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Abstract. Multi-codebook quantization (MCQ) is the task of express-
ing a set of vectors as accurately as possible in terms of discrete entries in
multiple bases. Work in MCQ is heavily focused on lowering quantization
error, thereby improving distance estimation and recall on benchmarks
of visual descriptors at a fixed memory budget. However, recent studies
and methods in this area are hard to compare against each other, because
they use different datasets, different protocols, and, perhaps most impor-
tantly, different computational budgets. In this work, we first benchmark
a series of MCQ baselines on an equal footing and provide an analysis of
their recall-vs-running-time performance. We observe that local search
quantization (LSQ) is in practice much faster than its competitors, but is
not the most accurate method in all cases. We then introduce two novel
improvements that render LSQ (i) more accurate and (ii) faster. These
improvements are easy to implement, and define a new state of the art
in MCQ.

1 Introduction

The focus of this work is multi-codebook quantization (MCQ), an approach to
vector compression analogous to k-means clustering, where cluster centres arise
from the combinatorial combination of entries in multiple codebooks. Modern
systems for very large-scale approximate nearest neighbour (ANN) search typi-
cally rely on a data structure that shortlists candidates, followed by search using
the compressed representation obtained from a variant of MCQ [5,16,17,32].

Systems for efficient large-scale search in high-dimensional spaces have impor-
tant applications to prominent problems in machine learning and computer
vision. For example, Mussman et al. [24] use Gumbel variables to randomly
perturb nearest neighbour queries and accelerate learning and inference in log-
linear models. Douze et al. [11] use a large-scale similarity graph constructed via
MCQ to improve learning in deep “low-shot” models. Guo et al.[14] use an MCQ-
based system to achieve state-of-the-art performance in maximum inner product
search (MIPS), and accelerate large-scale recommender systems. Finally, Blalock
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and Guttag [7] use MCQ to reduce memory usage and accelerate large-scale data
mining applications.

MCQ is an optimization problem over two latent variables that approxi-
mate a given dataset: the codebooks and the codes (i.e., the assignments of the
data to those codebooks). The error of this approximation provides a bound for
Euclidean distance and dot-product approximations in ANN and MIPS. There-
fore, finding optimization methods that achieve low-error solutions is crucial for
improving the performance of MCQ applications.

In similarity search, our goal is often to tackle very large datasets, so it
is important that the optimization techniques scale gracefully – consider, for
example, the case where one wants to index one billion vectors using the classical
inverted file (IVF) [17]. An IVF partitions the dataset into K disjoint cells
and learns a quantizer for each subset. Typically, K ∈ {212, 213}, so one has
to run the training method 4 096–8 192 times. If a method takes one hour to
run, then one has to wait roughly 6–12 months for training to complete. On
the other hand, if a method has a running time of one minute, then the total
wait time is reduced to roughly 3–6 days.1 Unfortunately, running time is often
not reported in recent work on MCQ. Here, we focus on characterizing recent
methods for MCQ in terms of their running time vs accuracy trade-off, and
introduce novel improvements in both speed and accuracy to LSQ, a state-of-
the-art MCQ method.

Problem formulation. MCQ is the task of finding a set of codes B and (mul-
tiple) codebooks C that minimize quantization error on a given dataset X. Our
objective is to determine

min
C,B

‖X − CB‖2F , (1)

where X ∈ R
d×n contains n d-dimensional vectors, and C = [C1, C2, . . . , Cm] ∈

R
d×mh is composed of m subcodebooks Ci ∈ R

d×h, with d dimensions and h
entries each. Finally, B = [b1,b2, . . . ,bn] ∈ {0, 1}mh×n contains n binary codes,
each with m entries bi,j ∈ {0, 1}h that select one entry from a different codebook
bi = [bi,1,bi,2, . . . ,bi,m]�; in other words, ‖bi,j‖0 = 1 and ‖bi,j‖1 = 1.

MCQ is useful for large-scale ANN search because, in this representation, the
Euclidean distance between a query vector q and a compressed database vector
xi ≈ x̂i =

∑m
j=1 Cjbi,j , can be computed using the expansion

‖q − x̂i‖22 = ‖q‖22 − 2 ·
m∑

j=1

〈q, Cjbi,j〉 + ‖x̂i‖22. (2)

When searching for nearest neighbours, the first term can be ignored, as it
is constant for all database vectors; the second term can be computed with m

1 While in an IVF each cell can be learned in parallel, an argument similar to ours
can be made for overall compute. Compute time means energy, and means money.
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lookups in precomputed dot-product tables, and it is typical to use one extra
codebook to quantize the third (scalar) term. Note that, when MCQ is used to
approximate dot-products (e.g., in MIPS) or convolutions, it is not necessary to
store the norm of the encoded vector, and the full memory budget can be used
to improve the quality of the approximation.

We typically set h = 256 [3,12,17,21,27,34], which means that each index
into a codebook can be stored using 8 bits. Thus, if we use m = {7, 15} code-
books, and set aside an extra table for storing the norm of the approximation
with h = 256 entries as well, the memory used per vector is only 64 (resp. 128)
bits.

2 Related Work

Early work in MCQ adopted orthogonal codebooks [12,17,26], which consider-
ably simplifies the problem and leads to very scalable solutions, at the expense
of accuracy. More recent work has focused on using non-orthogonal codebooks,
which increase accuracy but also result in increased computational costs, deter-
ring their wider adoption. For example, the recently released FAISS library2 [18]
implements only orthogonal MCQ techniques. In this work, we aim to better
characterize and understand recent work in MCQ, with the goal of accelerating
and improving the performance of non-orthogonal MCQ techniques.

Non-orthogonal MCQ. Chen et al. [9] introduced non-orthogonal codebooks
for MCQ and proposed residual vector quantization (RVQ), a greedy optimiza-
tion method that runs k-means on each codebook in a sequential manner. Later,
Ai et al. [1] and Martinez et al. [22] independently proposed enhanced RVQ and
resp. stacked quantizers (SQ), a refinement of RVQ that obtains lower quantiza-
tion error, but maintains the same encoding complexity.

Babenko and Lempitsky [3] proposed additive quantization (AQ), which uses
an expectation-maximization (EM)-like approach for optimization. The authors
used beam search for updating the codes, and a conjugate gradient method for
the codebook update step. Although unaware of RVQ, this paper has proven
influential due to its insights and proper characterization of the hard combina-
torial problems that arise in non-orthogonal MCQ. Later, Martinez et al. [21]
introduced local search quantization (LSQ), an encoding method based on iter-
ated local search [19] with iterated conditional modes (ICM), which improves
upon the accuracy vs computation tradeoffs of the beam search method of AQ,
leading to overall higher recall. Initialization consists of OPQ followed by a sim-
pler version of optimized tree quantization (OTQ) [4].

Zhang et al. [34] proposed composite quantization (CQ), which minimizes
quantization error but also penalizes the deviation of cross-codebook terms from

2 https://github.com/facebookresearch/faiss

https://github.com/facebookresearch/faiss


LSQ++: Lower Running Time and Higher Recall 511

Table 1. Comparison between CQ and LSQ on SIFT1M using 64 bits.

Trained on Init + train Base encoding Total R@1

CQ [34] (C++) base set 4.5 h – 4.5 h 0.290

CQ [34] (C++) learn set 42m 10 s 42.2 m 0.162

LSQ [21] (Julia, C++) learn set 9.1 m 4.35 m 13.5 m 0.294

an (also latent) constant. The method is also EM-like, and the authors use ICM
for the encoding step, and the L-BFGS [25] solver for the codebook update step.
Initialization consists of PQ followed by unconstrained MCQ (Expression 1).

Finally, Ozan et al. [27] introduced competitive quantization (CompQ), a
method that updates the codebooks with stochastic gradient descent (SGD),
and updates the codes using beam search within a search space whose size is
controlled by a hyperparameter that trades-off accuracy and computation.

3 Comparative Perfomance Evaluation

While recent work has used different experimental setups, fortunately all studies
have reported results on the SIFT1M dataset at 64 bits. Thus, first we focus
on comparing the three methods that report the best results on this dataset:
CQ [34] (R@1 of 0.290), LSQ [21] (R@1 of 0.298) and CompQ [27] (R@1 of
0.352). We measure all our timings on a desktop with an 8-core i7-7700K CPU
@4.20 GHz, 32 GB of RAM and an NVIDIA Titan Xp GPU.

LSQ vs composite quantization (CQ). For LSQ, we use as a starting point
the publicly available implementation due to Martinez and Clement,3 written in
Julia [6]. For CQ, we use the recently released implementation due to Zhang4.
This release is written in multithreaded C++, and uses the heavily optimized
libraries MKL (for matrix operations) and libLBFGS (for codebook update).

We let CQ use m = 8 codebooks and LSQ use m = 7 codebooks, plus an
extra codebook for the database norms. This means that both methods have the
same query time and use the same amount of memory. We run both methods
for 30 iterations, and use all the default hyperparameters as provided in their
respective code releases. To make the comparison more fair, we have ported OTQ
and LSQ encodings to C++ with OpenMP multithreading. These methods are
called from Julia, and we leave the rest of the code untouched.

The results reported by Zhang et al. [34] on SIFT1M were trained on the
base set. SIFT1M is provided with a learn set, and the more common protocol
is to learn the model parameters exclusively on the learn set [1,3,9,12,17,21,22,
26,27,35]. Thus, we also run the method limiting its parameter learning to the
learn set.
3 https://github.com/una-dinosauria/local-search-quantization
4 https://github.com/hellozting/CompositeQuantization

https://github.com/una-dinosauria/local-search-quantization
https://github.com/hellozting/CompositeQuantization
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We report the results of our experiments on Table 1. LSQ achieves slightly
higher recall than CQ when CQ is trained on the base set, but LSQ has an
overall 20× faster running time. The running time of CQ decreases drastically
when we train it on the learn set, but the learned parameters do not generalize
well to the base set (R@1 of 0.162). On the LabelMe22K and MNIST datasets
(which traditionally do not have a learn partition), we have observed that LSQ
consistently achieves higher recall than CQ with roughly 10× faster running
times. From these results, we conclude that LSQ is faster, more accurate, and
more sample-efficient (i.e., it requires less training data) than CQ.

LSQ vs competitive quantization (CompQ). Since there is no publicly
available implementation of CompQ, we have tried to reproduce the reported
results ourselves, with moderate success. We have not, for example, been able
to reproduce the transform coding initialization reported in the paper, but have
instead used RVQ, which was reported to achieve slightly worse results. We
obtained a R@1 of 0.346 using a beam search width of 32, and training for
250 epochs (the parameters of the best reported result). The small difference in
recall may be attributed to our different initialization.

However, the largest barrier to experimentation on our side is that our
CompQ implementation, written in Julia, takes roughly 40 min per epoch to
run. This means that our experiment on SIFT1M with 64 bits took almost one
week to finish. We contacted the CompQ authors, and they mentioned using a
multithreaded C++ implementation with pinned memory, an ad-hoc sort imple-
mentation, and special handling of threads. Their implementation takes 551 s
per epoch, or about 38 h (∼1.5 days) in total for 250 epochs on a desktop with a
10-core Xeon E5 2650 v3 @2.3 GHz CPU. We compare CompQ to LSQ using our
multithreaded C++ implementation (same as in Table 1). We also use m = 8
codebooks in total, which controls for query time and memory use with respect
to CompQ. We train for 25 iterations in total, and again use all the default
parameters of LSQ.

Table 2. Comparison between CompQ and LSQ on SIFT1M using 64 bits.

Iters Init Training Base encoding Total R@1

CompQ [27] (C++) 250 – – – 38 h 0.352

LSQ [21] (Julia, C++) 25 2.6 m 6.34 m 5.8 m (32 iters) 15.2 m 0.340

LSQ [21] (Julia, CUDA) 25 1.1 m 2.8 m 29 s (32 iters) 4.4 m 0.340

LSQ and CompQ live on opposite sides of the parallelism spectrum: while
CompQ uses stochastic gradient descent (SGD) with a batch size of 1, and is thus
primarily sequential, LSQ is EM-like, so it is very amenable to parallelization.
This means that CompQ is unlikely to benefit from a GPU implementation, as
these require fairly large batch sizes to deliver higher throughput than CPUs
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(in fact, using large batch sizes to accelerate the training of large deep neural
networks with SGD is an active area of research [13,29]). To further explore the
consequences of this algorithmic trade-off, we used the publicly available CUDA
implementation of LSQ encoding [23] to accelerate training and base processing.
We also implemented OTQ encoding in CUDA.

We report the results of our experiments on Table 2. Our C++ implementa-
tion of LSQ is about 150× faster than CompQ and, when using a GPU, LSQ
achieves roughly a 500× speedup over CompQ. However, the recall of LSQ lags
by 0.012 behind CompQ. Further research into CompQ may focus on finding
ways to increase its batch size, so that it can leverage modern GPUs.

Improving LSQ: Desiderata. In the light of these results, we suggest the
following criteria to improve LSQ:

(a) First, we would like to make LSQ more accurate, so that it can narrow the
gap with (and ideally, surpass) CompQ in terms of recall.

(b) Second, we would like to maintain the parallelism of LSQ, because it is a
distinctive feature that makes it fast in practice.

(c) Finally, because LSQ is faster than its competitors, we want to find ways to
trade-off running time for accuracy. To make this trade-off more attractive
in practice, we would also like to decrease LSQ’s overall running time.

Next, we propose improvements to LSQ that satisfy all these criteria.

4 Lower Running Time with a Fast Codebook Update

While benchmarking LSQ using a GPU, we noticed that the codebook update
step is the most computationally expensive part of LSQ. This is somewhat coun-
terintuitive, because encoding has historically been identified as the bottleneck
in MCQ [3,21]. However, recent hardware and algorithmic improvements have
upended this idea. In particular, out of the 2.8 min of training time for LSQ
with m = 8 codebooks and 25 iterations (last row of Table 2), 2.34 min are spent
updating the codebook C. Thus, decreasing the running time of the codebook
update step would significantly decrease the overall running time of LSQ. For-
mally, the codebook update step amounts to determining

min
C

‖X − CB‖2F ; (3)

the current state-of-the-art method for this step was originally proposed by
Babenko and Lempitsky [3], who noticed that finding C corresponds to a least-
squares problem where C can be found independently in each dimension. Since
B can be seen as a very sparse matrix, the authors proposed using iterative con-
jugate gradient (CG) methods in this step. This has the additional advantage
that B can be reused for the d problems that finding C decomposes into. We
have identified two problems with this approach:
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1. Explicit sparse matrix construction is inefficient. CG APIs typically
require that B be represented as an explicit sparse matrix. Although efficient
data structures for sparse matrices exist (e.g., the compressed sparse row of
numpy), in practice, B is stored as an m × n uint8 matrix. We would like to
use this representation and avoid using an additional data structure.

2. Failure to exploit the binary nature of B. The matrix B is composed
exclusively of ones and zeros (i.e., it is binary). Data structures used for sparse
matrices are commonly designed for the general case when the non-zero entries
are arbitrary real numbers, leaving room for additional optimization.

Direct codebook update. We now introduce a method for fast codebook
update, which takes advantage of these two observations. First, we note that it is
possible to use a direct method instead of iterative CG, by rewriting Expression 3
as a regularized least-squares problem:

min
C

‖X − CB‖2F + λ‖C‖2F . (4)

In this case, the optimal solution can be obtained by taking the derivative with
respect to C and setting it to zero

C = XB�(BB� + λI)−1. (5)

While we are not interested in a regularized solution, we can still benefit from this
formulation by setting λ to a very small value (λ = 10−4 in our experiments),
which simply renders the solution numerically stable. A crucial advantage of
this formulation is that the matrix BB� + λI ∈ R

mh×mh is square, symmetric,
positive-definite and fairly compact; notably, its size is independent of n. Fur-
thermore, thanks to regularization, BB�+λI is guaranteed to be full-rank. Thus,
matrix inversion can be performed directly with the help of a Cholesky decom-
position in O(m3h3) time. Because matrix inversion is efficient, the bottleneck
of our method lies in computing BB� ∈ N

mh×mh, as well as XB� ∈ R
d×mh.

We exploit the structure in B to accelerate both operations.

Computing BB�. By indexing B across each codebook, B = [B1, · · · , Bm]�,
BB� can be written as a block-symmetric matrix composed of m2 blocks of size
h × h each:

BB� =

⎡

⎢
⎢
⎢
⎣

B1B
�
1 B1B

�
2 . . . B1B

�
m

B2B
�
1 B2B

�
2 . . . B2B

�
m

...
...

. . .
...

BmB�
1 BmB�

2 . . . BmB�
m

⎤

⎥
⎥
⎥
⎦

. (6)

Here, the diagonal blocks BNB�
N are diagonal matrices themselves, and since

B is binary, their entries are a histogram of the codes in BN . Moreover, the
off-diagonal blocks are the transpose of their symmetric counterparts: BNB�

M =
(BMB�

N )�, and can be computed as bivariate histograms of the codes in BM

and BN . Using these two observations, this method takes O(m2n) time, while
computing BB� näıvely would take O(m2h2n).
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Computing XB�. We again take advantage of the structure of B to accelerate
this step. XB� can be written as a matrix of m blocks of size d × h each,

XB� = [XB�
1 ,XB�

2 , . . . , XB�
m]. (7)

Each block XB�
i can be computed by treating the B�

i columns as binary vectors
that select the columns of X to sum together. This method takes O(mnd) time,
while computing XB� naively would take O(mhnd).

Codebook update in CQ. Zhang et al. [34] propose a formulation similar to
Eq. 5 for codebook update, which they use to warm-start the CQ optimization
process, but do not introduce regularization. Since BB� is not guaranteed to
have full rank, the authors use SVD for computing its inverse, disregarding
solution components associated with small singular values. They also did not
exploit the sparsity in B to compute the other terms of the solution. In our
experiments, their method takes more than a minute to run, while our solution
runs in well under a second.

5 Higher Recall with Stochastic Relaxations

Our goal in this Section is to make LSQ more accurate, while maintaining the
high level of parallelism and speed that it already enjoys in practice. To this
end, we note that LSQ is fast because its optimization process is EM-like, which
allows it to take advantage of highly parallel architectures. However, a well-
known problem with such EM-like approaches is their tendency to converge to
local minima. We also note that MCQ is analogous to k-means clustering (with
combinatorial codebooks). Many years of research into k-means have resulted in
a number of improvements to the original Lloyd’s algorithm (e.g., k-means++
initialization [2], or cluster closures for faster encoding [31]), so we look into the
literature for methods that may be adapted to improve MCQ.

5.1 Stochastic relaxations

A stochastic relaxation (SR), as formalized by Zeger et al. [33] in the early 1990s,
is a method that defines an approximation to simulated annealing, with the idea
of improving the quality of an approximation at reasonable computational costs.
The idea was originally proposed to improve k-means clustering, and here we
revisit and adapt it for MCQ.

Broadly defined, simulated annealing (SA) is a classical stochastic local
search (SLS) technique that iteratively works in 3 major steps: (1) define an
optimization state s, (2) create a new state s′ by randomly perturbing the cur-
rent state: s′ = π(s), and (3) decide whether to reject or accept the new state as
the basis for the next perturbation (for a broad review of the subject, see [15]).
The acceptance probability in Step 3 is controlled by a parameter traditionally
called temperature, which is typically slowly decreased over many iterations of



516 J. Martinez et al.

Steps 2 and 3. (Various temperature schedules have been proposed and used in
the many applications of simulated annealing). A stochastic relaxation modi-
fies some of the typical SA steps in order to make them more computationally
efficient. We now define these three steps for our method.

Defining a SA state: A functional view of MCQ. As a first step, we
formally define an optimization state in MCQ. Expression 1 is defined over two
latent variables, C and B. We assume that the optimization state is fully deter-
mined given a single variable, either C or B, which fully specifies the other via
a pre-defined function. Thus, we define

– an encoder function C(X,B) → C, and
– a decoder function D(X,C) → B.

In our case, C amounts to the codebook-update step, for which we adopt the
method described in Sect. 4. Similarly, D amounts to updating the codes B; in
this case, we simply adopt the encoding method of LSQ. We have defined the
optimization state of MCQ in two ways, which will give rise to two SR methods.
The first method, called SR-C, uses the encoder function C, and the second
method, called SR-D, uses the decoder function D.

Perturbing the SA state. The next step is to define a way to perturb the
SA state at time-step i. We define two perturbation methods, one for SR-C and
one for SR-D. Since we have defined the state as fully-determined given either
variable via a proxy function, we can perturb the state by simply perturbing the
corresponding function used in SR-C or SR-D. We define the functions

– C∗ := C(πC(X, i), B) → C for SR-C, and
– D∗ := D(X,πD(C, i)) → B for SR-D.

πC(X, i) → X + T (i) · ε amounts to adding noise ε to X, according to a
predefined temperature schedule T (i). We choose to sample the noise from a zero-
mean Gaussian with a diagonal covariance proportional to X; in other words,
ε ∼ N(0, Σ), where Σ = diag(cov(X)).

A major difference between k-means and MCQ is that, in MCQ, we use
multiple codebooks. This difference is particularly important in SR-D, where
the noise affects C, which represents m different codebooks. Since the centroids
are obtained by summing one entry from each codebook, perturbing C amounts
to perturbing the centroids m times. We thus define the perturbation function
for SR-D slightly differently: πD(C, i) → C + (T (i)/m) · ε. In other words, we
multiply the noise by factor of 1/m in SR-D.

Temperature schedule. In simulated annealing, it is common to gradually
reduce the temperature, which controls the probability of accepting a new state
(the so-called Metropolis-Hastings criterion). In SR, following Zeger et al. [22],



LSQ++: Lower Running Time and Higher Recall 517

Algorithm 1 EM-like approach to MCQ [3,21]
1: function LSQ(X, I)
2: B ← initialization(X)
3: i ← 1 � Iteration counter
4: while i ≤ I do
5: C ← argminC ‖X − CB‖2

F � Codebook update
6: B ← argminB ‖X − CB‖2

F � Encoding step
7: i ← i + 1
8: end while
9: return C, B

10: end function

we instead use the temperature to control the amount of noise added in each
time-step. We use the schedule

T (i) → (1 − (i/I))p , (8)

where I is the total number of iterations, i represents the current iteration, and
p ∈ (0, 1] is a tunable hyper-parameter. We have found that a value of p = 0.5
produces good results, and we use this parameter in all our experiments.

Acceptance criterion. The final building block of SA is an acceptance cri-
terion, which decides whether the new (perturbed) state will be accepted or
rejected. Following Zeger et al., we always accept the new state. As we will
show, this simple criterion gives excellent results in practice.

Recap. To summarize, we have introduced two algorithms that define crude
approximations to simulated annealing: SR-C and SR-D. These approximations
are extremely simple to implement. To highlight this simplicity, we summarize
the EM-like approach to MCQ in Algorithm1; notice that

– SR-C follows Algorithm 1 exactly, except that line 5 is replaced by
C ← argminC‖πC(X, i) − CB‖2F , and

– SR-D follows Algorithm 1 exactly, except that line 6 is replaced by
B ← argminB‖X − πD(C, i)B‖2F .

In other words, SR-C and SR-D amount to adding noise in different parts
of the EM-like MCQ optimization pipeline, but the workhorse functions that
perform the codebook-update, as well as the encoding encoding step, remain
unchanged. This has multiple advantages. On one hand, this means that we
can fully maintain the parallelism of LSQ. On the other hand, if in the future
better codebook-update or encoding functions are found, they can be seamlessly
integrated into our pipelines. Finally, we note that our methods involve only
minimal computational overhead, as they only require the computation of the
covariance of either X (which can be computed once and re-used many times
in SR-C), or C, which is a compact variable independent of n. In practice, this
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overhead is negligible: <0.1 s for SR-C, and <0.01 s for SR-D. We refer to the
combination of SR and fast codebook update as LSQ++.

6 Experimental Evaluation

We quantify the impact of our codebook update method by measuring the time
it saves per LSQ iteration (i.e., between lines 4 and 8 in Algorithm1), and with
a head-to-head large-scale evaluation against conjugate gradient (CG) methods.
We also measure the impact of SR-C and SR-D by reporting recall@N.

Datasets. We evaluate our contributions on five datasets. The first two datasets
are LabelMe22K [28] and MNIST. These datasets were originally created for
classification, and have only two partitions (training/test). We learn both B and
C on the training set, and use the test set as queries. LabelMe22K has d = 512
dimensions, 20 019 training vectors, and 2 000 queries. MNIST has d = 784
dimensions, 60 000 training vectors, and 10 000 queries.

The other three datasets are SIFT1M [17], Deep1M and VGG (called “Con-
vnet1M” in [21]). SIFT1M is a classical retrieval dataset of SIFT [20] features.
We have put together the Deep1M dataset, by sampling from the 10 million
example set provided with the recently introduced Deep1B dataset [5]. These
vectors come from the last convolutional layer of a GoogLeNet v3 [30] network,
and have been PCA-projected to 96 dimensions. The VGG dataset consists of
vectors from the CNN-M-128 network of Chatfield et al. [8] evaluated on Ima-
genet [10] images. These datasets have three partitions: train, query and base.
We follow the standard protocol, which uses the train set to learn the codebooks
C, and then uses those codebooks to encode the base set (i.e., obtain B); we
then use the query set to find approximate nearest neighbours in the compressed
base set [1,3,9,12,17,21,22,26,27]. SIFT1M and VGG have d = 128 dimensions,
and Deep1M has d = 96 dimensions. The three datasets have 100 000 training
vectors, 1 M base vectors, and 10 000 queries.

Table 3. Total time per LSQ/LSQ++ iteration, depending on how we update C (CG
or Cholesky), and how we update B (using a C++ or a CUDA implementation).

64 bits 128 bits

SIFT1M CG Chol CG Chol

Julia, C++ 14.2 s 5.6 s 38.5 s 22.5 s

Julia, CUDA 6.8 s 1.2 s 20.3 s 4.3 s

64 bits 128 bits

Deep1M CG Chol CG Chol

Julia, C++ 9.5 s 7.2 s 30.7 s 24.2 s

Julia, CUDA 3.3 s 1.0 s 10.6 s 4.1 s

6.1 Fast Codebook Update

We show the time savings obtained due to our codebook update method
on Table 3. Our method saves anywhere from 2.3 (Deep1M, 64 bits) to 16 s
(SIFT1M, 128 bits) of training time per iteration. This has a bigger impact when
encoding is GPU-accelerated, as it results in 2.2–5.6× speedups in practice.
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Large-scale experiments. On Fig. 1, we show a “stress-test” comparison
between our method for fast codebook update and CG, using dataset sizes of
n = {104, 105, 106, 107}. We take the first n training vectors from the SIFT1B [17]
and Deep1B [5] datasets, and generate a random B. This is a specially easy case
for CG, and it takes only 2–3 iterations to converge. Even in this case, our
method is orders of magnitude faster than previous work, and stays under 10 s
in all cases, while CG takes up to 700 s for n = 107. Our method is only slower
on small training sets due to the complexity of matrix inversion, which is inde-
pendent of n.

Fig. 1. Time for codebook update as a function of dataset size with up to 107 vectors.

6.2 Stochastic Relaxations

To evaluate our second contribution, we report recall@1, which represents the
empirical probability, computed over the query set, that the actual nearest neigh-
bour of the query is returned as the first retrieved entry. We run every method
ten times on each dataset and report the average result to account for the ran-
domness in recall.

We compare our contributions against the classical orthogonal MCQ methods
PQ [17] and OPQ [12,26], as well as the more recent RVQ [9], ERVQ [1,22],
CQ [34], and LSQ [21]. All methods use the same memory budget (64 or 128 bits
per vector), the same codebook size of h = 256, and require the same number
of table lookups to approximate a distance, so their query times are comparable
as well. We run all the methods for 25 iterations.

Recall@1. Figures 2 and 3 show the recall@1 obtained by different methods as
a function of time. We observe that SR-D obtains higher recall than LSQ in all
datasets, and for both 64 and 128 bits, except for SIFT1M at 128 bits. Our fast
codebook update method makes optimization faster than LSQ in all cases.

SR-C shows a more interesting behaviour. When using 64 bits, the method
either gives a small boost to LSQ, or has a small detrimental effect
(LabelMe22K). However, when using 128 bits, the method underperforms LSQ in
all datasets, except for Deep1M and VGG. We find this result rather interesting,
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Fig. 2. Recall@1 as a function of time in the MNIST and LabelMe datasets.

as it suggests that SR-C is better suited for deep features, which currently dom-
inate a number of machine learning and computer vision applications. However,
its performance on more classical benchmarks is somewhat disappointing.

We also note that, once we account for query time by dedicating one codebook
to store the database norms, RVQ [9] and ERVQ/SQ [1,22] tend to perform
worse than PQ and OPQ – the only exception being the Deep1M and VGG
datasets again. Previous work controlled only for memory use (with increased
query time), so this detail was not obvious from previous benchmarks.

Finally, we also observe that CQ fails to generalize when trained on the learn
set, as is the standard protocol for SIFT1M. The method, however, performs
well on LabelMe and MNIST, which do not have a separate learning set. This is
in line with our preliminary analysis, and suggests that CQ needs more training
data (which implies more training time) to generalize well.

Software. For our experiments, we wrote Rayuela.jl, a library that implements
PQ, OPQ, OTQ, RVQ, ERVQ, CompQ, LSQ and LSQ++ in Julia, with C++
and CUDA bindings for OTQ and LSQ/LSQ++ encoding – we do not include
CQ, because we want to release our library under an MIT licence, and the CQ
code, released under GPLv2, does not allow for stricter sublicensing. We believe
that Rayuela.jl is the most comprehensive library of MCQ methods to date.
Rayuela.jl is available at https://github.com/una-dinosauria/Rayuela.jl.

Comparison to CompQ. In Table 4, we update the benchmark against
CompQ. Out of the box, LSQ++ (with SR-D) manages to reduce the gap to
CompQ by half, from 0.012 to 0.006, and is also faster due to the faster codebook
update.

https://github.com/una-dinosauria/Rayuela.jl
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Fig. 3. Recall@1 as a function of time in the SIFT1M, Deep1M and VGG datasets.

We iteratively double the computational budget of LSQ++ (trading off com-
putation for accuracy), and bring the difference in recall to 0.001 with 100 train-
ing iterations and 128 Base encoding ILS iterations. Doubling the budget of this
final step puts our method above CompQ by 0.001 in R@1. Even under these
circumstances, LSQ++ is still 200× faster than CompQ.

Table 4. Comparison between CompQ, LSQ and LSQ++ on SIFT1M using 64 bits.

Iters Init Training Base encoding Total R@1

CompQ [27] (C++) 250 – – – 38 h 0.352

LSQ [21] (Julia, CUDA) 25 1.1 m 2.8 m 29 s (32 iters) 4.4 m 0.340

LSQ++ (Julia, CUDA) 25 1.1 m 33 s 29 s (32 iters) 2.1 m 0.346

LSQ++ (Julia, CUDA) 50 2.2 m 1.1 m 58 s (64 iters) 4.3 m 0.348

LSQ++ (Julia, CUDA) 100 4.4 m 2.2 m 1.9 m (128 iters) 8.5 m 0.351

LSQ++ (Julia, CUDA) 100 4.4 m 2.2 m 3.9 m (256 iters) 10.5 m 0.353

7 Conclusions

We have benchmarked recent non-orthogonal MCQ algorithms and have found
that (1) LSQ [21] is considerably faster than its competitors, (2) LSQ lags in
accuracy behind CompQ, and (3), when using a GPU, the computational bot-
tleneck of LSQ is, somewhat counterintuitively, the codebook update step.
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Based on these observations, we have introduced two stochastic relaxation
methods for MCQ that provide inexpensive approximations to simulated anneal-
ing, a technique widely used for hard combinatorial problems. One of these meth-
ods (SR-D) consistently improves recall in LSQ at negligible computational cost.
We have also introduced a method for fast codebook updates that results in faster
training. Both of our contributions can be used as out-of-the-box improvements
on top of LSQ and are simple to implement. Furthermore, these two contribu-
tions increase the gap in running time between LSQ and its competitors, and
account for the difference in accuracy between LSQ and CompQ [27].
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