
Accelerating Integer Based Fully
Homomorphic Encryption Using Frequency

Domain Multiplication

Shakirah Hashim(&) and Mohammed Benaissa

University of Sheffield, Sheffield, UK
shashim1@sheffield.ac.uk

Abstract. In this paper, the hardware implementation of Integer based Fully
Homomorphic Encryption (FHE) is investigated. A new methodology is pro-
posed to speed up the encryption process by optimizing the very large asym-
metric multiplications required. A frequency domain approach is adopted for the
multiplication using the Number Theoretic Transforms (NTTs) where the strict
relationship between the NTT parameters is relaxed to allow for more optimized
hardware implementations on FPGA. This is achieved specifically by relaxing
the traditional requirement for a simple transform kernel in favour of optimal
transform lengths and moduli in terms of the number of overall iterations,
suitable data path, and FPGA architecture. It is shown both analytically and via
implementation results that the proposed approach yields faster FHE over the
integers implementations. Based on the methodology, a proposed hardware
architecture with optimized NTT parameters synthesized on Xilinx Kintex-7
FPGA shows 55% and 76% speed improvement for Medium and Large key
sizes respectively.

Keywords: Fully Homomorphic Encryption � Number Theoretic Transform
Hardware implementation

1 Introduction

Fully Homomorphic Encryption (FHE) allows a computation to be done on encrypted
data (ciphertext) and no decryption is needed prior to any computation, offering thus
better privacy [1]. FHE has emerged as a powerful cryptographic tool in recent years as
it has been shown to possess both additive and multiplicative homomorphic properties.
However, it is still far from practical deployment due to their complexity, mainly due to
the huge key size involved. Three variants of FHE: Lattice-Based, Ring Learning with
Error (RLWE) and Integer-Based have been an area of active research in recent years to
investigate the potentials and limitations of FHE by investigating software [2–5] and
hardware [6–9] implementations.

Implementing Lattice-Based FHE in software was initially proposed in [2]; it
requires huge key sizes between 17 Megabytes (MB) to 2.3 Gigabytes (GB) with key
generation taking from 2.5 s to 2.2 h. Van Dijk et al. revised the original FHE scheme
and proposed Integer Based FHE [10] where both homomorphic properties are

© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 161–176, 2018.
https://doi.org/10.1007/978-3-030-01950-1_10

http://orcid.org/0000-0002-5941-8968
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_10&domain=pdf

computed over the integers with the objective of promoting simplicity in its scheme.
Later, Coron et al. improved this scheme with smaller key sizes of 0.95 Mb to 802 Mb
and key generation time between 4.38 s to 43 min [4].

A modulus switching technique was introduced in [5] which allows leveled mul-
tiplication on smaller moduli, hence results in smaller public key sizes. In [5], the
authors worked on RLWE based FHE, managed to reduce noise growth from quadratic
to linear complexity even without modulus switching. Cousins et al. introduced the
Chinese Remainder Transform (CRT) on Lattice-Based FHE which splits a larger
modulus into multiple moduli so that parallelization can be employed on Field-
Programmable Gate Array (FPGA) Virtex 6, however extra time is needed for re-
conversion from the Montgomery domain to regular integers [11, 12]. Later, Gentry in
[13] presented an encryption of 150-bit Advanced Encryption Standard (AES) homo-
morphically which takes 73.03 s for key generation and 3 Gb memory usage without
bootstrapping.

Apart from FHE, recent research also focused on Somewhat Homomorphic
Encryption (SHE) [14, 15]. Smart et al. in [3] suggested multiple stages of encryption
(known as re-crypt) on larger message sizes rather than single bit proposed originally in
[1]; however, key generation still requires more than an hour even for small key size.
An improvised version of [3] is done by introducing a Single Instruction Multiple Data
(SIMD) implementation in [16], which performs 4.13 times faster re-cryption and 12
times smaller ciphertext than one without SIMD. Also working on SHE, Poppelmann
et al. [17] showed that Lattice-Based SHE is possible to be deployed on FPGA
Spartan-6 with 9063 Number Theoretic Transform (NTT) coefficients multiplication
per second, provided NTT parameters are selected appropriately. The recent SHE work
is based on Ring-LWE variants and aimed at accelerating the encryption for cloud
computing at the FPGA level and also enlarge the NTT coefficients by introducing a
1228-bit modulus [18]. However, the resulting multiplication process was relatively
slower than the software implementation with the same NTT size; 26.67 s and 2.98 s
respectively. The bottleneck being the memory access.

To accelerate the FHE performance, the authors in [6] exploited the speed of
Graphical Processing Units (GPUs) and encrypted 7.68 times faster than standard
Central Processing Unit (CPUs). Then, the authors in [19] introduced Integer-Based
FHE by batch to reduce the bottleneck on AES encryption. Later, Doroz et al. proposed
pre-computation of Schönhage Strassen multiplier parameters which allowed FHE
encryption to perform better with only 18.1 ms (ms) [20]. Recently, the concept of a re-
cryption box was proposed by Roy et al. [21] at the hardware level to reduce the effects
of growing noise on the ciphertexts. The re-cryption box is also exploited to accelerate
the search operation on the encrypted data.

The first hardware implementation for Integer Based FHE was proposed by Cao
et al. in [8] with two building blocks of a large NTT multiplier and Barrett reduction to
speed up FHE on high-end FPGA technology Virtex 7. Their encryption time is 44.72
times faster than software implementation for ‘Large’ key size. Comba scheduling is
proposed in [22], by utilizing Digital Signal Processing (DSP) slices for uneven
operands to shorten the delays during multiplications while reducing ‘Write to Mem-
ory’ operation. Meanwhile, recent research by Cao et al. [9] proposed Low Hamming
Weight (LHW) design on Virtex 7 to allow simpler multiplications while reducing

162 S. Hashim and M. Benaissa

hardware usage at the same time. The encryption time of this work outperforming
benchmark software implementations by 131 times for ‘Large’ key size, while the
encryption time showed by this scheme is between 0.0006 s to 3.317 s, resulting in the
best FHE achievement by far with a reasonable speed and small footprint.

Inspired by the significant performance reported with strong potential for
improvements, we focused our work on the Integer-Based FHE scheme by Van Dijk
et al. [10]. The central theme of this scheme is about simplicity. It is easier in terms of
parameter selection compared to Lattice-Based while its hardness is based on Greatest
Common Divisor (GCD) approximate problem. Furthermore, the sizes of the param-
eters in Integer-Based FHE are defined clearly in [9], unlike the other variants where
only the matrix size is defined rather than bit size.

We propose to accelerate FHE over the integers by adopting frequency domain
multiplication using the NTT specifically targeted for FPGAs. The FPGA platform is
chosen over custom hardware Application-Specific Integrated Circuits (ASICs) due to
the high availability of resources such as DSPs which have dedicated mathematical
functions on modern FPGAs.

We followed the seminal work in [2, 5], pronouncing the operands size in four
different groups: Toy, Small, Medium and Large as shown in Table 1. At least 150 k to
19 m bits operands are required for the encryption steps which is a large number, hence
normal Schoolbook multiplication is no longer efficient. In recent years, there have
been many reported ideas by researchers to optimize large number multiplications
especially in cryptography; such as Comba [22, 23], Karatsuba [24, 25] and frequency
domain conversion methods [14, 26]. The idea of adopting a frequency domain
approach on hardware such as in [8, 14, 15, 27, 28] has increasingly gained acceptance
as an efficient method to accelerate the multiplication process given its computational
complexity being in the order O nlog nð Þð Þ for n-bits operand. Researchers in [9, 29,
30] have also shown that NTT hardware implementations outperformed software
implementations at certain magnitudes.

In this paper, we further advance research in this area by relaxing the strict rela-
tionship between the NTT parameters to allow for more optimized hardware imple-
mentations on FPGA. To speed up the large integer multiplications required in FHE
schemes such as the one proposed in [5], previous research has sought to optimize the
multiplication steps within the NTT transform computations by fixing the kernel a to be
simply a two or a power of two value [9]. However, such approach tends to impose

Table 1. Test instances for encryption process

Test instances Bit-length, Xi Bit-length, Bi s

Toy 150 k 936 158
Small 830 k 1476 572
Medium 4.2 m 2016 2110
Large 19.0 m 2556 7659

Accelerating Integer Based Fully Homomorphic Encryption 163

restrictions on the possible transform lengths to be deployed, thereby affecting potential
optimizations in the overall multiplication process.

In this paper, we propose a different methodology whereby we relax the require-
ment for a simple kernel in favour of optimal transform lengths and moduli in terms of
the number of overall iterations, suitable data path, and FPGA architecture. The kernel
multiplications by a’s required for the optimal word lengths and moduli can be easily
implemented in the form of Look-Up Tables (LUTs) integral to any FPGA fabrics.

The specific contributions of this paper are summarised as follows:

• A set of NTT parameters that supports large operands for NTT multiplication is
proposed.

• Analysis of important hardware design trade-offs; such as the butterfly costs of the
NTT building blocks against multiplication iteration for each key group in FHE
(Toy, Small, Medium and Large).

• An iterative multiplication method is incorporated to support a small footprint
design on hardware while at the same time maximizing the multiplier size to speed-
up the overall multiplication process.

• Hardware implementation is validated with results showing improved performance.

The rest of the paper is organised as follow. Section 2 recaps the introduction and
mathematical background of FHE over the integers. Our proposed methodology is
illustrated in Sect. 3. Section 4 covers the implementation aspects with results given in
Sect. 5. The paper concludes with a Conclusion section.

2 Integer Based Fully Homomorphic Encryption

Integer Based FHE needs to perform key generation, encryption and decryption with the
additional step of evaluation. Our work in this paper, in line with previously reported
implementations [9], is focused solely on the encryption step defined in (1). The work in
[9] is workable for binary messages only with message space Q ¼ 2 0; 1f g; [31] pro-
posed a larger space Q[2, which means the message can be non-binary with an
extended circuit. Their key size is also reduced, although no specific size is reported.

c mþ 2rþ 2
Xs

i¼1 Xi � Bi mod X0 ð1Þ

Noted, c is ciphertext; m is a single bit of plaintext binary message with only bit 0
or 1; r is a random signed integer; X0 is a part of the public key; Bi is a random integer
sequence, and Xi is a s-bits public key sequence with 1� i� h. We direct the interested
reader to refer to the original work in [5, 10] for details on the parameter selection in (1)
and Table 1.

As seen from (1), the FHE encryption step needs two core operational building
blocks: (1) Multiplication; and (2) Reduction. These can be designed as individual
building block and combined later as a complete process of FHE encryption. Mean-
while, as can be seen from Table 1, both multiplicands Xi and Bi are not symmetrical in
size. Multiplicands are also known as operands after this point. Thus, we exploit this

164 S. Hashim and M. Benaissa

unsymmetrical property to propose a hybrid multiplication approach of Schoolbook
and NTT based multiplication. Schoolbook multiplier is employed for the outer iter-
ations whereas the NTT multipliers will be used for the inner multiplications. In fact,
employing symmetric multiplication methods for non-symmetric operands leads to
significant waste of computational time as well as hardware resources.

2.1 Number Theoretic Transform (NTT) Multiplication

The NTT has been used widely in signal processing for implementing convolution and
correlation operations because of its error-free advantages (no rounding or truncation
errors) and efficient implementation. Recently there has been a revival of interest in
NTTs to be deployed in frequency domain approaches to implementing large operand
multiplications required in new offerings in Cryptography. Dai et al. in [32] proposed
large NTTs of 215 coefficient integrated with CRT in order to accelerate NTRU-based
FHE. Meanwhile, diminished-1 NTTs is used for performing SWIFFT hash function in
[33] to simplify modular NTTs but is limited to certain modular form such as Fermat
primes only. Promising more parallelization, NTT is also widely used in hardware
implementation with good performances [8, 34]. The Mathematical representation of an
NTT is given in (2). Where k ¼ 0; :::;N � 1 and a is twiddle-factor with the condition
of aN � 1 mod m.

X tð Þ ¼
XN�1

n¼0 x nð Þank mod m ð2Þ

From (2), parameters a;m and N are interdependent. The desirable choice of NTT
parameters traditionally involved [35]:

• a to be selected as two or a power of two so that the exponentiation operations
required can be implemented as shift operation;

• N to be highly composite, a power of two if possible so that efficient NTT type
algorithms can be employed

• m has a special form so that reduction can be a simple operation.

In this paper, we use Classical Modular NTT, with each operation is bounded by ring
Zm where m is moduli. Algorithm 1 describes NTT multiplication steps with 4
underlying steps; Forward Transform, Pointwise Multiplication, Inverse Transform and
Carry Accumulation.

Accelerating Integer Based Fully Homomorphic Encryption 165

Algorithm 1 Number Theoretic Transform (NTT)
1: Let be a primitive n-th root of unity in m and b is word size
2: Let x = (x0, . . . , x(n/2)-1, 0. . . 0), y = (y0, . . . , y(n/2)-1, 0 . . . 0) and z = (z0, . . . , zn-1)
3: Input: x, y,
4: Output: z = x * y
5: Precompute: i where i = 0, 1, . . . , n-1
6: for i from 0 to n-1;
7: //Forward Transform
8: //Forward Transform
9: end for
10: //Pointwise Multiplication
11: for i from 0 to n-1;
12: //Inverse Transform
13: end for
14: for i from 0 to n-1;
15: //Carry Accumulation
16: end for
17: Return z

3 Proposed Methodology

The efficiency of NTT designs as explained before is related closely to the trade-off of
its three key inter-related parameters, namely the kernel a, the transform length N and
the modulus m. In this paper we stipulate that in the context of FHE where very large
multiplications of asymmetrical operands are required, a methodology that allows more
flexibility in terms of transform length, offers better scope for improving overall FHE
performance on modern FPGA platforms. The proposed methodology is more efficient
than traditional methodologies driven by overcoming the complexity of the multipli-
cations by the kernel of the transform at the detriment of the transform length. In this
case, the impact of the transform length on overall performance is far more significant
than that of the kernel multiplication within the NTT. This is because, the long mul-
tiplier unit will be able to cater for larger operand size, thus minimize the number of
partial product iterations. As a result, multiplication complexity can be reduced
specifically for asymmetric operands. A study of NTT parameters and its optimization
is discussed in the next section.

3.1 NTT Parameters Optimization

The central parameter to be optimized is the NTT length as large NTT length can
facilitate larger operands, by relaxing the kernel a restriction. The choice of modulus
needs a specific consideration, as explained later so that every operation during the
NTT over the defined ring is optimized for the targeted hardware. Importantly, the NTT

166 S. Hashim and M. Benaissa

coefficient must be within the dynamic range b, as expressed in (3) to ensure no
overflow error. More details of dynamic range is in [36].

N
2

b� 1ð Þ2\m ð3Þ

To illustrate the improvements in operand sizes achieved by the proposed approach
we report in Table 2 the comparison between two types of moduli, Solinas and Fermat
(F6); they are 64 bits and 65 bits moduli respectively. Solinas 1 and F6 1 show the NTT
parameter set without optimization, whereas Solinas 2 and F6 2 show these parameters
with our proposed optimization. The optimization is done by enlarging the NTT length
as well as relaxing the kernel restriction. As a result, both Solinas 2 and F6 2 result in
much larger multiplier sizes of 1792 bits and 3072 bits which correspond to almost
double the length.

Let y mod p where y ¼ 296aþ 264bþ 232cþ d, a 128 bits integer. The Solinas
reduction can be simplified as (4).

232 bþ cð Þ � a� bþ d ð4Þ

Algorithm 2 is used for Special form modulus, of 2n�1 � 1 as proposed in [39]. We
used this Algorithm for Fermat F6 1 and Fermat F6 2 reduction.

Table 2. Comparison between Solinas and Fermat moduli NTT parameters

Solinas Fermat
Solinas 1 [37] Solinas 2 Fermat F6 1 [38] Fermat F6 2

N-point 64 128 128 256
Twiddle-factor a 8 249 � 21 2 233 � 21

Dynamic range b 28 28 24 24
Multiplier size 896 bits 1792 bits 1536 bits 3072 bits
Modulus m 264 � 232þ 1 264þ 1
Reduction cost 1 shift, 2 addition, 2

subtraction
2 addition, 1 subtraction

Algorithm 2 Special form modulus reduction [39]
1: Let
2: Input: x, p
3: Output:

5: if
6:
7: else
8:
9: end if
10: Return

Accelerating Integer Based Fully Homomorphic Encryption 167

In terms of reduction’s complexity cost, Solinas just needs shift, addition and
subtraction. Also, the Solinas form lends itself to efficient FPGA implementation. As
the goal of this work is to design a large multiplier on a targeted FPGA, then, Solinas 2
was chosen as the optimal modulus as it covers an acceptable number of operands;
1792 bits and the 64 bits modulus is an optimal fit in terms of a single word. Although
F6 2 can cover larger operands of 3072 bits, its 65 bits modulus needs more than a
single word operand, which is not optimal for hardware implementation. Even if the
diminished-1 number system can be adopted to handle 65 bits modular operation as
suggested in [40], the conversion to and from this number system is costly and can
become a performance bottleneck in particular for the special case of the zero detection.

Cost Analysis
We first analyzed the operational cost of the NTT block for Solinas 1 and Solinas 2
individually and later we analyzed the cost for overall multiplication during the
encryption. For a fair comparison, we presume a for Solinas 1 and Solinas 2 are pre-
computed over the Solinas modulus beforehand and stored in LUTs as 64-bits Read-
only Memories (ROMs). This was also done before in [27, 41] with the same purpose
of speeding-up the kernel multiplication process.

In our work, 64� N
2, pre-computed operands are needed to be stored in the LUTs

which is relatively small compared to the available LUTs of the targeted hardware,
Kintex 7. Exponentiation by a during the Butterfly operation in (5) can be replaced
with a ‘Read’ operation which is obviously faster than computing exponential a by
using an algorithm.

Meanwhile, as NTTs over the ring has a symmetrical root of unity, then it benefits
the NTT implementation because the same table also can be used for retrieving a�1 for
Inverse NTT (INTT) [36]. This way, only N multiplications are required for each
transform. As the overall NTT multiplication building block has 2 forward and 1
inverse transforms, then 3N multiplications are required. The same goes for the ‘Read’
operations during the NTT multiplication which is 3 N

2 log2N
� �

.

Xi ¼ Aiþ aiBi ; Xiþ n
2
¼ Ai � aiBi ð5Þ

The NTT multiplier size nc can be determined from (6). Division by two is because
we use Zero-padded convolution, means only N

2 coefficients are employable, and the
other N

2 appended as zeros.

nc ¼ N � b
2

ð6Þ

Table 3 shows the comparison between Solinas 1 and Solinas 2, specifically in
terms of operations during the NTT and the space required to store the precomputed
operands. As illustrated in Table 3, the Butterfly, ‘Read’ operation and
Addition/Subtraction dominate the cost in Solinas 2, which as expected are higher than
Solinas 1, as Solinas 2 caters for larger NTT points. Solinas 2 also requires more LUTs
space to store pre-computed a. Crucially though Solinas 2 has the largest NTT points
among the similar work done previously in [28, 42].

168 S. Hashim and M. Benaissa

Next, we analyze the entire multiplication, but first we explain how the multipli-
cation building block works during the FHE encryption. As discussed earlier, the NTT
multiplier blocks are used for computing the partial products whereas accumulation is
completed using a Schoolbook method. In symmetric operands (n-bits) of the
Schoolbook method, n2 multiplication and 2n� 1 accumulations are needed. However,
as in our case asymmetric multiplication is required and the partial products are
completed by the NTT multiplier block; then assumption is made that a partial product
iteration Pi represents the number of multiplications as determined in (7). Meanwhile,
accumulation Ai in (8) represents the number of additions required for accumulating the
partial products. Given two operands of asymmetrical size a (na bits) and b (nb bits)
with the multiplier size of nc-bit.

Pi ¼ na
nc

� �
� nb

nc

� �
ð7Þ

Ai ¼ na
nc

� �
þ nb

nc

� �
ð8Þ

Figure 1 explains graphically the impact of multiplier size towards partial product
iteration and accumulation. Let a and b, the asymmetric operands of 32-bits and 16-bits
respectively. Two different multipliers 8-bit and 16-bit are used to show the relation-
ship between the multiplier size and the complexity of multiplication. 32 bits operand is
chunked into the multiple blocks depending on multiplier size. The accumulation chain
relies on the partial product iteration. For example, an 8-bit multiplier requires 8 partial
product iterations and 5 accumulation chains whereas a 16-bit multiplier only con-
sumes 2 partial product iterations and 2 accumulation chains. Essentially, fewer iter-
ations are needed for larger multipliers while long carry accumulation chains also can
be minimized.

We analyze the complexity of the multiplication building block, during the FHE
encryption with different key sizes Toy, Small, Medium and Large as illustrated in
Table 4. Pi and Ai are obtained from Eqs. 7, and 8 respectively. We also include the
Butterfly cost Bi in Table 4 which corresponds to the number of butterflies involved
during the NTT multiplication to perform FHE encryption as shown in (9). The values
of Pi, Ai and Bi in Table 4 represent the overall costs and complexity of the multi-
plication during the FHE encryption.

Table 3. Solinas 1 vs Solinas 2

Solinas 1 [38] Solinas 2

Butterfly Bu 576 1344
‘Read’ operation 576 1344
Point multiplication 64 128
Addition/Subtraction 1152 2688
Precomputed operands in LUTs 32 of 64 bits 64 of 64 bits
NTT multiplier size nc 896 bits 1792 bits

Accelerating Integer Based Fully Homomorphic Encryption 169

Bi ¼ Bu � Pi ð9Þ

As can be seen from Table 4, if the multiplier is large enough to cover the operands
bi in a minimum NTT block, then the partial product iterations and accumulation are
reduced significantly. For example, Toy operand bi can fit in a single NTT block of
Solinas 2. However, for Solinas 1, operand bi does not fit a single NTT block, instead 2
NTT block iterations are needed, thus, complicates the multiplication process
quadratically.

Overall, the number of partial product iterations (Pi) and accumulations (Ai) in
Solinas 2 is reduced drastically compared with Solinas 1. In fact, the butterfly cost in
Solinas 2 is also much lower than Solinas 1 despite Solinas 2 incurring a larger
butterfly cost than Solinas 1 in a single multiplier block.

Based on this analysis, we confirm that choosing appropriate multiplier size can
significantly reduce the multiplication building block complexity and therefore by
relaxing the kernel restriction to enable longer length NTT, the overall complexity cost
of the multiplication building blocks is reduced significantly.

Also, from the complexity analysis in Table 4, our parameter optimization using
Solinas 2 shows a significant improvement compared to Solinas 1. For that reason, we
conclude that Solinas 2 is more efficient for large asymmetric operands. This is due to
the large size of the multiplier which leads to small partial product iterations and short
carry chain. In fact, Solinas 2 also costs fewer butterflies, hence reduce entire multi-
plication complexity.

Fig. 1. 8-bit multiplier vs 16-bit multiplier

170 S. Hashim and M. Benaissa

4 The Architecture of NTT Multiplier

Labview FPGA 15 is being used for this hardware implementation, targeted to Xilinx
Kintex-7 XC7K160T FPGA device and Xilinx Vivado 2014.4 compiler. Given the size
of the operands needed, it is assumed that Block Random Access Memory (BRAMs) is
used and sufficient to store Xi and Bi as multiple data chunks where each chunk is b bits
size.

The architecture of the NTT Multiplier is depicted in Fig. 2. Initially, both NTT1
and NTT2 are used to transform the Bi operands. After the Bi operands are completely
transformed into frequency domain, they are stored in a BRAM Bi: Next, Xi are
transformed into frequency domain using NTT1 and NTT2. This also means for each
iteration; the NTT block can cover 2nc bits. Then, pointwise (PW) multiplication takes
place in parallel by 2 PW units; PW1 and PW2 have 128 points each. During pointwise
multiplication, Xi is fed on the fly from both NTT1 and NTT2 outputs, whereas Bi is
read from BRAM Y . The output of PW1 and PW2 then are loaded into INTT1 and

Table 4. Complexity costs of Solinas 1 and Solinas 2

Key size Pi Ai Bi

Solinas 1 Solinas 2 Solinas 1 Solinas 2 Solinas 1 Solinas 2

Toy 336 84 170 85 193536 112896
Small 1854 464 929 465 1067904 623616
Medium 14064 4688 4691 2346 8100864 6300672
Large 63618 21206 21209 10605 36643968 28500864

Fig. 2. The proposed NTT multiplier architecture

Accelerating Integer Based Fully Homomorphic Encryption 171

INTT2 respectively. The proposed design is pipelined, so after the INTT takes place,
then the following output of INTT is generated at the following clock cycle. The
product is then loaded into the accumulation unit for addition and carry management.
This unit merely involves shifting and addition.

In the case where Bi does not fit into a single NTT unit, then pointwise multipli-
cation should be done iteratively. For example, operands Bi for Medium and Large
exceed the multiplier size as they need two NTT blocks; so pointwise multiplication
must undergo 2 iterations to complete the multiplication for both blocks, hence more
clock cycles required for this case.

5 Results and Discussion

The synthesis result for our proposed NTT Multiplier is within the available resources
of the targeted hardware Kintex-7 as seen in Table 5. As can be seen, registers and
LUTs are same for all key sizes Toy, Small, Medium and Large. This has happened
because the same NTTs unit is being used for each group. The latency is different due
to the number of iteration for each group is different. Meanwhile, BRAMs represent an
amount to store the operands Xi and Bi as well as the final results after the reduction.

The latency in Table 6 is calculated using the clock cycles count and the synthesis
design frequencies which is generated by the tools. As the timing for both the multi-
plication and reduction building block are obtained, then the encryption time Enct can
be computed as (10).

Enct ¼ Group 1 timing� sð Þþ 2� Group 2 timingð Þ ð10Þ

From (10), the first bracket refers to multiplication timing whereas the second
bracket refers to reduction timing. Note that we used Barrett reduction which also

Table 5. Synthesis results for proposed NTT multiplier

Toy Small Medium Large

Registers 18462 18462 18462 18462
LUTs 26328 26328 26328 26328
BRAMs 41 209 526 702
Freq (MHz) 165.21 164.69 161.00 154.44

Table 6. Latency and timing for proposed NTT multiplier of each group

Key size Latency Timing (ms) Group2 Latency Timing (ms)

Toys 4542 0.027 Toys2 4542 0.027
Small 4922 0.030 Small2 4922 0.030
Medium 6802 0.042 Medium2 12246 0.076
Large 15256 0.100 Large2 29154 0.0189

172 S. Hashim and M. Benaissa

utilized the same NTT building blocks with different operands [9]. Multiplication by
two for the reduction building block is because the Barrett reduction needs two large
multiplications [43]. The Encryption time of each group is presented in Table 6.

We also compared our result with previous research [9] in Table 7. As can be seen,
our design outperforms [9] for the Medium and Large groups. This proves that our
design manages to reduce multiplication complexity specifically for large operands
such as Medium and Large. Although [9] performs better in Toy and Small, but the
encryption time of our design shows that it does not increase gradually from Toy to
Large. We notice that our design is not efficient for Toy and Small because the operand
Bi just utilized 20% and 41% out of full NTT blocks respectively. This can be improved
in the future by designing a scalable design which can be flexible depending on size of
operands.

6 Conclusion

In this paper, we proposed a new methodology to speed up the large modular multi-
plications required in FHE schemes in frequency domain using NTTs. The method-
ology is based on relaxing the strict relationship between the NTT parameters imposed
by having a simple transform kernel. In our approach, more emphasis is put on the
transform length as it was shown that this parameter has more effect on overall
hardware performance. Both Analytical and implementation presented in this paper
show that the proposed methodology leads to improved large NTT multiplication. In
fact, our Optimized NTT Multiplier is 55% and 76% faster than [9] for Medium and
Large group respectively. The results attained illustrate that FHE encryption time is
improved. Further enhancements can be carried out by deploying several NTT blocks
in parallel.

References

1. Gentry, C.: A fully homomorphic encryption scheme. Ph.D thesis, Stanford University
(2009)

2. Gentry, C., Halevi, S.: Implementing Gentry’s fully-homomorphic encryption scheme. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_9

Table 7. Encryption Time of our proposed design and previous research [9]

Key size Encryption time (s)

Proposed design LHW [9] Low latency [9]
Toy 0.004 0.001 0.003
Small 0.017 0.011 0.056
Medium 0.089 0.198 1.000
Large 0.770 3.317 16.595

Accelerating Integer Based Fully Homomorphic Encryption 173

http://dx.doi.org/10.1007/978-3-642-20465-4_9

3. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and
ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 420–443. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_25

4. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryption over
the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 487–504. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-
9_28

5. Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus switching
for fully homomorphic encryption over the integers. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4_27

6. Wang, W., Hu, Y., Chen, L., Huang, X., Sunar, B.: Accelerating fully homomorphic
encryption using GPU. In: High Performance Extreme Computing (HPEC), pp. 1–5. IEEE
(2012)

7. Wang, W., Huang, X.: FPGA implementation of a large-number multiplier for fully
homomorphic encryption. In: International Symposium on Circuits and Systems, pp. 2589–
2592. IEEE (2013)

8. Cao, X., Moore, C., O’Neill, M., O’Sullivan, E., Hanley, N.: Accelerating fully
homomorphic encryption over the integers with super-size hardware multiplier and modular
reduction. http://eprint.iacr.org/2013/616

9. Cao, X., Moore, C., Oneill, M., Osullivan, E., Hanley, N.: Optimised multiplication
architectures for accelerating fully homomorphic encryption. IEEE Trans. Comput. 65,
2794–2806 (2016)

10. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption
over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2

11. Cousins, D.B., Rohloff, K., Peikert, C., Schantz, R.: SIPHER: scalable implementation of
primitives for homomorphic encryption–FPGA implementation using Simulink. In: High
Performance Extreme Computing Conference (2011)

12. Cousins, D.B., Rohloff, K., Peikert, C., Schantz, R.: SIPHER: an update on SIPHER
(Scalable Implementation of Primitives for Homomorphic EncRyption) - FPGA implemen-
tation using Simulink. In: High Performance Extreme Computing Conference (2012)

13. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-
Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49

14. Öztürk, E., Doröz, Y., Sunar, B., Savaş, E.: Accelerating somewhat Homomorphic
Evaluation using FPGAs. IACR Cryptology EPrint Archive, 1–15, https://eprint.iacr.org/
2015/294

15. Doröz, Y., Öztürk, E., Savaş, E., Sunar, B.: Accelerating LTV based homomorphic
encryption in reconfigurable hardware. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015.
LNCS, vol. 9293, pp. 185–204. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48324-4_10

16. Smart, N.P., Vercauteren, F.: Fully homomorphic simd operations. Cryptology ePrint
Archive, Report 2011/133 (2011), http://eprint.iacr.org/2011/133

17. Doröz, Y., Öztürk, E., Savaş, E., Sunar, B.: Accelerating LTV based homomorphic
encryption in reconfigurable hardware. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015.
LNCS, vol. 9293, pp. 185–204. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48324-4_10

174 S. Hashim and M. Benaissa

http://dx.doi.org/10.1007/978-3-642-13013-7_25
http://dx.doi.org/10.1007/978-3-642-22792-9_28
http://dx.doi.org/10.1007/978-3-642-22792-9_28
http://dx.doi.org/10.1007/978-3-642-29011-4_27
http://dx.doi.org/10.1007/978-3-642-29011-4_27
http://eprint.iacr.org/2013/616
http://dx.doi.org/10.1007/978-3-642-13190-5_2
http://dx.doi.org/10.1007/978-3-642-32009-5_49
https://eprint.iacr.org/2015/294
https://eprint.iacr.org/2015/294
http://dx.doi.org/10.1007/978-3-662-48324-4_10
http://dx.doi.org/10.1007/978-3-662-48324-4_10
http://eprint.iacr.org/2011/133
http://dx.doi.org/10.1007/978-3-662-48324-4_10
http://dx.doi.org/10.1007/978-3-662-48324-4_10

18. Roy, S.S., Jarvinen, K., Vliegen, J., Vercauteren, F., Verbauwhede, I.: HEPCloud: an FPGA-
based multicore processor for FV somewhat function evaluation. IEEE Trans. Comput.
(2018)

19. Cheon, J.H., et al.: Batch fully homomorphic encryption over the integers. In: Johansson, T.,
Nguyen, Phong Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_20

20. Doröz, Y., Öztürk, E., Sunar, B.: Accelerating fully homomorphic encryption in hardware.
IEEE Trans. Comput. 64(6), 1509–1521 (2015)

21. Roy, S.S., Vercauteren, F., Vliegen, J., Verbauwhede, I.: Hardware assisted fully
homomorphic function evaluation and encrypted search. IEEE Trans. Comput. 66(9),
1562–1572 (2017)

22. Moore, C., O’Neill, M., Hanley, N., O’Sullivan, E.: Accelerating integer-based fully
homomorphic encryption using Comba multiplication: In: IEEE Workshop on Signal
Processing Systems, SiPS: Design and Implementation. IEEE (2014)

23. Großschädl, J., Avanzi, R.M., Savas, E., Tillich, S.: Energy-efficient software implemen-
tation of long integer modular arithmetic. Cryptograph. Hardw. Embedded Syst. 04(104),
75–90 (2005)

24. Bos, J.W.: High-performance modular multiplication on the cell processor. In: Hasan, M.A.,
Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 7–24. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13797-6_2

25. Basu Roy, D., Mukhopadhyay, D.: An efficient high speed implementation of flexible
characteristic-2 multipliers on FPGAs. In: Rahaman, H., Chattopadhyay, S., Chattopadhyay,
S. (eds.) VDAT 2012. LNCS, vol. 7373, pp. 99–110. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31494-0_12

26. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster ideal lattice-
based cryptography. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052,
pp. 124–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_8

27. Liu, Z., Seo, H., Sinha Roy, S., Großschädl, J., Kim, H., Verbauwhede, I.: Efficient ring-
LWE encryption on 8-bit AVR processors. In: Güneysu, T., Handschuh, H. (eds.) CHES
2015. LNCS, vol. 9293, pp. 663–682. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48324-4_33

28. Emmart, N., Weems, C.: High precision integer multiplication with a GPU. In: IEEE
International Symposium on Parallel and Distributed Processing Workshops and Ph.D
Forum, pp. 1781–1787 (2011)

29. Jayet-Griffon, C., Cornelie, M. A., Maistri, P., Elbaz-Vincent, P., Leveugle, R.: Polynomial
multipliers for fully homomorphic encryption on FPGA. In: 2015 International Conference
on ReConFigurable Computing and FPGAs. IEEE (2016)

30. Chen, D.D., Yao, G.X., Cheung, R.C.C., Pao, D., Koç, Ç.K.: Parameter space for the
architecture of FFT-Based montgomery modular multiplication. IEEE Trans. Comput. 65(1),
147–160 (2016)

31. Nuida, K., Kurosawa, K.: (Batch) fully homomorphic encryption over integers for non-
binary message spaces. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9056, pp. 537–555. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-
5_21

32. Dai, W., Doroz, Y., Sunar, B.: Accelerating NTRU based homomorphic encryption using
GPUs. In: 2014 IEEE High Performance Extreme Computing Conference, HPEC 2014.
IEEE (2014)

33. Györfi, T., Creţ, O., Borsos, Z.: Implementing modular FFTs in FPGAs - a basic block for
lattice-based cryptography. In: 16th Euromicro Conference on Digital System Design,
pp. 305–308 (2013)

Accelerating Integer Based Fully Homomorphic Encryption 175

http://dx.doi.org/10.1007/978-3-642-38348-9_20
http://dx.doi.org/10.1007/978-3-642-13797-6_2
http://dx.doi.org/10.1007/978-3-642-31494-0_12
http://dx.doi.org/10.1007/978-3-642-31494-0_12
http://dx.doi.org/10.1007/978-3-319-48965-0_8
http://dx.doi.org/10.1007/978-3-662-48324-4_33
http://dx.doi.org/10.1007/978-3-662-48324-4_33
http://dx.doi.org/10.1007/978-3-662-46800-5_21
http://dx.doi.org/10.1007/978-3-662-46800-5_21

34. Reddy, N., Amarnath, D.Srinivasa, Rao, J., Suman, V.: Design and simulation of FFT
processor using radix-4 algorithm using FPGA. Int. J. Adv. Sci. Technol. 61, 53–62 (2013)

35. Burrus, C., Eschenbacher, P.: An in-place, in-order prime factor FFT algorithm. IEEE Trans.
Acoust. Speech Sign. Process. 29(4), 806–817 (1981)

36. Brassard, G., Paul, B.: Algorithmics: Theory and Practice. Prentice Hall, Upper Saddle River
(1988)

37. Solinas, J.A.: Generalized mersenne numbers. Faculty of Mathematics, University of
Waterloo (1999)

38. Kalach, K., David, J.P.: Hardware implementation of large number multiplication by FFT
with modular arithmetic. In: The 3rd International Conference on IEEE-NEWCAS 2005,
pp. 267–270. IEEE (2005)

39. Zimmermann, R.: Efficient VLSI implementation of modulo (2/sup n//spl plusmn/1) addition
and multiplication. In: Computer Arithmetic Proceedings 14th IEEE Symposium, pp. 158–
167. IEEE (1999)

40. Leibowitz, L.: A simplified binary arithmetic for the fermat number transform. IEEE Trans.
Acoust. Speech Sign. Process. 24(5), 356–359 (1976)

41. Alkim, E., Ducas, L., Pöppelmann, T. Schwabe, P.: Post-quantum key exchange-a new hope.
In: USENIX Security Symposium, vol. 2016 (2016)

42. Cao, X., Moore, C.: New integer-FFT multiplication architectures and implementations for
accelerating fully homomorphic encryption. IACR Cryptology EPrint Archive 2013/624
(2013)

43. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption algorithm
on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol.
263, pp. 311–323. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_24

176 S. Hashim and M. Benaissa

http://dx.doi.org/10.1007/3-540-47721-7_24

	Accelerating Integer Based Fully Homomorphic Encryption Using Frequency Domain Multiplication
	Abstract
	1 Introduction
	2 Integer Based Fully Homomorphic Encryption
	2.1 Number Theoretic Transform (NTT) Multiplication

	3 Proposed Methodology
	3.1 NTT Parameters Optimization

	4 The Architecture of NTT Multiplier
	5 Results and Discussion
	6 Conclusion
	References

