
ShapeCodes: Self-supervised Feature
Learning by Lifting Views to Viewgrids

Dinesh Jayaraman1,2(B), Ruohan Gao2, and Kristen Grauman2,3

1 UC Berkeley, Berkeley, USA
dinesh.jayaraman123@gmail.com

2 UT Austin, Austin, USA
3 Facebook AI Research, Menlo Park, USA

Abstract. We introduce an unsupervised feature learning approach
that embeds 3D shape information into a single-view image represen-
tation. The main idea is a self-supervised training objective that, given
only a single 2D image, requires all unseen views of the object to be pre-
dictable from learned features. We implement this idea as an encoder-
decoder convolutional neural network. The network maps an input image
of an unknown category and unknown viewpoint to a latent space, from
which a deconvolutional decoder can best “lift” the image to its complete
viewgrid showing the object from all viewing angles. Our class-agnostic
training procedure encourages the representation to capture fundamen-
tal shape primitives and semantic regularities in a data-driven manner—
without manual semantic labels. Our results on two widely-used shape
datasets show (1) our approach successfully learns to perform “mental
rotation” even for objects unseen during training, and (2) the learned
latent space is a powerful representation for object recognition, outper-
forming several existing unsupervised feature learning methods.

1 Introduction

The field has made tremendous progress on object recognition by learning image
features from supervised image datasets labeled by object categories [19,22,36].
Methods tackling today’s challenging recognition benchmarks like ImageNet or
COCO [10,41] capitalize on the 2D regularity of Web photos to discover useful
appearance patterns and textures that distinguish many object categories. How-
ever, there are limits to this formula: manual supervision is notoriously expen-
sive, not all objects are well-defined by their texture, and (implicitly) learning
viewpoint-specific category models is cumbersome if not unscalable.

Restricting learned representations to a 2D domain presents a fundamental
handicap. While visual perception relies largely on 2D observations, objects in
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Fig. 1. Learning ShapeCodes by lifting views to “viewgrids”. Given one 2D view of an
unseen object (possibly from an unseen category), our deep network learns to produce
the remaining views in the viewgrid. This self-supervised learning induces a feature
space for recognition. It embeds valuable cues about 3D shape regularities that tran-
scend object category boundaries.

the world are inherently three-dimensional entities. In fact, cognitive psycholo-
gists find strong evidence that inferring 3D geometry from 2D views is a use-
ful skill in human perception. For example, in their seminal “mental rotation”
work, Shepard and colleagues observed that people attempting to determine
if two views portray the same abstract 3D shape spend time that is linearly
proportional to the 3D angular rotation between those views [53]. Such find-
ings suggest that humans may explicitly construct mental representations of 3D
shape from individual 2D views, and further, the act of mentally rotating such
representations is integral to registering object views, and by extension, to object
recognition.

Inspired by this premise, we propose an unsupervised approach to image fea-
ture learning that aims to “lift” individual 2D views to their 3D shapes. More
concretely, we pose the feature learning task as one-shot viewgrid prediction
from a single input view. A viewgrid—an array of views indexed by viewpoints—
serves as an implicit image-based model of 3D shape. We implement our idea
as an encoder-decoder deep convolutional neural network (CNN). Given one 2D
view of any object from an arbitrary viewpoint, the proposed training objective
learns a latent space from which images of the object after arbitrary rotations are
predictable. See Fig. 1. Our approach extracts this latent “ShapeCode” encod-
ing to generate image features for recognition. Importantly, our approach is
class-agnostic: it learns a single model to accommodate all objects seen during
training, thereby encouraging the representation to capture basic shape prim-
itives, semantic regularities, and shading cues. Furthermore, the approach is
self-supervised : it aims to learn a representation generically useful to object per-
ception, but without manual semantic labels.

We envision the proposed training phase as if an embodied visual agent were
learning visual perception from scratch by inspecting a large number of objects.
It can move its camera to arbitrary viewpoints around each object to acquire
its own supervision. At test time, it must be able to observe only one view
and hallucinate the effects of all camera displacements from that view. In doing
so, it secures a representation of objects that, in a departure from purely 2D
view-based recognition, is inherently shape-aware. We discuss the advantages of
viewgrids over explicit voxels/point clouds in Sect. 3.1.
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Our work relates to a growing body of work on self-supervised representa-
tion learning [1,12,17,26,28,39,45,46,58,66], where “pretext” tasks requiring no
manual labels are posed to the feature learner to instill visual concepts useful
for recognition. We pursue a new dimension in this area—instilling 3D reason-
ing about shape. The idea of inferring novel viewpoints also relates to work in
CNN-based view synthesis and 3D reconstruction [7,13,18,35,50,57,60,64,67].
However, our intent and assumptions are quite different. Unlike our approach,
prior work targets reconstruction as the end task itself (not recognition), builds
category-specific models (e.g., one model for chairs, another for cars), and relies
on networks pretrained with heavy manual supervision.

Our experiments on two widely used object/shape datasets validate that (1)
our approach successfully learns class-agnostic image-based shape reconstruc-
tion, generalizing even to categories that were not seen during training and
(2) the representations learned in the process transfer well to object recogni-
tion, outperforming several popular unsupervised feature learning approaches.
Our results establish the promise of explicitly targeting 3D understanding as a
means to learn useful image representations.

2 Related Work

Unsupervised representation learning. While supervised “pretraining” of CNNs
with large labeled datasets is useful [19], it comes at a high supervision cost and
there are limits to its transferability to tasks unlike the original labeled cate-
gories. As an increasingly competitive approach, researchers investigate unsu-
pervised feature learning [1,4,8,12,17,26,28,39,45,46,58,59,66]. An emerging
theme is to identify “pretext” tasks, where the network targets an objective
for which supervision is inherently free. In particular, features tasked with being
predictive of contextual layout [12,45,46], camera egomotion [1,26,47], stereo
disparities [16], colorization [39], or temporal slowness [17,28,58] simultaneously
embed basic visual concepts useful for recognition. Our approach shares this
self-supervised spirit and can be seen as a new way to force the visual learner
to pick up on fundamental cues. In particular, our method expands this family
of methods to multi-view 3D data, addressing the question: does learning to
infer 3D from 2D help perform object recognition? While prior work considers
3D egomotion [1,26], it is restricted to impoverished glimpses of the 3D world
through “unattached” neighboring view pairs from video sequences. Instead, our
approach leverages viewgrid representations of full 3D object shape. Our exper-
iments comparing to egomotion self-supervision show our method’s advantage.

Recognition of 3D objects. Though 2D object models dominate recognition in
recent years (e.g., as evidenced in challenges like PASCAL, COCO, ImageNet),
there is growing interest in grounding object models in their 3D structures and
shapes. Recent contributions in large-scale data collections are fostering such
progress [5,62,62], and researchers are developing models to integrate volumetric
and multiview approaches effectively [48,56], as well as new ideas for relating 3D



ShapeCodes: Self-supervised Feature Learning by Lifting Views to Viewgrids 129

properties (pose, occlusion boundaries) to 2D recognition schemes [63]. Active
recognition methods reason about the information value of unseen views of an
object [27,29,33,49,51,62].

Geometric view synthesis. For many years, new view synthesis was solved with
geometry. In image-based rendering, rather than explicitly constructing a 3D
model, new views are generated directly from multiple 2D views [34], with meth-
ods that establish correspondence and warp pixels according to projective or
multi-view geometry [2,52]. Image-based models for object shape (implicitly)
intersect silhouette images to carve a visual hull [38,44].

Learning 2D-3D relationships. More recently, there is interest in instead learn-
ing the connection between a view and its underlying 3D shape. The problem is
tackled on two main fronts: image-based and volumetric. Image-based methods
infer the new view as a function of a specified viewpoint. Given two 2D views,
they learn to predict intermediate views [11,15,23,32]. Given only a single view,
they learn to render the observed object from new camera poses, e.g., via dis-
entanglement with deep inverse graphic networks [37], tensor completion [6],
recurrent encoder-decoder nets [30,65], appearance flow [67], or converting par-
tial RGBD to panoramas [55]. Access to synthetic object models is especially
valuable to train a generative CNN [13]. Volumetric approaches instead map a
view(s) directly to a 3D representation of the object, such as a voxel occupancy
grid or a point cloud, e.g., with 3D recurrent networks [7], direct prediction of
3D points [14], or generative embeddings [18]. While most efforts study synthetic
3D object models (e.g., CAD datasets), recent work also ventures into real-world
natural imagery [35]. Beyond voxels, inferring depth maps [57] or keypoint skele-
tons [60] offer valuable representations of 3D structure.

Our work builds on such advances in learning 2D-3D ties, and our partic-
ular convolutional autoencoder (CAE)-based pipeline (Sect. 3.2) echoes the de
facto standard architecture for pixel-output tasks [37,43,57,64,66]. However, our
goal differs from any of the above. Whereas existing methods develop category-
specific models (e.g., chairs, cars, faces) and seek high-quality images/voxels as
the end product, we train a class-agnostic model and seek a transferable image
representation for recognition.

3 Approach

Our goal is to learn a representation that lifts a single image from an arbitrary
(unknown) viewpoint and arbitrary class to a space where the object’s 3D shape
is predictable—its ShapeCode. This task of “mentally rotating” an object from its
observed viewpoint to arbitrary relative poses requires 3D understanding from
single 2D views, which is valuable for recognition. By training on a one-shot
shape reconstruction task, our approach aims to learn an image representation
that embeds this 3D understanding and applies the resulting embedding for
single-view recognition tasks.
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3.1 Task Setup: One-Shot Viewgrid Prediction

During training, we first evenly sample views from the viewing sphere around
each object. To do this, we begin by selecting a set Saz of M camera azimuths
Saz = {360◦/M, 720◦/M, . . . 360◦} centered around the object. Then we select a
set Sel of N camera elevations Sel = {0◦,±180◦/(N − 1),±360◦/(N − 1), · · · ±
90◦}. We now sample all M × N views of every object corresponding to the
cartesian product S = Saz × Sel of azimuth and elevation positions: {y(θi) :
θi ∈ S}.1 Note that each θi is an elevation-azimuth pair, and represents one
position in the viewing grid S.

Now, with these evenly sampled views, the one-shot viewgrid prediction task
can be formulated as follows. Suppose the observed view is at an unknown camera
position θ sampled from our viewing grid set S of camera positions. The system
must learn to predict the views y(θ′) at position θ′ = θ + δi for all δi ∈ S.
Because of the even sampling over the full viewing sphere, θ′ is itself also in our
original viewpoint set S, so we have already acquired supervision for all views
that our system must learn to predict.

Why viewgrids? The viewgrid representation has advantages over other more
explicit 3D representations such as point clouds [14] and voxel grids [7]. First,
viewgrid images can be directly acquired by an embodied agent through object
manipulation or inspection, whereas voxel grids and point clouds require noisy
3D inference from large image collections. While our experiments leverage real-
istic 3D object CAD models to render viewpoints on demand (Sect. 4), it is
actually less dependent on CAD data than prior work requiring voxel supervi-
sion. Ultimately we envision training taking place in a physical scenario, where an
embodied agent builds up its visual representation by examining various objects.
By moving to arbitrary viewpoints around an object, it acquires self-supervision
to understand the 3D shape. Finally, viewgrids facilitate the representation of
missing data—if some ground truth views are unavailable for a particular object,
the only change required in our training loss (below in Eq. 1) would be to drop
the terms corresponding to unseen views.

3.2 Network Architecture and Training

To tackle the one-shot viewgrid prediction task, we employ a deep feed-forward
neural network. Our network architecture naturally splits into four modular sub-
networks with different functions: elevation sensor, image sensor, fusion, and
finally, a decoder. Together, the elevation sensor, image sensor, and fusion mod-
ules process the observation and proprioceptive camera elevation information to
produce a single feature vector that encodes the full object model. That vector
space constitutes the learned ShapeCode representation. During training only ,
the decoder module processes this code through a series of learned deconvolu-
tions to produce the desired image-based viewgrid reconstruction at its output.

1 omitting object indices throughout to simplify notation.
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Encoder: First, the image sensor module embeds the observed view through
a series of convolutions and a fully connected layer into a vector. In parallel,
the camera elevation angle is processed through the elevation sensor module.
Note that the object pose is not fully known—while camera elevation can be
determined from gravity cues, there is no way to determine the azimuth.

The outputs of the image and elevation sensor modules are concatenated
and passed through a fusion module which jointly processes their information to
produce a D = 256-dimensional output “code” vector, which embeds knowledge
of object shape. In short, the function of the encoder is to lift a 2D view to a
single vector representation of the full 3D object shape.

Decoder: To learn a representation with this property, the output of the encoder
is processed through another fully connected layer to increase its dimensionality
before reshaping into a sequence of small 4 × 4 feature maps. These maps are
then iteratively upsampled through a series of learned deconvolutional layers.
The final output of the decoder module is a sequence of MN output maps
{ŷi : i = 1, . . . M × N} of same height and width as the input image. Together
these MN maps represent the system’s output viewgrid on which the training
loss is computed.

Fig. 2. Architecture of our system. A single view of an object (top left) and the corre-
sponding camera elevation (bottom left) are processed independently in “image sensor”
and “elevation sensor” neural net modules, before fusion to produce the ShapeCode rep-
resentation of the input, which embeds the 3D object shape aligned to the observed
view. This is now processed in a deconvolutional decoder. During training, the output
is a sequence of images representing systematically shifted viewpoints relative to the
observed view. During testing, novel 2D images are lifted into the ShapeCode repre-
sentation to perform recognition.

The complete architecture, together with more detailed specifications, is visu-
alized in Fig. 2. Our convolutional encoder-decoder [43] neural network architec-
ture is similar to [30,57,64,67]. As discussed above, however, the primary focus of
our work is very different. We consider one-shot reconstruction as a path to useful
image representations that lift 2D views to 3D, whereas existing work addresses
the image/voxel generation task itself, and accordingly builds category-specific
models.
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By design, our approach must not exploit artificial knowledge about the abso-
lute orientation of an object it inspects, either during training or testing. Thus,
there is an important issue to deal with—what is the correspondence between the
individual views in the target viewgrid and the system’s output maps? Recall
that at test time, the system will be presented with a single view of a novel
object, from an unknown viewpoint (elevation known, azimuth unknown). How
then can it know the correct viewpoint coordinates for the viewgrid it must
produce? It instead produces viewgrids aligned with the observed viewpoint at
the azimuthal coordinate origin, similar to [30]. Azimuthal rotations of a given
viewgrid all form an equivalence class. In other words, circularly shifting the
7×12 viewgrid in Fig. 2 by one column will produce a different, but entirely
valid viewgrid representation of the same airplane object.

To optimize the entire pipeline, we regress to the target viewgrid y, which is
available for each training object. Since our output viewgrids are aligned by the
observed view, we must accordingly shift the target viewgrid before performing
regression. This leads to the following minimization objective:

L =
M×N∑

i=1

‖ŷi − y(θ + δi)‖2, (1)

where we omit the summation over the training set to keep the notation simple.
Each output map ŷi is thus penalized for deviation from a specific relative cir-
cular shift δi from the observed viewpoint θ. This one-shot reconstruction task
enforces that the encoder must capture the full 3D object shape from observing
just one 2D view. A similar reconstruction loss was proposed in [30] in a differ-
ent context; they learned exploratory action policies by training them to select
a sequence of views best suited to reconstruct entire objects and scenes.

Recent work targeting image synthesis has benefited from using adversarial
(GAN) losses [20]. GAN losses help achieve correct low-level statistics in image
patches, improving photorealism [25]. Rather than targeting realistic image syn-
thesis as an end in itself, we target shape reconstruction for feature learning,
so we use the standard �2 loss. During feature transfer, we discard the decoder
entirely (see Sect. 3.3). See Supp for optimization details.

3.3 ShapeCode Features for Object Recognition

During training, the objective is to minimize viewgrid error, to learn the latent
space from which unseen views are predictable. Then, to apply our network to
novel examples, the representation of interest is that same latent space output by
the fusion module of the encoder—the ShapeCode. In the spirit of self-supervised
representation learning, we hypothesize that features trained in this manner will
facilitate high-level visual recognition tasks. This is motivated by the fact that
in order to solve the reconstruction task effectively, the network must implicitly
learn to lift 2D views of objects to inferred 3D shapes. A full 3D shape represen-
tation has many attractive properties for generic visual tasks. For instance, pose
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invariance is desirable for recognition; while difficult in 2D views, it becomes
trivial in a 3D representation, since different poses correspond to simple trans-
formations in the 3D space. Furthermore, the ShapeCode provides a representa-
tion that is equivariant to egomotion transformations, which is known to benefit
recognition and emerges naturally in supervised networks [9,23,31,40].

Suppose that the visual agent has learned a model as above for viewgrid
prediction by inspecting 3D shapes. Now it is presented with a new recogni-
tion task, as encapsulated by a dataset of class-labeled training images from a
disjoint set of object categories. We aim to transfer the 3D knowledge acquired
in the one-view reconstruction task to this new task. Specifically, for each new
class-labeled image, we directly represent it in the feature space represented by
an intermediate fusion layer in the network trained for reconstruction. These
features are then input to a generic machine learning pipeline that is trained for
the categorization task.

Recall that the output of the fusion module in Fig. 2, which is the fc3 feature
vector, is trained to encode 3D shape. In our experiments, we test the usefulness
of features from fc3 and its two immediate preceding layers, fc2, and fc1, for
solving object classification and retrieval tasks.

4 Experiments

First, we quantify performance for class-agnostic viewgrid completion (Sect. 4.2).
Second, we evaluate the learned features for object recognition (Sect. 4.3).

4.1 Datasets

In principle, our self-supervised learning approach can leverage viewpoint-
calibrated viewgrids acquired by an agent systematically inspecting objects in
its environment. In our experiments, we generate such viewgrids from datasets
of synthetic object shapes. We test our method on two such publicly available
datasets: ModelNet [62] and ShapeNet [5]. Both of these datasets provide a large
number of manually generated 3D models, with class labels. For each object
model, we render 32×32 grayscale views from a grid of viewpoints that is evenly
sampled over the viewing sphere centered on the object.

ModelNet [62] has 3D CAD models downloaded from the Web, and then
manually aligned and categorized. ModelNet comes with two standard subsets:
ModelNet-10 and ModelNet-40, with 10 and 40 object classes respectively. The
40 classes in ModelNet-40 include the 10 classes in ModelNet-10. We use the
10 ModelNet-10 classes as our unseen classes, and the other 30 ModelNet-40
classes as seen classes. We use the standard train-test split, and set aside 20% of
seen-class test set models as validation data. ModelNet is the most widely used
dataset in recent 3D object categorization work [27,29,33,48,56,61,62].

ShapeNet [5] contains a large number of models organized into semantic
categories under the WordNet taxonomy. All models are consistently aligned to
fixed canonical viewpoints. We use the standard ShapeNetCore-v2 subset which
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contains 55 diverse categories. Of these, we select the 30 largest categories as
seen categories, and the remaining 25 are unseen. We use the standard train-test
split. Further, since different categories have highly varying numbers of object
instances, we limit each category in our seen-class training set to 500 models,
to prevent training from being dominated by models of a few very common
categories. Table 1 (left) shows more details for both datasets.

4.2 Class-Agnostic One-Shot Viewgrid Prediction

First, we train and test our method for viewgrid prediction. For both datasets,
the system is trained on the seen-classes training set. The trained model is
subsequently tested on both seen and unseen class test sets.

The evaluation metric is the per-pixel mean squared deviation of the inferred
viewgrid vs. the ground truth viewgrid. We compare to several baselines:

– Avg view: This baseline simply predicts, at each viewpoint in the viewgrid,
the average of all views observed in the training set over all viewpoints.

– Avg viewgrid: Both ModelNet and ShapeNet have consistently aligned
models, so there are significant biases that can be exploited by a method
that has access to this canonical alignment information. This baseline aims
to exploit this bias by predicting, at each viewpoint in the viewgrid, the
average of all views observed in the training set at that viewpoint. Note that
our system does not have access to this alignment information, so it cannot
exploit this bias.

– GT class avg view: This baseline represents a model with perfect object
classification. Given an arbitrary object from some ground truth category,
this baseline predicts, at each viewpoint, the average of all views observed in
the training set for that category.

– GT class avg viewgrid: This baseline is the same as GT category avg view,
but has knowledge of canonical alignments too, so it produces the average of
views observed at each viewpoint over all models in that category in the
training set.

– Ours w. CA: This baseline is our approach but trained with the (unrealistic)
addition of knowledge about canonical alignment (“CA”) of viewgrids. It
replaces Eq. (1) to instead optimize the loss: L =

∑M×N
i=1 (ŷi −y(δi))2, so that

each output map ŷi of the system is now assigned to a specific coordinate in
the canonical viewgrid axes.

A key question in these experiments is whether the class-agnostic model we train
can generalize to predict unseen views of objects from classes never seen during
training.2

2 For this very reason, it is not clear how to map existing view synthesis models that
are category-specific (e.g., chairs in [13], chairs/cars in [67]) to our class-agnostic
setting so that they could compete fairly.
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Fig. 3. Shape reconstructions from a single view (rightmost example from ShapeNet,
other two from ModelNet). In each panel, ground truth viewgrids are shown at the
top, the observed view is marked with a red box, and our method’s reconstructions are
shown at the bottom. (Best seen in pdf at high resolution.) See text in Sect. 4.2 for
description of these examples. (Color figure online)

Table 1 (right) shows the results. “Avg viewgrid” and “GT category avg
viewgrid” improve by large margins over “Avg view” and “GT category avg
view”, respectively. This shows that viewgrid alignment biases can be useful
for reconstruction in ModelNet and ShapeNet. Recall however that while these
baselines can exploit the (unrealistic) bias, our approach cannot; it knows only
the elevation as sensed from gravity. Our approach is trained to produce views
at various relative displacements from the observed view, i.e., its target is a
viewgrid that has the current view at its origin. So it cannot learn to memorize
and align an average viewgrid.

Despite this, our approach outperforms the baselines by large margins. It
even outperforms its variant “Ours w. CA” that uses alignment biases in the
data. Why is “Ours w. CA” weaker? It is trained to produce viewgrids with
canonical alignments (CA). CA’s are loosely manually defined, usually class-
specific conventions in the dataset (e.g., 0◦ azimuth and elevation for all cars
might be “head on” views). “Ours w. CA” naturally has no notion of CA’s for
unseen categories, where it performs particularly poorly. On seen classes with
strong alignment biases, CA’s make it easier to capture category-wide infor-
mation (e.g., if the category is recognizable, produce its corresponding average
aligned training viewgrid as output). However, it is harder to capture instance-
specific details, since the network must not only mentally rotate the input view
but also infer its canonical pose correctly. “Ours” does better by aligning outputs
to the observed viewpoint.

Figure 3 shows example viewgrids generated by our method. In the leftmost
panel, it reconstructs an object shape from a challenging viewpoint, effectively
exploiting the semantic structure in ModelNet. In the center panel, the system
observes an ambiguous viewpoint that could be any one of four different views



ShapeCodes: Self-supervised Feature Learning by Lifting Views to Viewgrids 137

at the same azimuth. In response to this ambiguity, it attempts to play it safe
to minimize MSE loss by averaging over possible outcomes, producing blurry
views. In the rightmost panel, our method shows the ability to infer shape from
shading cues for simple objects.

Figure 4 examines which views are informative for one-shot viewgrid predic-
tion. For each of the three classes shown, the heatmap of MSE is overlaid on
the average viewgrid for that class. The yellowish (high error) horizontal and
vertical stripes correspond to angles that only reveal a small number of faces
of the object. Top and bottom views are consistently uninformative, since very
different shapes can have very similar overhead projections. The middle row
(0◦ elev.) stands out as particularly bad for “airplane” because of the narrow
linear projection, which presents very little information. See Supp. for more.
These trends agree with intuitive notions of which views are most informative
for 3D understanding, and serve as evidence that our method learns meaningful
cues to infer unseen views.

Overall, the reconstruction results demonstrate that our approach success-
fully learns one single unified category-agnostic viewgrid reconstruction model
that handles not only objects from the large number of generic categories that
are represented in its training set, but also objects from unseen categories.

Fig. 4. ModelNet reconstruction MSE for three classes, conditioned on observed view
(best viewed in pdf at high resolution). Yellower colors correspond to high MSE (bad)
and bluer colors correspond to low MSE (good). See text in Sect. 4.2.(Color figure
online)

4.3 ShapeCode Features for Object Recognition

We now validate our key claim: the lifted features—though learned without
manual labels—are a useful visual representation for recognition.

First, as described in Sect. 3.3, we extract features from various layers in the
network (fc1, fc2, fc3 in Fig. 2) and use them as inputs to a classifier trained
for categorization of individual object views. Though any classifier is possible,
following [17,31,58], we employ a simple k-nearest neighbor classifier, which
makes the power of the underlying representation most transparent. We run this
experiment on both the seen and unseen class subsets on both ModelNet and
ShapeNet. In each case, we use 1000 samples per class in the training set, and
set k = 5. We compare our features against a variety of baselines:
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– DrLIM [21]: A commonly used unsupervised feature learning approach. Dur-
ing training, DrLIM learns an invariant feature space by mapping features of
views of the same training object close to each other, and pushing features of
views of different training objects far apart from one another.

– Autoencoder [3,24,43]: A network is trained to observe an input view from
an arbitrary viewpoint and produce exactly that same view as its output
(compared to our method which produces the full viewgrid, including views
from other viewpoints too). For this method, we use an architecture identical
to ours except at the very last deconvolutional layer, where, rather than
producing N × M output maps, it predicts just one map corresponding to
the observed view itself.

– Context [46]: Representative of the popular paradigm of exploiting spatial
context to learn features [12,45,46]. The network is trained to “inpaint” ran-
domly removed masks of arbitrary shape covering up to 1

4 of the 32 × 32
object views, thus learning spatial configurations of object parts. We adapt
the public code of [46].

– Egomotion [1]: Like our method, this baseline also exploits camera motion to
learn unsupervised representations. While our method is trained to predict all
rotated views given a starting view, [1] trains to predict the camera rotation
between a given pair of images. We train the model to predict 8 classes of
rotations, i.e., the immediately adjacent viewpoints in the viewgrid for a given
view (3×3 neighborhood).

– PointSetNet [14]: This method reconstructs object shape point clouds from
a single image, plus the ground truth segmentation mask. We extract features
from their provided encoder network trained on ShapeNet. Since segmentation
masks are unavailable in the feature evaluation setting, we set them to the
whole image.

– 3D-R2N2 [7]: This method constructs a voxel grid from a single view. We
extract features from their provided encoder network trained on ShapeNet.

– VGG [54]: While our focus is unsupervised feature learning, this baseline rep-
resents current standard supervised features, trained on millions of manually
labeled images. We use the VGG-16 architecture [54] trained on ImageNet,
and extract fc6 features from 224×224 images.

– Shape classifier: To provide a supervised baseline trained on in-domain
data, we train a network for single-view 3D shape categorization using 1 k
labeled images per seen class. The architecture is kept identical to the encoder
of our method, and features are extracted from the same layers.

– Pixels: For this baseline the 32 × 32 image is vectorized and used directly as
a feature vector.

– Random weights: A network with identical architecture to ours and initial-
ized with the same scheme is used to extract features with no training.

The “Random weights”, “DrLIM”, “Egomotion”, and “Autoencoder” methods
use identical architectures to ours until fc3 (see Supp). For “Context”, we stay
close to the authors’ architecture and retrain on our 3D datasets. For “VGG”,
“PointSetNet”, and “3D-R2N2”, we use author-provided model weights.
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Recall that our model is trained to observe camera elevations together with
views, as shown in Fig. 2. While this is plausible in a real world setting where
an agent may know its camera elevation angle from gravity cues, for fair com-
parison with our baselines, we omit proprioception inputs when evaluating our
unsupervised features. Instead, we feed in camera elevation 0◦ for all views.

Table 2. Single view recognition accuracy (%) with features from our model vs. base-
lines on the ModelNet and ShapeNet datasets. For each method, we report its best accu-
racy across layers (fc1, fc2, fc3). Results are broken out according to classes seen and
unseen during representation learning. Our approach consistently outperforms other
unsupervised representations, and even competes well with off-the-shelf VGG features
pretrained with 1 M ImageNet labels.

Datasets→ ModelNet ShapeNet

Methods↓ / Classes→ Seen Unseen Seen Unseen

Chance 3.3 10.0 3.3 4.0

VGG [54] (supervised) 66.0 64.9 55.9 53.7

Shape classifier (supervised) 62.6 68.1 52.8 49.9

Pixels 52.5 60.7 43.1 44.9

Random weights 49.6 59.4 39.6 39.7

DrLIM [21] 57.4 64.9 47.5 47.2

Autoencoder [3,24,43] 52.5 60.8 44.3 46.0

Context [46] 52.6 60.5 46.2 46.5

Egomotion [1] 56.1 65.0 49.0 49.7

PointSetNet [14] 35.5 38.8 28.6 32.2

3D-R2N2 [7] 49.4 55.5 39.0 41.2

Ours w. CA 64.0 69.6 56.9 54.5

Ours 65.2 71.2 57.7 54.8

Table 2 shows the results for both datasets. Since trends across fc1, fc2, and
fc3 were all very similar, for each method, we report the accuracy from its best
performing layer (see Supp for per-layer results). “Ours” strongly outperforms
all prior approaches. Critically, our advantage holds whether or not the objects
to be recognized are seen during training of the viewgrid prediction network.

Among the baselines, all unsupervised learning methods outperform “Pixels”
and “Random weights”, as expected. The two strongest unsupervised baselines
are “Egomotion” [1] and “DrLIM” [21]. Recall that “Egomotion” is especially
relevant to our approach as it also has access to relative camera motion informa-
tion. However, while their method only sees neighboring view pairs sampled from
the viewgrid at training time, our approach learns to infer full viewgrids for each
instance, thus exploiting this information more effectively. “Autoencoder” fea-
tures perform very poorly. “Context” features [46] are also poor, suggesting that
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spatial context within views, though successful for 2D object appearance [46], is
a weak learning signal for 3D shapes.

The fact that our method outperforms PointSetNet [14] and 3D-R2N2 [7] sug-
gests that it is preferable to train for generating implicit 3D viewgrids rather than
explicit 3D voxels or point clouds. While we include them as baselines for this
very purpose, we stress that the goal in those papers [7,14] is reconstruction—
not recognition—so this experiment expands those methods’ application beyond
the authors’ original intent. We believe their poor performance is partly due to
domain shift: ModelNet performance is weaker for both methods since they were
trained on ShapeNet. Further, the authors train PointSetNet only on objects
with specific poses (elevation 20◦) and it exploits ground truth segmentation
masks which are unavailable in this setting. Both methods were also trained on
object views rendered with small differences from ours (see Supp).

Finally, Table 2 shows our self-supervised representation outperforms the
ImageNet-pretrained supervised VGG features in most cases. Note that recogni-
tion tasks on synthetic shape datasets are commonly performed with ImageNet-
pretrained neural networks [27,29,33,56]. However, the domain gap between
ImageNet and ModelNet/ShapeNet is not the sole reason for this; our method
also beats supervised features trained on in-domain data (“Shape classifier”).
These results illustrate that our geometry-aware self-supervised pretraining
has potential to supersede traditional ImageNet pretraining, and even domain-
specific supervised pretraining.

Fig. 5. ShapeCodes embedding for data from unseen ModelNet10 classes, visualized
with t-SNE in two ways: (left) categories are color-coded, and (right) instances are
shown at their t-SNE embedding. Best viewed in pdf with zoom. (Color figure online)

Figure 5 visualizes a t-SNE [42] embedding of unseen ModelNet-10 class
images using ShapeCode features. As can be seen, categories tend to cluster,
including those with diverse appearance like ‘chair’. ‘Chair’ and ‘toilet’ are close,
as are ‘dresser’ and ‘night stand’, showing the emergence of high-level semantics.

In Supp, we test ShapeCode’s transferability to recognition tasks under many
varying experimental conditions, including varying training dataset sizes for the
k-NN classifier, and performing object category retrieval rather than catego-
rization. A unified and consistent picture emerges: ShapeCode is a significantly
better feature representation than the baselines for high-level recognition tasks.
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5 Conclusions

We proposed ShapeCodes, self-supervised features trained for a mental rota-
tion task so that they embed generic 3D shape priors useful to recognition.
ShapeCodes outperform an array of state-of-the-art approaches for unsupervised
feature learning, establishing the promise of explicitly targeting 3D understand-
ing to learn useful image representations.

While we test our approach on synthetic object models, we are investigating
whether features trained on synthetic objects could generalize to real images.
Further, an embodied agent could in principle inspect physical objects to acquire
viewgrids to allow training on real objects. Future work will explore extensions
to permit sequential accumulation of observed views of real objects. We will also
investigate reconstruction losses expressed at a more abstract level than pixels,
e.g., in terms of a feature content loss.
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