
DeepTAM: Deep Tracking and Mapping

Huizhong Zhou(B), Benjamin Ummenhofer, and Thomas Brox

University of Freiburg, Freiburg, Germany
{zhouh,ummenhof,brox}@cs.uni-freiburg.de

Abstract. We present a system for keyframe-based dense camera track-
ing and depth map estimation that is entirely learned. For tracking, we
estimate small pose increments between the current camera image and
a synthetic viewpoint. This significantly simplifies the learning problem
and alleviates the dataset bias for camera motions. Further, we show that
generating a large number of pose hypotheses leads to more accurate pre-
dictions. For mapping, we accumulate information in a cost volume cen-
tered at the current depth estimate. The mapping network then combines
the cost volume and the keyframe image to update the depth prediction,
thereby effectively making use of depth measurements and image-based
priors. Our approach yields state-of-the-art results with few images and
is robust with respect to noisy camera poses. We demonstrate that the
performance of our 6 DOF tracking competes with RGB-D tracking algo-
rithms.We compare favorably against strong classic and deep learning
powered dense depth algorithms.

Keywords: Camera tracking · Multi view stereo · ConvNets

1 Introduction

In contrast to recognition, there is limited work on applying deep learning to
camera tracking or 3D mapping tasks. This is because, in contrast to recogni-
tion, the field of 3D mapping is already in possession of very good solutions.
Nonetheless, learning approaches have much to offer for camera tracking and
3D mapping. On the limited number of subtasks, where deep learning has been
applied, it has outperformed classical techniques: on disparity estimation all lead-
ing approaches are based on deep networks, and the first work on dense motion
stereo [30] immediately achieved state-of-the-art performance on this task.

In this work, we extend the domain of learning-based mapping approaches
further towards full-scale SLAM systems. We present a deep learning approach
for the two most important components in visual SLAM: camera pose tracking,
and dense mapping.

H. Zhou and B. Ummenhofer—Equal contribution.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-01270-0 50) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11220, pp. 851–868, 2018.
https://doi.org/10.1007/978-3-030-01270-0_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01270-0_50&domain=pdf
https://doi.org/10.1007/978-3-030-01270-0_50
https://doi.org/10.1007/978-3-030-01270-0_50

852 H. Zhou et al.

The main contribution of the paper is a learned tracking network and a
mapping network, which generalize well to new datasets and outperform strong
competing algorithms. This is achieved by the following key components:

– a tracking network architecture for incremental frame to keyframe tracking
designed to reduce the dataset bias problem.

– a multiple hypothesis approach for camera poses which leads to more accurate
pose estimation.

– a mapping network architecture that combines depth measurements with
image-based priors, which is highly robust and yields accurate depth maps.

– an efficient depth refinement strategy combining a network with the narrow
band technique.

The most related classical approach is DTAM [23], which stands for Dense
Tracking And Mapping. Conceptually we follow a very similar approach, except
that we formulate it as a learning problem. Consequently, we call our approach
DeepTAM.

For tracking, DeepTAM uses a neural network for aligning the current camera
image to a keyframe –color and depth image– to infer the camera pose. To this
end we use a small and fast stack of networks which implement a coarse-to-fine
approach. The network stack incrementally refines the estimated camera pose.
In each step we update a virtual keyframe, thereby improving convergence of
the predicted camera pose. This incremental formulation significantly simplifies
the learning task and reduces the effects of dataset bias. In addition, we show
that generating a large number of hypotheses improves the pose accuracy.

Our mapping network is built upon the plane sweep stereo idea [3]. We first
accumulate information from multiple images in a cost volume, then extract
the depth map using a deep network by combining image-based priors with the
accumulated depth measurements. To further improve the depth prediction we
append a network, which iteratively refines the prediction using a cost volume
defined on a narrow band around the previous surface estimate. The obtained
depth can be a valuable cue for many vision tasks, e.g. object localization [4,26],
scene understanding [11,12], image dehazing [8,35,36].

As a learning approach, DeepTAM is very good at integrating various cues
and learning implicit priors about the used camera. This is in contrast to clas-
sic approaches which fundamentally rely on handcrafted features like SIFT [22]
and photoconsistency maximization. A well known problem of learning-based
approaches is overfitting, and we took special care in the design of the architec-
ture and the definition of the learning problem so that the network cannot learn
simple shortcuts that would not generalize.

As a consequence, DeepTAM generalizes well to new datasets and is the first
learned approach with full 6 DOF keyframe pose tracking and dense mapping. On
standard benchmarks, it compares favorably to state-of-the-art RGB-D track-
ing, while using less data. DeepTAM employs dense mapping that can process
arbitrary many frames and runs at interactive frame rates.

DeepTAM: Deep Tracking and Mapping 853

2 Related work

The most related work is DTAM [23]. We build on the same generic idea: drift-
free camera pose tracking via a dense depth map towards a keyframe and aggre-
gation of depth over time. However, we use completely different technology to
implement this concept. In particular, both the tracking and the mapping are
implemented by deep networks, which solely learn the task from data.

Most related with regard to the learning methodology is DeMoN [30], which
implements 6 DOF egomotion and depth estimation for two images as a learning
problem. In contrast to DeMoN, we process more than two images. We avoid
drift by the use of keyframes, and we can refine the depth map as more frames
are coming in.

A few more works based on deep learning have appeared recently that have a
weak connection to the present work. Agrawal et al. [2] trains a neural network to
estimate the egomotion, which mainly serves as a supervision for feature learn-
ing. Kendall et al. [16] applies deep learning to the camera localization task and
Valada et al. [31] show that the visual localization and odometry can be solved
jointly within one network. DeepVO [33] runs a deep network for visual odom-
etry, i.e., regressing the egomotion between two frames. There is no mapping
part, and the egomotion estimation only works for environments seen during
training. Zhou et al. [37] presented a deep network for egomotion and depth
estimation that can be trained with an unsupervised loss. The approach uses
two images for depth estimation during training. However, it ignores the second
image when estimating the depth at runtime, hence ignoring the motion paral-
lax. SfM-Net [32], too, uses unsupervised learning ideas, and (despite its title)
does not use the motion parallax for depth estimation. UnDeepVO [20] proposed
egomotion estimation and depth estimation again based on an unsupervised loss.
All these works are like DeMoN limited to the joint processing of two frames
and limited to the motions present in the datasets.

Training and experiments in most of these previous works [20,33,37] focus
on the KITTI dataset [10]. These driving scenarios mostly show 3 DOF motion
in a plane, which is induced by a 2 DOF action space (accelerate/brake, steer
left/steer right). In particular the hard ambiguities between camera translation
and rotation do not exist, since the car cannot move sideward. In contrast, the
present work yields full 6 DOF pose tracking, can handle these ambiguities, and
we evaluate on a 6 DOF benchmark.

We cannot cover the full literature on classical tracking and mapping tech-
niques, but there are some related works besides DTAM [23] that are worth
mentioning. LSD-SLAM [7] is a state-of-the-art SLAM approach that uses direct
measures for optimization. It provides a full SLAM pipeline with loop closing. In
contrast to DTAM and our approach, LSD-SLAM only yields sparse depth esti-
mates. Engel et al. [6] propose a sparse direct approach. They show that integrat-
ing a sophisticated model of the image formation process significantly improves
the accuracy. For our learning-based approach, accounting for the characteris-
tics of the imaging process is covered by the training process. Similarly, Kerl et
al. [18] carefully model the noise distribution to improve robustness. Again, this

854 H. Zhou et al.

comes for free in a learning-based approach. CNN-SLAM [29] extends LSD-
SLAM with single image depth maps. In contrast to our approach, tracking and
mapping are not coupled in a dense manner. In particular, the tracking uses a
semi-dense subset of the depth map.

3 Tracking

Given the current camera image IC and a keyframe, which consists of an image
IK and an inverse depth map DK , we want to estimate the 4 × 4 transforma-
tion matrix TKC that maps a point in the keyframe coordinate system to the
coordinate system of the current camera frame. The keyframe pose TK and the
current camera pose TC are related by

TC = TKTKC , with TC ,TK ,TKC ∈ SE(3). (1)

Learning to compute TKC is related to finding 2D-3D correspondences
between the current image IC and the keyframe (IK ,DK). It is well known
that the correspondence problem can be solved more efficiently and reliably if
pixel displacements between image pairs are small. Since we want to track the
current camera pose at interactive rates, we assume that a guess TV close to TC

is available. Similar to DTAM [23], we generate a virtual keyframe (IV ,DV) that
shows the content of the keyframe (IK ,DK) from a viewpoint corresponding to
TV . Instead of directly estimating TKC , we learn to predict the increment δT,
i.e., we write the current camera pose as

TC = TV δT. (2)

This effectively reduces the problem to learning the function δT =
f(IC , IV ,DV). We use a deep network to learn f .

3.1 Network Architecture

We use the encoder-decoder-based architecture shown in Fig. 1 for learning to
estimate the 6 DOF pose between a keyframe (IK ,DK) and an image IC . A
detailed description of all network parameters can be found in the supplementary
material.

Since camera motion can only be estimated by relating the keyframe to the
current image, we make use of optical flow as an auxiliary task. The predicted
optical flow ensures that the network learns to exploit the relationship between
both frames. We demonstrate the importance of the flow prediction in Table 1.
We use the features shared with the optical flow prediction task in a second
network branch for generating pose hypotheses. As we show in the experiments
(Table 1), generating multiple hypotheses improves the accuracy of the predicted
pose compared to direct prediction of the pose.

The last part of the pose generation consists of N = 64 branches of stacked,
fully connected layers sharing their weights. We found that this configuration is

DeepTAM: Deep Tracking and Mapping 855

more stable and accurate than a single branch of fully connected layers comput-
ing N poses. Each generated pose hypothesis is a 6D pose vector δξi = (ri, ti)�.
The 3D rotation vector ri is a minimal angle axis representation with the angle
encoded as the magnitude of the vector. The translation ti is encoded in 3D
Cartesian coordinates. For simplicity, and because δξi are small rigid body
motions, we compute the final pose estimate δξ as the linear combination

δξ =
1
N

N=64∑

i=1

δξi. (3)

Coarse camera motions are already visible at small image resolutions, while
small motions require higher image resolutions. Thus, we use a coarse-to-fine
strategy to efficiently track the camera in real time. We train three distinct
tracking networks as shown in Fig. 2, which deal with the pose estimation prob-
lem at different resolutions and refine the prediction of the respective previous
resolution level.

Fig. 1. The tracking network uses an encoder-decoder type architecture with direct
connections between the encoding and decoding part. The decoder is used by two tasks,
which are optical flow prediction and the generation of pose hypotheses. The optical
flow prediction is a small stack of two convolution layers and is only active during train-
ing to stimulate the generation of motion features. The pose hypotheses generation part
is a stack of downsampling convolution layers followed by a fully connected layer, which
then splits into N = 64 fully connected branches sharing parameters to estimate the
δξi. Along with the current camera image IC we provide a virtual keyframe (IV ,DV)
as input for the network, which is rendered using the active keyframe (IK ,DK) and
the current pose estimate TV . We stack the depicted network architecture three times
with each instance operating at a different resolution as shown in Fig. 2.

3.2 Training

A major problem of learning-based approaches is the strong dependency on
suitable datasets. Datasets often do not cover all important modes, which com-
plicates generalization to new data. An example is the KITTI dataset for
autonomous driving [10], which is limited to motion in a plane and does not
cover full 6 DOF motion. As a consequence, learning-based methods easily over-
fit to this type of motion and do not generalize. Artificial data can be used to

856 H. Zhou et al.

Fig. 2. Overview of the tracking networks and the incremental pose estimation. We
apply a coarse-to-fine approach to efficiently estimate the current camera pose. We train
three tracking networks each specialized for a distinct resolution level corresponding
to the input image dimensions (80 × 60), (160 × 120) and (320 × 240). Each network
computes a pose estimate δTi with respect to a guess TV

i . The guess TV
0 is the camera

pose from the previously tracked frame. Each of the tracking networks uses the latest
pose guess to generate a virtual keyframe at the respective resolution level and thereby
indirectly tracking the camera with respect to the original keyframe (IK ,DK). The
final pose estimate T̂C is computed as the product of all incremental pose updates
δTi.

alleviate this problem, but it is not trivial to generate realistic imagery with
ground truth depth.

We tackle this problem in two ways. First by using the incremental formula-
tion in (2), i.e., we estimate a small increment δT instead of the absolute motion
between keyframe and current camera image. This reduces the magnitude of
motion and reduces the difficulty of the task. Second, we use rendered images
and depth maps as a proxy for real keyframes. Given a keyframe (IK ,DK), we
sample the initial pose guess TV

0 from a normal distribution centered at the
ground truth pose TC to generate the virtual frame (IV ,DV). This simulates all
possible 6 DOF motions and, thus, effectively augments the data to overcome
the limited set of motions in the dataset.

Datasets. We train on image pairs from the SUN3D dataset [34] and the
SUNCG dataset [27]. For SUN3D we sample image pairs with a baseline of up
to 40cm. For SUNCG we generate images with normally distributed baselines
with standard deviation 15cm and rotation angles with standard deviation 0.15
radians. When sampling an image pair we reject samples with an image overlap
of less than 50%. For keyframe depth maps DK , we use the ground truth depth
from the datasets during training.

Training Objective. The objective function for the tracking network is

Ltracking = Lflow(w) + Lmotion(δξ) + Luncertainty(δξi). (4)

The predicted optical flow w and the predicted poses δξi are the network’s
outputs.

DeepTAM: Deep Tracking and Mapping 857

The loss Lflow defines the auxiliary optical flow task. We use the endpoint
error

Lflow =
∑

i,j

‖w(i, j) − wgt(i, j)‖2 , (5)

which is a common error metric for optical flow.
The two losses Lmotion and Luncertainty for the generation of pose hypotheses

are defined as:

Lmotion = α ‖r − rgt‖2 + ‖t − tgt‖2 , and (6)

Luncertainty =
1
2

log (|Σ|) − 2 log
(

x�Σ−1x
2

)
− log

(
Kv

(√
2x�Σ−1x

))
. (7)

The vectors r and t are the rotation and translation parts of the linear com-
bination δξ defined in (3). We use the parameter α to balance the importance
of both components. We combine this loss, which directly acts on the predicted
average motion, with Luncertainty, which is the negative log-likelihood of the mul-
tivariate Laplace distribution. We compute Σ from the predicted pose samples
as Σ = 1

N

∑N
i (δξi − δξ)(δξi − δξ)�, and the vector x as x = δξ − δξgt. During

optimization we treat x as a constant. The function Kv is the modified Bessel
function of the second kind. We empirically found that a loss based on the mul-
tivariate Laplace distribution yields better results than the multivariate Normal
distribution. The uncertainty loss pushes the network to predict distinct poses
δξi.

We optimize using Adam [19] with the learning rate schedule proposed in
[21]. We implement and train the networks with Tensorflow [1]. Training the
tracking network takes less than a day on an NVIDIA GTX1080Ti. We provide
the detailed training parameters in the supplementary material.

4 Mapping

We describe the geometry of a scene as a set of depth maps, which we compute for
every keyframe. To achieve high quality depth maps we accumulate information
from multiple images in a cost volume. The depth map is then extracted from
the cost volume by means of a convolutional neural network.

Let C be the cost volume and C(x, d) the photoconsistency cost for a pixel
x at depth label d ∈ Bfb. We define the set of N depth labels for a fixed range
[dmin, dmax] as

Bfb = {bi|bi = dmin + i · dmax−dmin
N−1 , i = 0, 1, ..., N − 1}. (8)

Given a sequence of m images I1, .., Im along with their camera poses
T1, ..,Tm, we compute the photoconsistency costs as

C(x, d) =
∑

i∈{1,..,m}
ρi(x, d) · wi(x). (9)

858 H. Zhou et al.

The photoconsistency ρi(x, d) is the sum of absolute differences (SAD) of 3 ×3
patches between the keyframe image IK and the warped image Ĩi at point x
for depth d. We obtain Ĩi using a warping function W(Ii,Ti(TK)−1, d), which
warps the image Ii to the keyframe using the relative pose and the depth.

The weighting factor wi is then computed as

wi(x) = 1 − 1
N − 1

∑

d∈Bfb\{d∗}
exp

(
−α · (ρi(x, d) − ρi(x, d∗))2

)
. (10)

wi describes the matching confidence and is close to 1 if there is a clear and
unique minimum ρi(x, d∗) with d∗ = arg mindρi(x, d).

In classic methods the cost volume is taken as data term and a depth map can
be obtained by searching for the minimum cost. However, due to noise in the cost
volume, various sophisticated regularization terms and optimization techniques
have been introduced [9,13,14] to extract the depth in a robust manner. Instead,
we train a network to use the matching cost information in the cost volume and
simultaneously combine it with the image-based scene priors to obtain more
accurate and more robust depth estimates.

For cost-volume-based methods, accuracy is limited by the number of depth
labels N . Hence, we use an adaptive narrow band strategy to increase the sam-
pling density while keeping the number of labels constant. We define the narrow
band of depth labels centered at the previous depth estimate dprev as

Bnb = {bi|bi = dprev + i · σnb · dprev, i = −N
2 , ..., N−2

2 }. (11)

σnb determines the narrow band width. We recompute the cost volume for the
narrow band for a small selection of frames and search again for a better depth
estimate. The narrow band allows us to recover more details in the depth map,
but also requires a good initialization and regularization to keep the band in
the right place. We address these tasks using multiple encoder-decoder type
networks. Fig. 3 shows an overview of the mapping architecture with the fixed
band and narrow band stage.

4.1 Network Architecture

The network is trained to predict the keyframe inverse depth DK from the
keyframe image IK and the cost volume C computed from a set of images
I1, ..., Im and camera poses T1, ...,Tm. DK is represented as inverse depth,
which enables a more precise representation with closer distance. We apply a
coarse-to-fine strategy along the depth axis. Thus, the mapping is divided into
a fixed band module and a narrow band module. The fixed band module builds
the cost volume Cfb with depth labels evenly spaced in the whole depth range,
while the narrow band cost volume Cnb centers at the current depth estimation
and accumulates information in a small band close to the estimate.

The fixed band module regresses an interpolation factor between the mini-
mum and maximum depth label as output. As a consequence, the network cannot

DeepTAM: Deep Tracking and Mapping 859

Fig. 3. Mapping networks overview. Mapping consists of a fixed band module and a
narrow band module, which is based on an encoder-decoder architecture. Fixed band
module: This module takes the keyframe image IK (320 × 240 × 3) and the cost
volume Cfb (320 × 240 × 32) generated with 32 depth labels equally spaced in the
range [0.01, 2.5] as inputs and outputs an interpolation factor sfb (320× 240× 1). The
fixed band depth estimation is computed as Dfb = (1−sfb) ·dmin+sfb ·dmax. Narrow
band module: The narrow band module is run iteratively; in each iteration we build
a cost volume Cnb from a set of depth labels distributed around the current depth
estimation with a band width σnb of 0.0125. It consists of two encoder-decoder pairs.
The first pair gets the cost volume Cnb (320 × 240 × 32) and the keyframe image IK

(320×240×3) as inputs and generates a learned cost volume Cnb learn (320×240×32).
The depth map is then obtained using a differentiable soft argmin operation [15]:
Dnb1 =

∑
d∈Bnb

Bnb× softmax(−Cnb learn). The second encoder-decoder pair gets the

current depth estimation Dnb1 and the keyframe image IK and produces a refined
depth Dnb2.

reason about the absolute scale of the scenes, which helps to make the network
more flexible and generalize better. Unlike the fixed band, which contains a set
of fronto-parallel planes as depth labels, the discrete labels of the narrow band
are individual for each pixel. Predicting interpolation factors is not appropriate,
since the network in the narrow band module has no knowledge of the band’s
shape. We intentionally do not provide the narrow band network with the band
shape (i.e. the depth value for which each depth label stands), because the net-
work tends to overfit to this straight-forward cue and ignores the cost information
in the cost volume. However, the absence of the band shape makes the depth
regularization difficult which can be observed in Fig. 4. Therefore we append
another refine network, which focuses on the problem of depth regularization.
Both networks together can be understood as solving alternatingly the data and
smoothness terms of a variational approach. The detailed architecture is shown
in Fig. 3.

4.2 Training

We train our mapping networks from scratch using Adam [19] based on the
Tensorflow [1] framework. Our training procedure consists of multiple stages.
We first train the fixed band module with subsampled video sequences of length
8. Then we fix the parameters and sequentially add the two narrow band encoder-

860 H. Zhou et al.

Fig. 4. Effects of the narrow band refinement. We apply the narrow band module for 15
iterations with and without refinement. Without the refinement, the module lacks the
knowledge of the band shape and it can only make updates based on the measurements
in the cost volume. This can help in capturing more details, but also causes strong
artifacts. Appending a refinement network with previous depth estimation as input
allows for a better regularized and more stable depth estimation.

decoder pairs to the training. In the last stage we unroll the narrow band network
to simulate 3 iterations and train all parts jointly. Training the mapping networks
takes about 8 days in total on an NVIDIA GTX 1080Ti.

Datasets. We train our mapping networks on various datasets to avoid over-
fitting. SUN3D [34] has a large variety of indoor scenes. For ground truth we
take the improved Kinect depths with multi-frame TSDF filling. SUNCG [27] is
a synthetic dataset of 3D scenes with realistic scene scale. We render SUNCG to
obtain a sequence of data by randomly sampling from SUN3D pose trajectories.
In addition to SUNCG and SUN3D, we generate a dataset –in the following
called MVS– with the COLMAP structure from motion pipeline [24,25]. MVS
contains both indoor and outdoor scenes and was captured at full image and
temporal resolution (2704 × 1520@50Hz) with a wide-angle GoPro camera. For
training we downsample to (320 × 240) and use every third frame. We manually
remove sequences where the reconstruction failed.

During training we use the (pseudo) ground truth camera poses from the
datasets to construct the cost volume.

Training Objective. We use a simple L1 loss on the inverse depth maps
Ldepth = |D − Dgt| and the scale invariant gradient loss proposed in [30]:

Lsc-inv-grad =
∑

h∈{1,2,4}

∑

i,j

‖gh[D](i, j) − gh[Dgt](i, j)‖2 , (12)

where
gh[D](i, j) =

(
D(i+h,j)−D(i,j)

|D(i+h,j)|+|D(i,j)| ,
D(i,j+h)−D(i,j)

|D(i,j+h)|+|D(i,j)|
)�

. (13)

gh[D](i, j) and gh[Dgt](i, j) are gradient images of the predicted and the ground
truth depth map that emphasize discontinuities. h is the step in the difference
operator gh.

DeepTAM: Deep Tracking and Mapping 861

5 Experiments

5.1 Tracking evaluation

Table 1 shows the performance of our tracking network on the RGB-D bench-
mark [28]. The benchmark provides images and depth maps with accurate ground
truth poses obtained from an external multi-camera tracking system.

We use the depth maps from the dataset during keyframe generation to
measure the isolated tracking performance of our approach (left part of Table 1).
We compare against the keyframe odometry component of the RGB-D SLAM
method of Kerl et al. [17]. Their method uses the full color and depth information
–for both keyframe and current frame– to compute the pose, while our method
only uses the depth information from the dataset for the keyframes. During
testing we generate a new keyframe if the rotational distance exceeds a threshold
of 6 degrees or translational distance exceeds a 15cm threshold. The number of
generated keyframes is similar to the number of keyframes reported in [17] for
RGB-D SLAM.

Table 1 shows that our learning-based approach outperforms a state-of-the-
art RGB-D method on most of the sequences, despite using less information.
In addition, the results also show that forcing the network to predict multiple
pose hypotheses further reduces the translational drift on most sequences. The
results show also the generalization capabilities as we did not train or finetune
on any sequences of the benchmark.

5.2 Mapping evaluation

For evaluating the mapping performance we use the following error metrics:

sc-inv(D,Dgt) =

√
1
n

∑
i,j E(i, j)2 − 1

n2

(∑
i,j E(i, j)

)2

, (14)

where E(i, j) = log D(i, j) − log Dgt(i, j) and n is the number of pixels,

L1-rel(D,Dgt) = 1
n

∑
i
|D(i,j)−Dgt(i,j)|

Dgt(i,j)
and (15)

L1-inv(D,Dgt) = 1
n

∑
i

∣∣∣ 1
D(i,j) − 1

Dgt(i,j)

∣∣∣ . (16)

sc-inv is a scale invariant metric introduced in [5]. The L1-rel metric normalizes
the depth error with respect to the ground truth depth value. L1-inv gives more
importance to close depth values by computing the absolute difference of the
reciprocal of the depth values. This metric also reflects the increasing uncertainty
in the depth computation with increasing distance to the camera.

We evaluate our fixed band module and narrow band module quantitatively
in Table 2. The results show that the fixed band module is able to exploit
the accumulated information from multiple frames leading to better depth esti-
mates. While this behaviour is taken for granted for traditional methods, this is
not necessarily the case for learning-based methods. The same holds for iterative

862 H. Zhou et al.

Table 1. Evaluation of our tracking (left part) and the combined mapping and tracking
(right part) on the validation sets of RGB-D benchmark [28]. The values describe
the translational RMSE in [m/s]. Tracking: We compare the performance of our
tracking network against the RGB-D SLAM method of Kerl et al. [17]. Numbers for
Kerl et al. [17] correspond to the frame-to-keyframe odometry evaluation and have
been copied from their paper. Kerl et al. [17] uses the camera image and the depth
stream for computing the poses, while our approach uses the depth stream only for
keyframes and is limited to photometric alignment. Ours (w/o flow) does not learn
optical flow. Ours (w/o hypotheses) is a network which just predicts a single pose.
Ours uses optical flow to learn motion features and predicts multiple pose hypotheses.
Tracking and mapping: We compare our tracking and mapping against CNN-SLAM
by Tateno et al. [29]. * For a fair comparison CNN-SLAM is run without pose graph
optimization. To avoid a bias in the initialization Ours uses the depth prediction from
CNN-SLAM for the first frame of each sequence and then switches to our combined
tracking and mapping.

Tracking Tracking and mapping

Sequence RGB-D SLAM Ours Ours Ours CNN-SLAM* Ours

Kerl et al. [17] (w/o flow) (w/o hypotheses) Tateno et al. [29]

fr1/360 0.125 0.069 0.065 0.054 0.500 0.116

fr1/desk 0.037 0.042 0.031 0.027 0.095 0.078

fr1/desk2 0.020 0.025 0.020 0.017 0.115 0.055

fr1/plant 0.062 0.063 0.060 0.057 0.150 0.165

fr1/room 0.042 0.051 0.041 0.039 0.445 0.084

fr1/rpy 0.082 0.070 0.063 0.065 0.261 0.052

fr1/xzy 0.051 0.030 0.021 0.019 0.206 0.054

average 0.060 0.050 0.043 0.040 0.253 0.086

processes like the narrow band module. Running the narrow band module itera-
tively improves the depth estimates. We can show this quantitatively in Table 2
and qualitatively in Fig. 5.

We also compare our mapping against the state-of-the-art deep learning app-
roach DeMoN [30] and two strong classic dense mapping methods DTAM [23]
and SGM [13]. We use the publicly available reimplementation OpenDTAM1 and
our own implementation of SGM with 16 directions. For DTAM, SGM and Deep-
TAM we construct a cost volume with 32 labels at the resolution of 320 × 240.
We use SAD as photo-consistency measure and accumulate the information of
video sequences of length 10. We use the same pseudo camera pose ground truth
from the datasets for a fair comparison. For DeMoN –which is limited to two
images– we give the first and last frame from the sequence to provide enough
motion parallax.

As shown in Table 2 our method achieves the best performance on all met-
rics and test sets. All classic methods tend to suffer from weakly-textured scenes
which occur quite often in the indoor datasets and synthetic datasets. However,
we are less affected by this problem by means of leveraging matching cost infor-

1 https://github.com/magican/OpenDTAM.git SHA: 1f92a54334c233f9c4ce7d8cbaf9a81dee5e69a6

https://github.com/magican/OpenDTAM.git

DeepTAM: Deep Tracking and Mapping 863

Table 2. Keyframe depth map errors on the test split of our training data sets. Fixed
band: The influence of the number of frame used for computing the cost volume for
the fixed band module. Accumulating information from multiple frames improves the
performance and saturates after adding six or more frames. Narrow band: The effect
of different number of iterations of the narrow band module. More iterations lead to
more accurate depth maps. Depth estimations converge after about three iterations and
improve only slowly with more iterations. On SUN3D results get slightly worse with
more than three iterations. The narrow band width σnb is a constant number, which
can be replaced by a gradually decreasing strategy or optimally by the uncertainty
of the depth estimation. Mapping comparison: Quantitative comparison to other
learning- and cost-volume-based dense mapping methods. We evaluate sequences of
length 10 from our test sets and use the camera poses from the datasets to measure
the isolated performance of our mapping. DeMoN just uses two input images (first
and last frame of each sequence) and does not use the pose as input. Since DeMoN
predicts the depth scaled with respect to its motion prediction, we compare only on
the scale invariant metric sc-inv. SUNCG and SUN3D feature a large number of indoor
scenes with low texture, while MVS contains a mixture of indoor and outdoor scenes
and provides more texture. Our method outperforms the baselines on all datasets. The
margin is especially large on the very difficult indoor datasets (SUNCG, SUN3D).

Fixed band Narrow band Mapping comparison

2 frames 6 frames 10 frames 1iter 3iters 5iters SGM DTAM DeMoN Ours

MVS L1-inv 0.117 0.085 0.083 0.076 0.065 0.064 - 0.086 0.059 0.036

L1-rel 0.239 0.163 0.159 0.142 0.113 0.111 - 0.557 0.240 0.171

sc-inv 0.193 0.160 0.159 0.156 0.132 0.130 0.251 0.305 0.246 0.146

SUNCG L1-inv 0.075 0.065 0.067 0.049 0.039 0.036 - 0.142 0.169 0.036

L1-rel 0.439 0.418 0.423 0.304 0.213 0.171 - 0.380 0.533 0.083

sc-inv 0.213 0.199 0.200 0.174 0.152 0.146 0.248 0.343 0.383 0.128

SUN3D L1-inv 0.097 0.067 0.065 0.050 0.035 0.036 - 0.210 0.197 0.064

L1-rel 0.288 0.198 0.193 0.141 0.082 0.083 - 0.423 0.412 0.111

sc-inv 0.206 0.174 0.172 0.155 0.125 0.128 0.146 0.374 0.340 0.130

mation together with scene priors via a neural network. This is again supported
by the qualitative comparison in Fig. 6. In addition, the mapping performance
of all the classic cost-volume-based methods is prone to noisy camera pose while
our method is more robust, which is demonstrated in Fig. 8. More qualitative
examples can be found in the supplemental video.

In the right part of Table 1 we compare our combined tracking and map-
ping against CNN-SLAM [29] without pose graph optimization. CNN-SLAM
uses a semi-dense photoconsistency optimization approach for computing cam-
era poses and uncertainty-based depth update. We did not train on RGB-D
benchmark datasets [28]. Our learned dense tracking and mapping generalizes
well and proves to be more robust and accurate on the majority of sequences.
While it performs clearly worse on fr1/plant it seldomly fails and overall yields
more reliable trajectories.

To further verify our generalization ability, we test our model on KITTI [10]
without finetuning. Fig. 7 shows a qualitative comparison.

864 H. Zhou et al.

Fig. 5. Qualitative comparison of the depth prediction of the fixed band and narrow
band module. We evaluate the effect of different numbers of frames used in the fixed
band module and iterations used in the narrow band module. The fixed band gains
in performance with more frames. The largest improvement can be observed between
using only 2 frames (including keyframe) and 6 frames. The performance saturates
with more frames. To further improve the quality of the depth map we use the iterative
narrow band module on the 10 frames result of the fixed band. Using a narrow band
around the previous depth estimation allows us to capture finer details and achieve
higher accuracy.

Fig. 6. Qualitative depth prediction comparison for sequences with 10 frames. DTAM
has problems with short sequences and textureless scenes. SGM shares the same prob-
lems but works reasonably well if enough texture is present. DeMoN work well even
in homogeneous image regions but misses many details. Our method can produce high
quality depth maps using a small number of frames and captures more details compared
to the other methods.

6 Conclusions

We propose a novel deep learning architecture for real-time dense mapping and
tracking. For tracking we show that generating synthetic viewpoints allows us to
track incrementally with respect to a keyframe. For mapping, our methods can
effectively exploit the cost volume information and image-based priors leading to

DeepTAM: Deep Tracking and Mapping 865

Fig. 7. Generalization experiment on KITTI [10]. SGM, DTAM and Ours use a
sequence of 5 frames from the left color camera, while for DeMoN we only use the
first and last frame of each sequence. We show pseudo GT as a reference, which was
obtained by computing the disparity of the corresponding rectified and synchronized
stereo pairs. KITTI is an urban scene dataset captured with a wide-angle camera,
which differs from our training data significantly. Further, due to the dominant for-
ward motion pattern of the dataset the epipole is within the visible image borders,
which makes depth estimation especially difficult. Without finetuning our method gen-
eralizes well to this dataset. More examples can be found in the supplementary.

Fig. 8. Qualitative depth prediction comparison of DeepTAM, SGM, DTAM against
increasing pose noise. We carefully select a well textured video sequence with 10 frames
and enough motion parallax. For SGM and DTAM we use a cost volume with 64 labels,
while we use 32 labels for DeepTAM. We found that using 64 instead 32 labels improves
the results for both baseline methods. We apply the same normal-distributed noise
vectors for all methods to the camera poses and increase the standard deviation from
0 (leftmost) to 0.6|ξ| (rightmost). SGM and DTAM are highly sensitive to noise and
their performance degrades quickly. Our predicted depth preserves the important scene
structures even under large amounts of noise. This behaviour is advantageous during
tracking and improves the robustness of the overall system.

accurate and robust dense depth estimations. We demonstrate that our methods
outperform strong classic and deep learning algorithms. In future work, we plan
to extend the presented components to build a full SLAM system.

Acknowledgements This project was in large parts funded by the EU
Horizon 2020 project Trimbot2020. We also thank the bwHPC initiative for
computing resources, Facebook for their P100 server donation and gift funding.

866 H. Zhou et al.

References

1. Abadi, M., et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems (2015). Software available from: www.tensorflow.org

2. Agrawal, P., Carreira, J., Malik, J.: Learning to see by moving. In: 2015 IEEE Inter-
national Conference on Computer Vision (ICCV), pp. 37–45, Dec 2015. https://
doi.org/10.1109/ICCV.2015.13

3. Collins, R.T.: A space-sweep approach to true multi-image matching, pp. 358–363.
IEEE, June 1996. https://doi.org/10.1109/CVPR.1996.517097

4. Dhiman, V., Tran, Q.H., Corso, J.J., Chandraker, M.: A continuous occlusion
model for road scene understanding. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4331–4339, June 2016. https://doi.org/10.
1109/CVPR.2016.469

5. Eigen, D., Puhrsch, C., Fergus, R.: Depth Map Prediction from a Single Image
using a Multi-Scale Deep Network. arXiv:1406.2283 [cs], June 2014

6. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern
Anal. Mach. Intell. 40(3), 611–625 (2018). https://doi.org/10.1109/TPAMI.2017.
2658577

7. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular
SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014.
LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10605-2 54

8. Fattal, R.: Single image dehazing. In: ACM SIGGRAPH 2008 Papers. SIGGRAPH
2008, pp. 72:1–72:9. ACM, New York (2008). https://doi.org/10.1145/1399504.
1360671, http://doi.acm.org/10.1145/1399504.1360671

9. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision.
Int. J. Comput. Vis. 70(1), 41–54 (2006). https://doi.org/10.1007/s11263-006-
7899-4

10. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3354–3361. IEEE (2012)

11. Gupta, S., Arbelez, P., Malik, J.: Perceptual organization and recognition of indoor
scenes from rgb-d images. In: 2013 IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 564–571, June 2013. https://doi.org/10.1109/CVPR.2013.
79

12. Gupta, S., Arbeláez, P., Girshick, R., Malik, J.: Indoor scene understanding with
rgb-d images: bottom-up segmentation, object detection and semantic segmen-
tation. Int. J. Comput. Vision 112(2), 133–149 (2015). https://doi.org/10.1007/
s11263-014-0777-6, http://dx.doi.org/10.1007/s11263-014-0777-6

13. Hirschmüller, H.: Accurate and efficient stereo processing by semi-global matching
and mutual information. In: 2005 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 807–814, June 2005.
https://doi.org/10.1109/CVPR.2005.56

14. Hosni, A., Rhemann, C., Bleyer, M., Rother, C., Gelautz, M.: Fast cost-volume
filtering for visual correspondence and beyond. IEEE Trans. Pattern Anal. Mach.
Intell. 35(2), 504–511 (2013). https://doi.org/10.1109/TPAMI.2012.156

15. Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P.: End-to-end learning of geom-
etry and context for deep stereo regression. In: 2017 IEEE International Conference
on Computer Vision (ICCV), pp. 66–75, Oct 2017. https://doi.org/10.1109/ICCV.
2017.17

www.tensorflow.org
https://doi.org/10.1109/ICCV.2015.13
https://doi.org/10.1109/ICCV.2015.13
https://doi.org/10.1109/CVPR.1996.517097
https://doi.org/10.1109/CVPR.2016.469
https://doi.org/10.1109/CVPR.2016.469
http://arxiv.org/abs/1406.2283
https://doi.org/10.1109/TPAMI.2017.2658577
https://doi.org/10.1109/TPAMI.2017.2658577
https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.1145/1399504.1360671
https://doi.org/10.1145/1399504.1360671
http://doi.acm.org/10.1145/1399504.1360671
https://doi.org/10.1007/s11263-006-7899-4
https://doi.org/10.1007/s11263-006-7899-4
https://doi.org/10.1109/CVPR.2013.79
https://doi.org/10.1109/CVPR.2013.79
https://doi.org/10.1007/s11263-014-0777-6
https://doi.org/10.1007/s11263-014-0777-6
http://dx.doi.org/10.1007/s11263-014-0777-6
https://doi.org/10.1109/CVPR.2005.56
https://doi.org/10.1109/TPAMI.2012.156
https://doi.org/10.1109/ICCV.2017.17
https://doi.org/10.1109/ICCV.2017.17

DeepTAM: Deep Tracking and Mapping 867

16. Kendall, A., Cipolla, R.: Geometric loss functions for camera pose regression with
deep learning. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2017)

17. Kerl, C., Sturm, J., Cremers, D.: Dense visual SLAM for RGB-D cameras. In:
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
2100–2106, Nov 2013. https://doi.org/10.1109/IROS.2013.6696650

18. Kerl, C., Sturm, J., Cremers, D.: Robust odometry estimation for RGB-D cameras.
In: 2013 IEEE International Conference on Robotics and Automation, pp. 3748–
3754, May 2013. https://doi.org/10.1109/ICRA.2013.6631104

19. Kingma, D., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv:1412.6980
[cs], Dec 2014

20. Li, R., Wang, S., Long, Z., Gu, D.: UnDeepVO: Monocular Visual Odometry
through Unsupervised Deep Learning. arXiv:1709.06841 [cs], Sept 2017

21. Loshchilov, I., Hutter, F.: SGDR: Stochastic Gradient Descent with Warm
Restarts. arXiv:1608.03983 [cs, math], Aug 2016

22. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.
94

23. Newcombe, R.A., Lovegrove, S., Davison, A.: DTAM: dense tracking and mapping
in real-time. In: 2011 IEEE International Conference on Computer Vision (ICCV),
pp. 2320–2327 (2011). https://doi.org/10.1109/ICCV.2011.6126513

24. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4104–4113,
June 2016. https://doi.org/10.1109/CVPR.2016.445

25. Schönberger, J.L., Zheng, E., Frahm, J.M., Pollefeys, M.: Pixelwise view selection
for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46487-9 31

26. Song, S., Chandraker, M.: Joint SFM and detection cues for monocular 3D local-
ization in road scenes. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 3734–3742, June 2015. https://doi.org/10.1109/CVPR.
2015.7298997

27. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene
completion from a single depth image. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 190–198, July 2017. https://doi.org/
10.1109/CVPR.2017.28

28. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark
for the evaluation of RGB-D SLAM systems. In: 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 573–580, Oct 2012. https://
doi.org/10.1109/IROS.2012.6385773

29. Tateno, K., Tombari, F., Laina, I., Navab, N.: CNN-SLAM: real-time dense monoc-
ular SLAM with learned depth prediction. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 6565–6574, https://doi.org/10.1109/
CVPR.2017.695, July 2017

30. Ummenhofer, B., et al.: DeMoN: depth and motion network for learning monocular
stereo. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2017)

31. Valada, A., Radwan, N., Burgard, W.: Deep Auxiliary Learning for Visual Local-
ization and Odometry. arXiv:1803.03642 [cs], Mar 2018

32. Vijayanarasimhan, S., Ricco, S., Schmid, C., Sukthankar, R., Fragkiadaki, K.: SfM-
Net: Learning of Structure and Motion from Video. arXiv:1704.07804 [cs], Apr 2017

https://doi.org/10.1109/IROS.2013.6696650
https://doi.org/10.1109/ICRA.2013.6631104
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1709.06841
http://arxiv.org/abs/1608.03983
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1109/ICCV.2011.6126513
https://doi.org/10.1109/CVPR.2016.445
https://doi.org/10.1007/978-3-319-46487-9_31
https://doi.org/10.1007/978-3-319-46487-9_31
https://doi.org/10.1109/CVPR.2015.7298997
https://doi.org/10.1109/CVPR.2015.7298997
https://doi.org/10.1109/CVPR.2017.28
https://doi.org/10.1109/CVPR.2017.28
https://doi.org/10.1109/IROS.2012.6385773
https://doi.org/10.1109/IROS.2012.6385773
https://doi.org/10.1109/CVPR.2017.695
https://doi.org/10.1109/CVPR.2017.695
http://arxiv.org/abs/1803.03642
http://arxiv.org/abs/1704.07804

868 H. Zhou et al.

33. Wang, S., Clark, R., Wen, H., Trigoni, N.: DeepVO: towards end-to-end visual
odometry with deep recurrent convolutional neural networks. In: 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 2043–2050, May
2017. https://doi.org/10.1109/ICRA.2017.7989236

34. Xiao, J., Owens, A., Torralba, A.: SUN3D: a database of big spaces reconstructed
using SfM and object labels. In: 2013 IEEE International Conference on Computer
Vision (ICCV), pp. 1625–1632, Dec 2013. https://doi.org/10.1109/ICCV.2013.458

35. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: CVPR
(2018)

36. Zhang, H., Patel, V.M.: Density-aware single image de-raining using a multi-stream
dense network. In: CVPR (2018)

37. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised Learning of Depth
and Ego-Motion from Video. arXiv:1704.07813 [cs], Apr 2017

https://doi.org/10.1109/ICRA.2017.7989236
https://doi.org/10.1109/ICCV.2013.458
http://arxiv.org/abs/1704.07813

	DeepTAM: Deep Tracking and Mapping
	1 Introduction
	2 Related work
	3 Tracking
	3.1 Network Architecture
	3.2 Training

	4 Mapping
	4.1 Network Architecture
	4.2 Training

	5 Experiments
	5.1 Tracking evaluation
	5.2 Mapping evaluation

	6 Conclusions
	References

