
ContextVP: Fully Context-Aware Video
Prediction

Wonmin Byeon1,2,3,4(B), Qin Wang2, Rupesh Kumar Srivastava4, and
Petros Koumoutsakos2

1 NVIDIA, Santa Clara, CA, USA
wbyeon@nvidia.com

2 ETH Zurich, Zurich, Switzerland
3 The Swiss AI Lab IDSIA, Manno, Switzerland

4 NNAISENSE, Lugano, Switzerland

Abstract. Video prediction models based on convolutional networks,
recurrent networks, and their combinations often result in blurry pre-
dictions. We identify an important contributing factor for imprecise pre-
dictions that has not been studied adequately in the literature: blind
spots, i.e., lack of access to all relevant past information for accurately
predicting the future. To address this issue, we introduce a fully context-
aware architecture that captures the entire available past context for
each pixel using Parallel Multi-Dimensional LSTM units and aggregates
it using blending units. Our model outperforms a strong baseline net-
work of 20 recurrent convolutional layers and yields state-of-the-art per-
formance for next step prediction on three challenging real-world video
datasets: Human 3.6M, Caltech Pedestrian, and UCF-101. Moreover, it
does so with fewer parameters than several recently proposed models,
and does not rely on deep convolutional networks, multi-scale architec-
tures, separation of background and foreground modeling, motion flow
learning, or adversarial training. These results highlight that full aware-
ness of past context is of crucial importance for video prediction.

1 Introduction

Unsupervised learning from unlabeled videos has recently emerged as an impor-
tant direction of research. In the most common setting, a model is trained to
predict future frames conditioned on the past and learns a representation that
captures information about the appearance and the motion of objects in a video
without external supervision. This opens up several possibilities: the model can
be used as a prior for video generation, it can be utilized for model-based rein-
forcement learning [32], or the learned representations can be transferred to other
video analysis tasks such as action recognition [30]. However, learning such pre-
dictive models for natural videos is a rather challenging problem due to the
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diversity of objects and backgrounds, various resolutions, object occlusion, cam-
era movement, dynamic scene and light changes between frames. As a result,
current video prediction models based on convolutional networks, recurrent net-
works, and their combinations often result in imprecise (blurry) predictions.
Even very large, powerful models trained on large amounts of data can suffer
from fundamental limitations that lead to blurry predictions. The structure of
certain models may be inappropriate for the task, resulting in training diffi-
culties and poor generalization. Some researchers have proposed to incorporate
motion priors and background/foreground separation into model architectures
to counter this issue.

Blurry predictions are fundamentally a manifestation of model uncertainty,
which increases if the model fails to sufficiently capture relevant past information.
Unfortunately, this source of uncertainty has not received sufficient attention
in the literature. Most current models are not designed to ensure that they
can properly capture all possibly relevant past context. This paper attempts to
address this gap.

Fig. 1. (left) The Convolutional LSTM (ConvLSTM) context dependency between two
successive frames. (right) The context dependency flow in ConvLSTM over time for
frame t = T . Blind areas shown in gray cannot be used to predict the pixel value at
time T + 1. Closer time frames have larger blind areas.

Our contributions are as follows:

– We highlight a blind spot problem in common video prediction models,
showing that they do not systematically take the entire spatio-temporal con-
text from past frames into account (see Fig. 1-right) and have to rely on
increasing depth to do so. This increases uncertainty about the future which
can not be remedied using special loss functions or motion priors.

– We contribute a simple baseline model that outperforms rather com-
plex models from recent literature. Due to increased depth, this baseline
model has an increased ability to capture relevant context.

– We propose a new architecture for video prediction that systematically
and efficiently aggregates contextual information for each pixel in all possible
directions (left, right, top, bottom, and time directions) at each processing
layer (see Fig. 2) instead of stacking layers to cover the available context.
We additionally propose weighted context-blending blocks and regularization
via directional weight sharing for the proposed architecture. We obtain per-
formance improvements over our strong baseline as well as state-of-the-art
models while using fewer parameters and simple loss functions.
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Fig. 2. (top) Context dependency between two frames when using Parallel MD-LSTM
(PMD) units for five directions: t−, w−, w+, h−, and h+, where h, w, and t indicate
the current position for height, width, and time dimensions. (bottom) The combined
context dependency flow for frame t = T in the proposed architecture. All available
context from past frames is covered in a single layer regardless of the input size.

We demonstrate improvements in a variety of challenging video prediction sce-
narios: car driving, human motion, and diverse human actions in YouTube
videos. Quantitative improvements on metrics are accompanied by results of
high visual quality showing sharper future predictions with reduced blur or other
motion artifacts. Since the proposed models do not require separation of content
and motion or novel loss functions to reach the state of the art, we find that full
context awareness is the crucial ingredient for high quality video prediction.

2 Related Work

Current approaches for video analysis exploit different amounts of spatio-
temporal information in different ways depending on model architecture. One
common strategy is to use models based on 3D Convolutional Neural Networks
(CNNs) that use convolutions across temporal and spatial dimensions to model
all local correlations [28,33] for supervised learning. Similar architectures have
been used for video prediction to directly generate the RGB values of pixels in
future frames [22,24,26,35]. Kalchbrenner et al. [16] discussed that a general
probabilistic model of videos should take into account the entire history (all
context in past frames and generated pixels of present frame) for generating
each new pixel. However, their proposed Video Pixel Networks (VPNs) still use
encoders based on stacks of convolution layers. An inherent limitation of these
models is that convolutions take only short-range dependencies into account due
to the limited size of the kernels. These architectures need a larger stack of con-
volutional layers to use a wide context for reducing uncertainty. This increases
the model capacity even though it may not be needed.

Recurrent neural networks are often used to address the issue of limited
context. Srivastava et al. [30] proposed Long Short-Term Memory (LSTM) [13]
based encoder-decoder models for the task of video prediction, but the canoni-
cal LSTM architecture used by them did not take the spatial structure of video
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data into account. This motivated the use of Convolutional LSTM (ConvLSTM)
based models which replace the internal transformations of an LSTM cell with
convolutions. Xingjian et al. [38] proposed this design for precipitation nowcast-
ing; the motivation being that the convolution operation would model spatial
dependencies, while LSTM connectivity would offer increased temporal context.
The same modification of LSTM was simultaneously proposed by Stollenga et
al. [31] for volumetric image segmentation under the name PyraMiD-LSTM, due
to its close relationship with the Multi-Dimensional LSTM (MD-LSTM) [12].

Recently, ConvLSTM has become a popular building block for video predic-
tion models. Finn et al. [6] used it to design a model that was trained to predict
pixel motions instead of values. Lotter et al. [21] developed the Deep Predictive
Coding Network (PredNet) architecture inspired by predictive coding, which
improves its own predictions for future frames by incorporating previous pre-
diction errors. It is also used in the MCNet [34] which learns to model the
scene content and motion separately, and in the Dual Motion GAN [19] which
learns to produce consistent pixel and flow predictions simultaneously. Wang et.
al. [36] have recently proposed the modification of stacked ConvLSTM networks
for video prediction by sharing the hidden state among the layers in the stack.

For videos with mostly static backgrounds, it is helpful to explicitly model
moving foreground objects separately from the background [6,28,35]. Another
active line of investigation is the development of architectures that only learn to
estimate optical flow and use it to generate future frames instead of generating
the pixels directly [20,25].

Deterministic models trained with typical loss functions can result in impre-
cise predictions simply because the future is ambiguous given the past. For
example, if there are multiple possible future frames, models trained to mini-
mize the L2 loss will generate their mean frame. One approach for obtaining
precise, natural-looking frame predictions in such cases is the use of adversarial
training [22,35] based on Generative Adversarial Networks [9]. Another is to
use probabilistic models for modeling the distribution over future frames, from
which consistent samples can be obtained without averaging of modes [16,39].

3 Missing Contexts in Other Network Architectures

As mentioned earlier, blurry predictions can result from a video prediction model
if it does not adequately capture all relevant information in the past video frames
which can be used to reduce uncertainty. Figure 1 shows the recurrent connec-
tions of a pixel at time t with a 3 × 3 convolution between two frames (left) and
the information flow of a ConvLSTM predicting the pixel at time T + 1 (right).
The covering context grows progressively over time (depth), but there are also
blind spots which cannot be used for prediction. In fact, as can be seen in Fig. 1
(right, marked in gray color), frames in the recent past have larger blind areas.
Due to this structural issue, the network is unable to capture the entire available
context and is likely to miss important spatio-temporal dependencies leading to
increased ambiguity in the predictions. The prediction will eventually fail when
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the object appearance or motion in videos changes dramatically within a few
frames.

One possible way to address limited context, widely used in CNNs for image
analysis, is to expand context by stacking multiple layers (sometimes with dilated
convolutions [40]). However, stacking layers still limits the available context to a
maximum as dictated by the network architecture, and the number of additional
parameters required to gain sufficient context can be very large for high resolu-
tion videos. Another technique that can help is using a multi-scale architecture,
but fixed scale factors may not generalize to all possible objects, their positions
and motions.

4 Method

We introduce the Fully Context-aware Video Prediction model (ContextVP)—
an architecture that avoids blind spots by covering all the available context by
design. Its advantages are:

– Since each processing layer covers the entire context, increasing depth is only
used as necessary to add computation power, not more context. A priori
specification of scale factors is also not required.

– Compared to models that utilize increased depth to cover larger context such
as our baseline 20-layer models, more computations can be parallelized.

– Compared to state-of-the-art models from recent literature, it results in
improved performance without the use of separation of motion and con-
tent, learning optical flow or adversarial training (although combinations with
these strategies may further improve results).

Let xT
1 = {x1, ..., xT } be a given input sequence of length T . xt ∈ RH×W×C

is the t-th frame, where t ∈ {1, ..., T}, H is the height, W the width, and C the
number of channels. For simplicity, assume C = 1, xT

1 is then a cuboid of pixels
bounded by six planes. The task is to predict p future frame(s) in the sequence,
xt+p
t+1 = {xt+1, ..., xt+p} (next-frame prediction if p = 1). Therefore, our goal is

to integrate information from the entire cuboid xT
1 into a representation at the

plane where t = T , which can be used for predicting xt+p
t+1. This is achieved in

the proposed model by using fully context-aware layers, each consisting of two
blocks. The first block is composed of Parallel MD-LSTM units that sequentially
aggregate information from different directions. The second block is the Context
Blending Block that combines the output of PMD units for all directions. The
context covered using PMD units for each direction (top) and the combined
context from past frames (down) are visualized in Fig. 2. The schematic in Fig. 4
shows the overall architecture of our best model.

4.1 Parallel MD-LSTM Unit

Multidimensional LSTM (MD-LSTM) [12] networks, a specialization of DAG-
RNNs [2], have been applied to various problems where the input is two-
dimensional such as handwriting recognition [11], 2D image classification [4] and
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segmentation [3]. They consist of two MD-LSTM blocks per dimension to com-
bine context from all possible directions. In principle, MD-LSTM networks can
be applied to any high-dimensional domain problem (including video prediction)
to model all available dependencies in the data compactly. However, the fully
sequential nature of the model makes it unsuitable for parallelization and thus
impractical for higher dimensional data. The PyraMiD-LSTM [31] addressed
this issue by re-arranging the recurrent connection topology of each MD-LSTM
block from cuboid to pyramidal (for 3D data). It could be implemented effi-
ciently by utilizing the convolution operation. So far, the idea of using LSTM to
aggregate information from all directions was only explored in a limited setting
(2D/3D image segmentation).

We refer to the parallel computing units used in the PyraMiD-LSTM archi-
tecture simply as Parallel Multi-Dimensional (PMD) units since they model
contextual dependencies in a way that is amenable to parallelization. They are
mathematically similar to ConvLSTM units but our terminology highlights that
it is not necessary to limit convolutional operations to spatial dimensions and
LSTM connectivity to the temporal dimension as is conventional. As can be
seen in Fig. 3, PMD units can be used to aggregate context along any of the six
directions available in a cuboid. Three directions are shown: t−, w+, and h+. At
each plane, the local computation for each pixel is independent of other pixels
in the same plane, so all pixels are processed as parallel using the convolution
operation. The computational dependencies across planes are modeled using the
LSTM operation. Computations for each PMD unit are explained mathemati-
cally below.

Fig. 3. Illustration of one computation step of PMD units for t−, w+, and h+ recur-
rence directions. Each unit computes the activation at the current position (red) using
context from a fixed receptive field (here 3×3) of the previous frame along its recur-
rence direction (blue). This computation is efficiently implemented using convolutions.

For any sequence of K two dimensional planes xK
1 = {x1, ..., xK}, the PMD

unit computes the current cell and hidden state ck, sk using input, forget, output
gates ik, fk, ok, and the transformed cell c̃k given the cell and hidden state from
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the previous plane, ck−1, sk−1.

ik = σ(Wi ∗ xk + Hi ∗ sk−1 + bi),
fk = σ(Wf ∗ xk + Hf ∗ sk−1 + bf ),
ok = σ(Wo ∗ xk + Ho ∗ sk−1 + bo)
c̃k = tanh(Wc̃ ∗ xk + Hc̃ ∗ sk−1 + bc̃),
ck = fk � ck−1 + ik � c̃k,

sk = ok � tanh(ck).

(1)

Here (∗) is the convolution operation, and (�) the element-wise multiplication.
W and H are the weights for input-state and state-state. The size of weight
matrices are dependent only on the kernel size and number of units. If the kernel
size is larger, more local context is taken into account.

As shown in Sect. 3, using a ConvLSTM would be equivalent to running
a PMD unit along the time dimension from k = 1 to k = T , which would
only integrate information from a pyramid shaped region of the cuboid and
ignore several blind areas. For this reason, it is necessary to use four additional
PMD units, for which the conditioning directions are aligned with the spatial
dimensions, as shown in Fig. 2 (top). We define the resulting set of five outputs
at frame T as sd where d ∈ D = {h−, h+, w−, w+, t−} denotes the recurrence
direction. Together this set constitutes a representation of the cuboid of interest
xT
1 . Outputs at other frames in xT−1

1 are ignored.

4.2 Context Blending Block

This block captures the entire available context by combining the output of PMD
units from all directions at frame T . This results in the critical difference from
the traditional ConvLSTM: the context directions are aligned not only with the
time dimension but also with the spatial dimensions. We consider two ways to
combine the information from different directions.

Uniform blending (U-blending): this strategy was used in the tradi-
tional MD-LSTM [3,10] and PyraMiD LSTM [31]. It simply sums the output of
all directions along the channel dimension and then applies a non-linear trans-
formation on the result:

m = f((
∑

d∈D

sd) · W + b), (2)

where W ∈ RN1×N2 and b ∈ RN2 are a weight matrix and a bias. N1 is the
number of PMD units, and N2 is the number of (blending) blocks. f is an
activation function.

Weighted blending (W-blending): the summation of PMD unit outputs
in U-blending assumes that the information from each direction is equally impor-
tant for each pixel. We propose W-blending to remove this assumption and learn
the relative importance of each direction during training with the addition of a
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small number of additional weights compared to the overall model size. The
block concatenates s from all directions:

S =
[
st− sh− sh+ sw− sw+

]T (3)

The vector S is then weighted as follows:

m = f(S · W + b), (4)

where W ∈ R(5×N1)×N2 (5 is the number of directions). Equations 2 and 4 are
implemented using 1 × 1 convolutions. We found that W-blending is crucial for
achieving high performance for the task of video prediction (see Table 1).

4.3 Directional Weight-Sharing (DWS)

Visual data tend to have structurally similar local patterns along opposite direc-
tions. This is the reason why horizontal flipping is a commonly used data aug-
mentation technique in computer vision. We propose the use of a similarly
inspired weight-sharing technique for regularizing the proposed networks. The
weights and biases of the PMD units in opposite directions are shared i.e. weights
for h− and h+ are shared, as are w− and w+. This strategy has several benefits
in practice: (1) it lowers the number of parameters to be learned, (2) it incorpo-
rates knowledge about structural similarity into the model, and (3) it improves
generalization.

4.4 Training

x̂ = g(m) is an output of the top-most (output) layer, where g is an output
activation function. The model minimizes the loss between the predicted pixels
and the target pixels. Lp loss and the Image Gradient Difference Loss (GDL) [22]
are combined. By keeping the loss function simple, the results reflect the impact
of having access to all available context. Let y and x̂ be the target and the
predicted frame. The objective function is defined as follows:

L(y, x̂) = λpLp(y, x̂) + λgdlLgdl(y, x̂)
Lp(y, x̂) = ||y − x̂||p

Lgdl(y, x̂) =
∑

i,j

|yi,j − yi−1,j | − |x̂i,j − x̂i−1,j | + |yi,j−1 − yi,j | − |x̂i,j−1 − x̂i,j |,

(5)
where |.| is the absolute value function, x̂i,j and yi,j are the pixel elements from
the frame x̂ and y, respectively. λp and λgdl are the weights for each loss. In our
experiments, λgdl is set to 1 when p = 1 and 0 when p = 2. λp is always set to 1.

We use ADAM [18] as the optimizer with an initial learning rate of 1e − 3.
The learning rate is decayed every 5 epochs with the decay rate 0.99. Weights
are initialized using the Xavier’s normalized initializer [8] and the states of the
LSTMs are initialized to zero (no prior).
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5 Experiments

We evaluate the proposed approach on three real-world scenarios with dis-
tinct characteristics: human motion prediction (Human 3.6M dataset [14]), car-
mounted camera video prediction (train: KITTI dataset [7], test: CalTech Pedes-
trian dataset [5], and human activity prediction (UCF-101 dataset [29]). All
input pixel values are normalized to the range [0, 1]. For human motion and car-
mounted videos, the models are trained to use ten frames as input for predicting
the next frame. For the UCF-101 dataset, the input consists of four frames for
fair comparison to past work. Quantitative evaluation on the test sets is per-
formed based on mean Peak Signal-to-Noise Ratio (PSNR) and the Structural
Similarity Index Measure (SSIM) [37]1. These commonly used numerical mea-
sures are known to be not fully representative of human vision. Therefore, we
highly recommend looking at the visual results in Figs. 5 and 7.

Fig. 4. ContextVP-big (4 layers) architecture: Each layer contains 5 PMD units fol-
lowed by context blending block. Two skip connections are used, which simply con-
catenate outputs of two layers (layers 1 & 3, and 2 & 4). The output layer uses the
sigmoid activation function which outputs values in the range (0, 1). (·) indicates the
number of hidden units in each layer. The ContextVP-small architecture has half the
hidden units at each layer.

Network architecture: our best model architecture is illustrated in Fig. 4.
It consists of a stack of four context-aware layers with skip connections that
directly predicts the scaled RGB values of the next frame. All results are reported
for models using 3×3 convolutional kernels for all PMD units, identity activation
function in Eqs. 2 and 4 and training using L1 (p = 1 in Eq. 5) with GDL loss.
Changing to 5 × 5 size kernels, use of nonlinear activations (e.g., ReLU [23]
or tanh) or layer normalization [1] in the blending blocks does not affect the
performance in our experiments. Finn et al. [6] reported that L1 with the GDL
loss function performs better than L2 but their performance in our case was very
similar.

Baseline: our baseline (ConvLSTM20) is a network consisting of a stack of
20 ConvLSTM layers with kernels of size 3×3. The number of layers was chosen
1 Mean Squared Error (MSE) is also reported for the car-mounted camera video pre-

diction to compare with PredNet [21].
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to be 20 to cover a large context and also since each layer in our 4-layer model
consists of 5 PMD units. Two skip connections similar to our model were also
used. The layer sizes are choen to keep the number parameters comparable to our
best model (ContextVP4-WD-big). Surprisingly, this baseline outperforms
almost all state of the art models except Deep Voxel Flow [20] on the UCF-
101 dataset. Note that it is less amenable to parallelization compared to
ContextVP models where PMD units for different directions can be applied in
parallel.

Table 1. Results of ablation study on the Human3.6M dataset. The model is trained
on 10 frames and predicts the next frame. The results are averaged over test videos.
D indicates directional weight-sharing, and U and W indicate uniform and weighted
blending, respectively. Higher values of PSNR/SSIM and lower values of MSE indicate
better results.

Name # layers Blending type DWS PSNR SSIM # parameters

ContextVP1 1 Uniform (U) N 38.1 0.990 0.7M

ContextVP3 3 Uniform (U) N 41.2 0.992 1.6M

ContextVP4-U-big 4 Uniform (U) N 42.3 0.994 14.0M

ContextVP4-W-big 4 Weighted (W) N 44.8 0.996 14.2M

ContextVP4-WD-small 4 Weighted (W) Y 45.0 0.996 2.0M

ContextVP4-WD-big 4 Weighted (W) Y 45.2 0.996 8.6M

Table 2. Evaluation of Next-Frame Predictions on the Human3.6M dataset. All models
are trained on 10 frames and predicts the next frame. The results are averaged over test
videos.ConvLSTM20 is our baseline containing 20 ConvLSTM layers. Higher values
of PSNR and SSIM, lower values of MSE indicate better results. Our best models
(ContextVP4-WD: 4 layers with weighted blending and DWS) outperform our baseline
as well as current state-of-the-art methods with fewer number of parameters.

Method PSNR SSIM # parameters Time (s)

Copy-Last-Frame 32 - - -

BeyondMSE [22] 26.7 - 8.9 M -

PredNet [21] 38.9 - 6.9 M -

ConvLSTM20 44.1 0.995 9.0 M 0.153

ContextVP4-WD-small 45.0 0.996 2.0 M -

ContextVP4-WD-big 45.2 0.996 8.6 M 0.092
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5.1 Human Motion Prediction (Human3.6M dataset)

We first evaluate our model on Human3.6M dataset [15]. The dataset includes
seven human subjects (three females and four males). Five subjects are used for
training and the other two for validation and testing. The videos are subsampled
to 10 fps and downsampled to 64 × 64 resolution.

Ablation study: using this dataset, we evaluate the importance of various
components of our model: multiple layers, types of context blending, and DWS
regularization. Table 1 shows the results. We find that performance increases
substantially with number of layers, switch to W-blending, and addition of DWS.
ContextVP1, ContextVP3 and ContextVP4-U-big use U-blending and no DWS,
corresponding to direct adaptation of PyraMiD-LSTM for video prediction.

Comparison to other methods: Table 2 shows the comparison of the
prediction results with the Baseline ConvLSTM as well as PredNet [21], and
BeyondMSE [22]. Another baseline Copy-Last-Frame is included to show the
result of simply copying the last input frame. We do not compare to Finn et
al. [6] since their model was not trained for next-frame prediction. From Table 1,
it can be seen that single layer ContextVP already outperforms BeyondMSE
which uses 3D-CNN, and the three-layer ContextVP networks outperform Pred-
Net which uses ConvLSTM. Finally, four layer ContextVP networks with W-
blending and DWS outperform all approaches, even with much fewer parame-
ters (ContextVP4-WD-small). Increasing the model size (ContextVP4-WD-big)
brings a minor improvement in final performance.

Table 3. Evaluation of Next frame prediction on the CalTech Pedestrian dataset
(trained on the KITTI dataset). All models are trained on 10 frames and predicts
the next frame. The results are averaged over test videos. ConvLSTM20 is our base-
line containing 20 ConvLSTM layers. Higher values of PSNR and SSIM, lower values of
MSE indicate better results. (+) This score is provided by [19]. (*) The scores provided
in Lotter et al. [21] are averaged over nine frames (time steps 2–10 in their study), but
ours are computed only on the next predicted frame. We therefore re-calculated the
scores of PredNet using their trained network. Our best models (ContextVP4-WD: 4
layers with weighted blending and DWS) outperform the baseline as well as current
state-of-the-art methods with fewer number of parameters.

Method MSE (×10−3) PSNR SSIM # parameters Time (s)

Copy-Last-Frame 7.95 23.3 0.779 - -

+BeyondMSE [22] 3.26 - 0.881 - -

*PredNet [21] 2.42 27.6 0.905 6.9 M -

Dual Motion GAN [19] 2.41 - 0.899 113 M -

ConvLSTM20 2.26 28.0 0.913 9.0 M 0.447

ContextVP4-WD-small 2.11 28.2 0.912 2.0 M -

ContextVP4-WD-big 1.94 28.7 0.921 8.6 M 0.346
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Fig. 5. Qualitative comparisons from the test set among our best model (ContextVP4-
WD-big), the baseline (ConvLSTM20), and the state-of-the-art model (PredNet). All
models are trained for next-frame prediction given 10 input frames on the KITTI
dataset, and tested on the CalTech Pedestrian dataset.

5.2 Car-Mounted Camera Video Prediction (KITTI and CalTech
Pedestrian Dataset)

The model is trained on the KITTI dataset [7] and tested on the CalTech Pedes-
trian dataset [5]. Every ten input frames from “City”, “Residential”, and “Road”
videos are sampled for training resulting in ≈41 K frames. Frames from both
datasets are center-cropped and down-sampled to 128 × 160 pixels. We use the
exact data preparation as PredNet [21] for direct comparison.

The car-mounted camera videos are taken from moving vehicles and consist of
a wide range of motions. Compared to Human3.6M, which has static background
and small motion flow, this dataset has diverse and large motion of cars at
different scales and also has large camera movements. To make predictions for
such videos, a model is required to learn not only small movement of pedestrians,
but also relatively large motion of surrounding vehicles and backgrounds.

We compare our approach with the Copy-Last-Frame and ConvLSTM20
baselines as well as BeyondMSE, PredNet, and Dual Motion GAN [19] which are
the current best models for this dataset. Note that the scores provided in Lotter
et al. [21] are averaged over nine frames (time steps 2–10 in their study), but ours
are computed only on the next predicted frame. Therefore, we re-calculated the
scores of PredNet for the next frame using their trained network. As shown in
Table 3, our four layer model with W-blending and DWS outperforms the state-
of-the-art on all metrics. Once again, the smaller ContextVP network already
matches the baseline while being much smaller and more suitable for paral-
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lelization. Some samples of the prediction results from the test set are provided
in FIg. 5. Our model is able to adapt predictions to the current scene and make
sharper predictions compared to the baseline and PredNet.

Table 4. Evaluation of Next-Frame Predictions on the UCF-101 dataset. Models are
trained on four frames and predict the next frame. Results are averaged over test videos.
ConvLSTM20 is our baseline containing 20 ConvLSTM layers. (∗) Liu et al. [20] did not
provide the number of parameters but noted that their model has the same number
of parameters as BeyondMSE [22]. Higher values of PSNR and SSIM, lower values
of MSE indicate better results. For UCF-101 dataset, larger kernel size produces the
better prediction using fewer number of parameters. Our best models (ContextVP4-
WD: 4 layers with weighted blending and DWS) outperform the baseline as well as
current state-of-the-art methods with fewer number of parameters.

Method PSNR SSIM # parameters Time (s)

BeyondMSE [22] 32 0.92 8.9 M -

MCnet+RES [34] 31 0.91 14 M -

DVF [20] 33.4 0.94 ≈8.9 M∗ -

ConvLSTM20 32.9 0.91 9.0 M 0.499

ContextVP4-WD-small 34.7 0.92 2 M -

ContextVP4-WD-big 34.9 0.92 8.6 M 0.474

5.3 Human Action Prediction (UCF-101 Dataset)

The last dataset we test on is UCF-101 [29] consisting of videos from YouTube.
Although many videos in this dataset contain small movements between frames,
they contain much more diversity in objects, backgrounds and camera motions
compared to previous datasets. Our experimental setup follows that of Mathieu
et al. [22]. About 500 K training videos are selected from the UCF-101 training
set, and 10% of UCF-101 test set is used for testing (378 videos). All frames are
resized to 256× 256. Note that Mathieu et al. used randomly selected sequences
of 32× 32 patches from the Sports-1M dataset [17] for training since the motion
between frames in the UCF-101 dataset are too small to learn dynamics. Our
model however, is directly trained on UCF-101 subsequences of length four with
the original resolution. Motion masks generated using Epicflow [27] provided by
Mathieu et al. are used for validation and testing, so the evaluation is focused
on regions with significant motion when computing PSNR and SSIM.

Table 4 presents the quantitative comparison to the baseline as well as four
best results from past work: adversarial training (BeyondMSE; [22]), the best
model from Villegas et al. (MCnet+RES; [34]), and Deep Voxel Flow (DVF;
[20]). The results are similar to previous datasets: even at much smaller size, the
four layer ContextVP network outperforms the baseline and other methods, and
increasing the model size brings a small improvement in score. However, it does
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not outperform DVF on SSIM score. These results shows that small ContextVP
models can capture relevant spatial-temporal information and use it to make
sharp predictions in very diverse settings without requiring adversarial training.

Fig. 6. Comparison of multi-step prediction on UCF101: our best models (ContextVP),
Villegas et al. (MCnet+RES; [34]), and 20-layer ConvLSTM baseline. Given 4 input
frames, the models are trained for next-frame prediction and tested to predict 8 frames
recursively.

Multi-Step Prediction: Figure 6 compares multi-step prediction results of
our models with the baseline (ConvLSTM20), MCnet+RES, and BeyondMSE.
Given four frames, all networks were trained for single frame prediction and
scored on the test set by predicting eight frame recursively. Our small and big
models perform very similarly according to PSNR, but the SSIM score for fur-
ther predictions are better for the smaller model. Qualitative comparisons are
presented in Fig. 7. In the first video, ContextVP produces clear predictions for
the subject’s face and fewer motion artifacts for the black object, as opposed to
other methods. In the second video, more details of the rider and the horse are
preserved by ContextVP.

6 Conclusion and Future Directions

This paper identified the issue of missing context in current video prediction
models, which contributes to uncertain predictions about the future and leads
to generation of blurry frames. To address this issue, we developed a novel pre-
diction architecture that captures all of the relevant context efficiently at each
layer. It outperformed existing approaches for video prediction in a variety of
scenarios, demonstrating the importance of fully context-aware models.

We did not incorporate other recent ideas for improve video prediction such
as explicit background/motion flow modeling, or adversarial training. Since these
have been previously explored for models with incomplete context, a promising
future direction is to evaluate their influence on fully context-aware models. Our
work suggests that full context coverage should be a required feature of any
video prediction baseline to rule out multiple sources of uncertainty.
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Fig. 7. Qualitative comparisons from the UCF-101 test set among our best model
(ContextVP4-WD-big), the baseline (ConvLSTM20), and the state-of-the-art model
(MCNet). All models are trained for next-frame prediction given 4 input frames. They
are then tested to recursively predict 8 future frames (see also Fig. 6).
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