheme, since it can
be computed by squaring the encryption of −1 already provided in the evaluation
key. In the instantiation of our attack against JordanM, there is a relevant issue
related to the fact that, as outlined in Definition 4, the m-distinguisher may
have a wrong outcome on a negligible portion of the ciphertexts. However, this
portion is not negligible for several ciphertexts being used in our attack. The
problem arises because of two random values which are employed to randomize
the encryption. We denote these two values for a ciphertext C by rC , sC . In
particular, we find out two relevant facts about these values2: first, if sC =
1∨rC = 1, then the 1-distinguisher will classify the ciphertext as an encryption of
1 independently from the plaintext value m; secondly, the evaluation correctness
property (see Definition 3) holds not only for the message m, but for rC , sC too.
The latter fact basically means that, given two ciphertexts C1, C2, encrypted
with random values respectively rC1 , sC1 and rC2 , sC2 , these two properties,
related to homomorphic operations Add and Mul of JordanM scheme, hold:

C = Add(C1, C2) → rC = rC1 + rC2 ∧ sC = sC1 + sC2

C = Mul(C1, C2) → rC = rC1 · rC2 ∧ sC = sC1 · sC2

As a consequence, a ciphertext Cgt obtained through homomorphic evaluation of
GTt,1 function has only four possible assignments to its random values rCgt

, sCgt
,

which are {(0, 0), (0, 1), (1, 0), (1, 1)}, since the image of GTt,1 is {0, 1}. Therefore,
while for a generic ciphertext C, Pr(rC = 1 ∨ sC = 1) is negligible, and thus
this issue is not relevant for the reliability of the 1-distinguisher in general, for

2 Proofs are omitted for the sake of brevity. They will be included in the full version of
the paper as long as a fully detailed description of JordanM and OctoM cryptosystems.
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a generic ciphertext Cgt obtained through homomorphic evaluation of GTt,1 the
same probability is 0.75, hence the outcome of the 1-distinguisher, when its input
is a ciphertext Cgt as in our attack, is likely to be erroneous.

To overcome this issue, we devise a ciphertext refreshing procedure, which
employs the available encryption of 1 to compute a new ciphertext C ′ as C+C−
Enc(pk, 1) ∗ C, having the same plaintext m, but random values rC′ , sC′ which
are highly likely to be different from 1, since they depend on the random values
chosen for the encryption of 1. Therefore, in our attack we employ a slightly
tailored version of the distinguisher, whose output is equal to A1(C) · A1(C ′).
By using this distinguisher, we can perform our attack on both the target FHE
schemes to recover plaintexts. Then, after d plaintexts have been recovered, we
can perform the KPA and recover the key, breaking the schemes.

We can now estimate the computational complexity of our attack for the
target FHE schemes. For linearly decryptable schemes, Td, the computational
complexity of the 1-distinguisher is O(d3), with d = 64 for OctoM and d = 72
for JordanM, which means that Td = O(219) for both schemes. However, the
distinguisher is always invoked twice in our attack to increase its reliability,
therefore the computational complexity we are going to use in place of Td, in the
formulae derived in Sect. 3 to estimate the computational effort of our attack,
is T ′

d = 2Td = O(220). Given this estimation, we can see that it is practical
to recover plaintext values as big as 232, which is expected to be enough for a
significant number of ciphertexts in FHE applications. The computational effort
required to recover a plaintext value mc = 232, can be computed as follows (see
Eq. 1 in Sect. 3), replacing Td with T ′

d = 220 and setting t = 220:

Ta(232) ≤ 232 log(220) +
⌈

232

220

⌉
220 log(220) = 232 · 20 + 232 · 20 ≤ 238

Conversely, recovering a plaintext as big as mc = 232 via an exhaustive search
strategy has a computational cost of O(mcTd) = 232 · 219 = 251 (note that
with this strategy we do not need to invoke twice the 1-distinguisher, thus we
can use Td instead of T ′

d). Indeed, the speed-up of our attack is: tTd

log(t)(t+T ′
d)

≥
239

25·221 = 213. This result shows that the improvement of our attack is not negli-
gible: considering a computational effort fixed a-priori, the number of plaintexts
recoverable by our attack is 213 times bigger than the number of plaintexts
recoverable by the exhaustive search strategy (when t = 220). For instance, with
a computational cost bounded by 238, our attack can recover plaintexts up to
232, while the exhaustive search can recover plaintexts up to 219. We success-
fully implemented the OctoM and JordanM cryptosystems as well as the described
plaintext recovery attack in Python 2.7, with the intent to verify the effectiveness
of the proposed attack. In practice, the security level of the target schemes affects
the computational effort to perform the homomorphic operations as well as the
modular arithmetic operations needed to evaluate a m-distinguisher. Therefore,
such a dependency from the security level and/or the parameter sizes of the
cryptoscheme is included in the computational complexity formulae of both our
attack and the exhaustive search as the same multiplicative factor (which has
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been omitted in the previous treatment). Hence, independently from the security
margin, when the plaintext values are bounded (e.g. less than 232) our method
largely improves the practicality of their derivation employing only ciphertext
material.

5 Conclusions

We present a new type of plaintext recovery attack based on the capability of
homomorphically evaluating the comparison between two encrypted integers and
assuming the existence of an efficient algorithm to determine if a generic cipher-
text is an encryption of a fixed value m. Although the computational cost of
our attack is linear in the value of the plaintext being recovered, it significantly
improves the number of recoverable plaintexts w.r.t. an exhaustive search strat-
egy, which, in turn, might mean recovering a vast portion of ciphertexts in a
FHE application scenario.
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