
Look Before You Leap: Bridging
Model-Free and Model-Based
Reinforcement Learning for

Planned-Ahead Vision-and-Language
Navigation

Xin Wang, Wenhan Xiong(B), Hongmin Wang, and William Yang Wang

University of California, Santa Barbara, USA
{xwang,xwhan,hongmin wang,william}@cs.ucsb.edu

Abstract. Existing research studies on vision and language grounding
for robot navigation focus on improving model-free deep reinforcement
learning (DRL) models in synthetic environments. However, model-free
DRL models do not consider the dynamics in the real-world environ-
ments, and they often fail to generalize to new scenes. In this paper,
we take a radical approach to bridge the gap between synthetic stud-
ies and real-world practices—We propose a novel, planned-ahead hybrid
reinforcement learning model that combines model-free and model-based
reinforcement learning to solve a real-world vision-language navigation
task. Our look-ahead module tightly integrates a look-ahead policy model
with an environment model that predicts the next state and the reward.
Experimental results suggest that our proposed method significantly out-
performs the baselines and achieves the best on the real-world Room-to-
Room dataset. Moreover, our scalable method is more generalizable when
transferring to unseen environments.

Keywords: Vision-and-language navigation
First-person view video · Model-based reinforcement learning

1 Introduction

It is rather trivial for a human to follow the instruction “Walk beside the out-
side doors and behind the chairs across the room. Turn right and walk up the
stairs...”, but teaching robots to navigate with such instructions is a very chal-
lenging task. The complexities arise from not just the linguistic variations of
instructions, but also the noisy visual signals from the real-world environments

Xin Wang and Wenhan Xiong: Equal contribution.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-01270-0 3) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11220, pp. 38–55, 2018.
https://doi.org/10.1007/978-3-030-01270-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01270-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-01270-0_3
https://doi.org/10.1007/978-3-030-01270-0_3

Look Before You Leap 39

that have rich dynamics. Robot navigation via visual and language grounding is
also a fundamental goal in computer vision and artificial intelligence, and it is
beneficial for many practical applications as well, such as in-home robots, hazard
removal, and personal assistants.

Vision-and-Language Navigation (VLN) is the task of training an embodied
agent which has the first-person view as humans to carry out natural language
instructions in the real world [3]. Figure 1 demonstrates an example of the VLN
task, where the agent moves towards to the destination by analyzing the visual
scene and following the natural language instructions. This is different from some
other vision & language tasks where the visual perception and natural language
input are usually fixed (e.g. Visual Question Answering). For VLN, the agent
can interact with the real-world environment, and the pixels it perceives are
changing as it moves. Thus, the agent must learn to map its visual input to the
correct action based on its perception of the world and its understanding of the
natural language instruction.

(1) (2) (3)

(4) (5) (6)

Walk beside the outside doors and behind the chairs across the room.
Turn right and walk up the stairs. Stop on the seventh step.

Fig. 1. An example of our task. The embodied agent learns to navigate through the
room and arrive at the destination (green) by following the natural language instruc-
tions. Red and blue arrows match the orientations depicted in the pictures to the
corresponding sentence. (Color figure online)

Although steady progress has been made on the natural language command
of robots [5,16,21,41], it is still far from perfect. Previous methods are mainly
employing model-free reinforcement learning (RL) to train the intelligent agent
by directly mapping raw observations into actions or state-action values. But
model-free RL does not consider the environment dynamics and usually requires
a large amount of training data. Besides, most of them are evaluated only in
synthetic rather than real-world environments, which significantly simplifies the

40 X. Wang et al.

noisy visual & linguistic perception problem, and the subsequent reasoning pro-
cess in the real world.

It is worth noticing that when humans follow the instructions, however, they
do not solely rely on the current visual perception, but also imagine what the
environment would look like and plan ahead in mind before actually performing
a series of actions. For example, in baseball, the catcher and the outfield players
often predict the direction and the rate of speed that the ball will travel, so they
can plan ahead and move to the expected destination of the ball. Inspired by this
fact, we seek the help of recent advance of model-based RL [22,36] for this task.
Model-based RL attempts to learn a model that can be used to simulate the
environment and do multi-step lookaheads for planning. With an internal envi-
ronment model to predict the future and plan ahead, the agent can benefit from
the planning while avoiding from some trial-and-error in the real environment.

Therefore, in this paper, we propose a novel approach which improves the
vision-and-language navigation task performance by Reinforced Planning Ahead
(which we refer as RPA). More specifically, our method, for the first time, endows
the intelligent VLN agent with an environment model to simulate the world and
predict the future visual perception. Thus the agent can realize directly mapping
from the current real observation and planning of the future observations at the
same time, and then perform an action based on both. Furthermore, We choose
the real-world Room-to-Room (R2R) dataset as the testbed of our method. Our
model-free RL model significantly outperforms the baseline methods as reported
in the R2R dataset. Moreover, being equipped with the look-ahead module,
our RPA model further improves the results and achieves the best on the R2R
dataset. Hence, our contributions are three-fold:

– We are the first to combine model-free and model-based DRL for vision-and-
language navigation.

– Our proposed RPA model significantly outperforms the baselines and achieves
the best on the real-world R2R dataset.

– Our method is more scalable, and its strong generalizability allows it to be
better transferred to unseen environments than the model-free RL methods.

2 Related Work

Vision, Language and Navigation. Recently, the intersection of vision and
language research has attracted a lot of attention. Much work [9,15,31–34,38,40]
has been done in language generation conditioned on visual inputs. There is also
another line of work [4,14] that tries to answer questions from images. The task
of vision-language grounding [1,2,30] is more relevant to our task, which requires
the ability to connect the language semantics to the physical properties of the
environment. Our task requires the same ability but is more task-driven. The
agent in our task needs to sequentially interact with the environment and finish
a navigation task specified by a language instruction.

Early approaches [6,7,17,23] on robot navigation usually require a prior
global map or needs to build an environment map on-the-fly. The navigation

Look Before You Leap 41

goal in these methods is usually directly annotated in the map. In contrast to
these work, the VLN task is more challenging in the sense that no global map
is required and the goal is not directly annotated but described by natural lan-
guage. Under this setting, several methods have been proposed recently. Mei
et al. [20] proposed a sequence-to-sequence model to map the language to nav-
igation actions. Misra et al. [21] formulate navigation as a sequential-decision
process and propose to use reward shaping to effectively train the RL agent. In
the same environment, Xiong et al. [37] propose a scheduled training mechanism
which yields more efficient exploration and achieves better results. However,
these methods still operate in synthetic environments and consider either simple
discrete observation inputs or unrealistic top-down view of the environment.

Model-based Reinforcement Learning. Using model-based RL for plan-
ning is a long-standing problem in reinforcement learning. Recently, the great
computational power of neural networks makes it more realistic to learn a neu-
ral model to simulate environments [11,18,35]. But for more complicated envi-
ronments where the simulator is not exposed to the agent, the model-based
RL usually suffers from the mismatch between the learned and real environ-
ments [12,28]. In order to combat this issue, RL researchers are actively working
on combining model-free and model-based RL [26,27,29,39]. Most recently, Oh et
al. [22] propose a Value Prediction Network whose abstract states are trained to
make predictions of future values rather than of future observations, and Weber
et al. [36] introduce an imagination-augmented agent to construct implicit plans
and interpret predictions. Our algorithm shares the same spirit and is derived
from these methods. But instead of testing on games, we, for the first time, adapt
the combination of model-based and model-free RL for the real-world vision-and-
language task. Another related work by Pathak et al. [24] also learns to predict
the next state during roll-out. An intrinsic reward is calculated based on the
state prediction. Instead of inducing an extra reward, we directly incorporate
the state prediction into the policy module. In other words, our agent takes into
account the future predictions when making action decisions.

3 Method

3.1 Task Definition

As shown in Fig. 1, we consider an embodied agent that learns to follow natural
language instructions and navigate in realistic indoor environments. Specifically,
given the agent’s initial pose p0 = (v0, φ0, θ0), which includes the spatial posi-
tion, heading and elevation angles, and a natural language instruction (sequence
of words) X = {x1, x2, ..., xn}, the agent is expected to choose a sequence of
actions {a1, a2, ..., aT } ∈ A and arrive at the target position vtarget specified
by the language instruction X . The action set A consists of six unique actions,
i.e. turn left, turn right, camera up, camera down, move forward, and stop. In
order to figure out the desired action at at each time step, the agent needs to

42 X. Wang et al.

effectively associate the language semantics with its visual observation ot about
the environment. Here the observation ot is the raw RGB image captured by the
mounted camera. The performance of the agent is evaluated by both the success
rate Psucc (the percentage of test instructions that are correctly followed by the
agent) and the final navigation error Enav (average final distance from the target
position).

Fig. 2. The overview of our method.

3.2 Overview

In consideration of the sequential-decision making nature of the VLN task, we
formulate VLN as a reinforcement learning problem, where the agent sequentially
interacts with the environments and learns by trial and error. Once an action
is taken, the agent receives a scalar reward r(at, st) from the environment. The
agent’s action at at each step is determined by a parametrized policy function
π(ot; θ). The training objective is to find the optimal parameters θ that maximize
the discounted cumulative rewards:

max
θ

J π = E

[T∑
t=1

γt−1r(at, st)|π(ot; θ)
]

, (1)

where γ ∈ (0, 1) is the discounted factor that reflects the significance of future
rewards.

We model the policy function as a sequence-to-sequence neural network that
encodes both the language sequence X = {x1, x2, ..., xn} and image frames O =
{o1, o2, ..., oT } and decodes the action sequence {a1, a2, ..., aT }. The basic model

Look Before You Leap 43

consists of a language encoder that encodes the instruction X as word features
{w1, w2, ..., wn}, an image encoder that extracts high-level visual features, and
a recurrent policy network that decodes actions and recurrently updates its
internal state, which is supposed to encode the history of previous actions and
observations. To reinforce the agent by planning ahead and further improve
the model’s capability, we equip the agent with look-ahead modules, which
employ the environment model to take into account the future predictions.

As illustrated in Fig. 2(a), at each time step t, the recurrent policy model
takes as input the word features {wi} and the state si and produces the infor-
mation for the final decision making, which forms a model-free path by itself.
In addition, the model-based path exploits multiple look-ahead modules to real-
ize look-ahead planning and imagine the possible future trajectories. The final
action at is chosen by the action predictor, based on the information from both
the model-free and model-based paths. Therefore, our RPA method seamlessly
integrates model-free and model-based reinforcement learning.

3.3 Look-Ahead Module

The core component of the RPA method is the look-ahead module, which is
used to imagine the consequences of planning ahead multiple steps from the
current state st. In order to augment the agent with imagination, we introduce
the environment model that makes a prediction about the future based on the
state of the present. Since directly predicting the raw RGB image ot+1 is very
challenging, our environment model, instead, attempts to predict the abstract-
state representation st+1 that represents the high-level visual feature.

Figure 2(b) showcases the internal process of the look-ahead module, which
consists of an environment model, a look-ahead policy, and a trajectory encoder.
Given the abstract-state representation st of the real world at step t, the look-
ahead policy1 first takes st as input and outputs an imagined action a′

t. Our
environment model receives the state st and the action a′

t, and predicts the
corresponding reward r′

t and the next state s′
t+1. Then the look-ahead policy will

take a further action a′
t+1 based on the predicted state s′

t+1. The environment
model will make a new prediction {r′

t+1, s
′
t+2}. This look-ahead planning goes

m steps, where m is the preset trajectory length. We use an LSTM to encode all
the predicted rewards and states along the look-ahead trajectory and outputs its
representation τ ′

j . As shown in Fig. 2(a), at every time step t, our model-based
path operates J look-ahead processes and we obtain a look-ahead trajectory
representation τ ′

j for each (j = 1, ..., J). These J look-ahead trajectories are
then aggregated (by concatenation) together and passed to the action predictor
as the information of the model-based path.

1 We adopt the recurrent policy used in the model-free path as the look-ahead policy
in all our experiments.

44 X. Wang et al.

Fig. 3. The environment model.

3.4 Models

Here we further discuss the architecture designs of the learnable models in our
methods that are not specified above, including the environment model, the
recurrent policy model, and the action predictor.

Environment Model. Given current state st and the action at taken by the
agent, the environment model predicts the next state s′

t=1 and the reward r′
t.

As is shown in Fig. 3, the projection function fproj first concatenates st and at

and then projects them into the same feature space. Its output is then fed into
the transition function ftransition and the reward function freward to obtain s′

t=1

and r′
t respectively. In formula,

s′
t+1 = ftransition(fproj(st, at)) (2)
r′
t = freward(fproj(st, at)) , (3)

where fproj , ftransition, and freward are all learnable neural networks. Specifi-
cally, fproj is a linear projection layer, ftransition is a multilayer perceptron with
sigmoid output, and freward is also a multilayer perceptron but directly outputs
the scalar reward.

Recurrent Policy Model. Our recurrent policy model is an attention-based
LSTM decoder network (see Fig. 4). At each time step t, the LSTM decoder
produces the action at by considering the context of the word features {wi},
the environment state st, the previous action at−1, and its internal hidden state
ht−1. Note that one may directly take the encoded word features {wi} as the
input of the LSTM decoder. We instead adopt an attention mechanism to better
capture the dynamics in the language instruction and dynamically put more
attention to the words that are beneficial for the current action selection.

The left-hand side of Fig. 4 is a demo attention module for the LSTM decoder.
At each time step t, the context vector ct is computed as a weighted sum over
the encoded word features {wi}

ct =
∑

αt,iwi . (4)

Look Before You Leap 45

Fig. 4. An example of the unrolled recurrent policy model (from t to t+5). The left-side
yellow region demonstrates the attention mechanism at time step t.

These attention weights {αt,i} act as an alignment mechanism by giving higher
weights to certain words which match the decoder’s current status, and are
defined as

αt,i =
exp(et,i)∑n

k=1 exp(et,k)
, where et,i = h�

t−1wi . (5)

ht−1 is the decoder’s hidden state at previous step.
Once the context vector ct is obtained, the concatenation of [ct, st, at−1] is

fed as the input of the decoder to produce the intermediate model-free feature
for the action predictor’s use. Formally,

ht = LSTM(ht−1, [ct, st, at−1]) . (6)

Then the output feature is the concatenation of the LSTM’s output ht and the
context vector ct, which will be passed to the action predictor for making the
decision. But if the recurrent policy model is employed as an individual policy
(e.g. the look-ahead policy), then it directly outputs the action at based on
[ht; ct]. Note that in our model, we feed the context vector ct to both the LSTM
and the output posterior, which boosts the performance than solely feeding it
into the input.

Action Predictor. The action predictor is a multilayer perceptron with a
SoftMax layer as the last layer. Given the information from both the model-free
and model-based paths as the input, the action predictor generates a probability
distribution over the action space A.

3.5 Learning

The training of the whole system is a two-step process: learning the environment
model first and then learning the enhanced policy model, which is equipped
with the look-ahead module. It is worth noting that the environment model and
policy model have their own language encoders and are trained separately. The
environment model will be fixed during policy learning.

46 X. Wang et al.

Environment Model Learning. Ideally, the look-ahead module is expected to
provide the agent with accurate predictions of future observations and rewards. If
the environment model is noisy itself, it can actually provide misleading informa-
tion and make the training even more unstable. In terms of this, before we plug in
the look-ahead module, we pretrain the environment model using a randomized
teacher policy. Under this policy, the agent will decide whether to take the human
demonstration action or a random action based on a Bernoulli meta-policy with
phuman = 0.95. Since the agent’s policy will get closer to demonstration (opti-
mal) policy during training, the environment model trained by demonstration
policy will help it better predict the transitions close to the optimal trajectories.
On the other hand, in reinforcement learning methods, the agent’s policy is usu-
ally stochastic during training. Making the agent take the random action under
the probability of 1 − phuman is to simulate the stochastic training process. We
define two losses to optimize this environment model:

ltransition = E[(s′
t+1 − st+1)2] (7)

lreward = E[(r′
t+1 − rt+1)2] . (8)

The parameters are updated by jointly minimizing these two losses.

Policy Learning. With the pretrained environment model, we can incorporate
the look-ahead module into the policy model. We first discuss the general pipeline
of training the RL agent and then describe how to train the proposed RPA model.

In the VLN task, two distinct supervisions can be used to train the policy
model. First, we can use the demonstration actions provided by the simulator
to do pure supervised learning. The training objective in this case is to simply
maximize the log-likelihood of the demonstration action:

Jsl = E[log(π(ah|o; θ))] , (9)

where ah is the demonstration action. This agent can quickly learn a policy that
perform relative well on seen scenes. However, pure supervised learning only
encourage the agent to imitate the demonstration paths. This potentially limits
the agent’s ability to recover from erroneous actions in an unseen environment.
To also encourage the agent to explore the state-action space outside the demon-
stration path, we utilize the second supervision, i.e. the reward function. The
reward function depends on the environment state s and agent’s action a, and
is usually not differentiable in terms of θ. As the objective of the VLN task is
to successfully arrive at the target position, we define our reward function based
on the distance metric. We denote the distance between a state s and the target
position vtarget as Dtarget(s). Then the reward after taking action at at state st

is defined as:
r(st, at) = Dtarget(st) − Dtarget(st+1) . (10)

It indicates whether the action reduces the agents distance from the target.
Obviously, this reward function only reflects the immediate effect of a partic-
ular action but ignores the action’s future influence. To account for this, we

Look Before You Leap 47

Algorithm 1 RL training with planning ahead
1: θp: policy parameters to be learned, θe: environment model parameters
2: Initialize the R2R environment
3: while not converged do
4: Roll-out a trajectory (< s1, a1, r1 >, < s2, a2, r3 >, ..., < sT , at, rT >)
5: Update θe using g ∝ ∇θe(ltransition + lreward)
6: end while
7: for iteration=0,M-1 do
8: initialize the weight for supervised loss wSLloss ← 1
9: Sample a batch of training instructions

10: s0 ← initial state
11: for t = 0, MAX EPISODE LEN-1 do
12: Perform depth-bounded (depth = 2) roll-outs using the environment model
13: Use roll-out encoder to encoder all these simulated
14: Sample actions under the current policy in parallel
15: Save immediate rewards r(st, at) and performed actions at

16: if All Ended then
17: Break
18: end if
19: end for
20: Compute the discounted cumulative reward R(st, at)
21: Total loss lpolicy = −wSLloss ∗ Jsl − (1 − wSLloss) ∗ Jrl

22: Decrease wSLloss: wSLloss ← 0.1 + 0.9 ∗ exp(iteration/T)
23: Update θp using g ∝ ∇lpolicy

24: end for

reformulate the reward function in a discounted cumulative form:

R(st, at) =
T∑

t′=t

γt′−tr(st′ , at′) . (11)

Besides, the success of the whole trajectory can also be used as an additional
binary reward. Further details on reward setting are discussed in the experiment
section. With the reward function, the RL objective then becomes:

Jrl = Ea∼π(θ)[
∑

t

R(st, at)] . (12)

Using the likelihood-ratio estimator in the REINFORCE algorithm, the gradient
of Jrl can be written as:

∇θJrl = Ea∼π(θ)[∇θ log π(a|s; θ)R(s, a)] . (13)

With this two training objective, we can either use a mixed loss function as
in [25] to train the whole model, or use the supervised learning to warm-start
the model and use RL to do fine-tuning. In our case, we find the mixed loss
converges faster and achieves better performance.

48 X. Wang et al.

To joint train the policy model and look-ahead module, we first freeze the
pretrained environment model. Then at each step, we perform simulated depth-
bounded roll-outs using the environment model. Since we have five unique actions
besides the stop action, we perform the corresponding five roll-outs. Each path is
first encoded using an LSTM. The last hidden states of all paths are concatenated
and then feed into action predictor. Now the learnable parameters come from
three components: the original model-free policy mode, the roll-out encoder, and
the action predictor. The pseudo-code of the algorithm is shown in Algorithm 1.

4 Experiments

4.1 Experimental Settings

R2R Dataset. Room-to-Room (R2R) dataset [3] is the first dataset for vision-
and-language navigation task in real 3D environments. The R2R dataset is built
upon the Matterport3D dataset [8], which consists of 10,800 panoramic views
constructed from 194,400 RGB-D images of 90 building-scale scenes (Many of
the scenes can be viewed in the Matterport 3D spaces gallery2). The R2R dataset
further samples 7,189 paths capturing most of the visual diversity in the dataset
and collects 21,567 navigation instructions with an average length of 29 words
(each path is paired with 3 different instructions). As reported in [3], the R2R
dataset is split into training (14,025 instructions), seen validation (1,020), unseen
validation (2,349), and test (4,173) sets. Both the unseen validation and test
sets contain environments that are unseen in the training set, while the seen
validation set shares the same environments with the training set.

Implementation Details. We develop our algorithms on the open source code
of the Matterport3D simulator3. ResNet-152 CNN features [13] are extracted
for all the images without fine-tuning. In the model-based path, we perform one
look-ahead planning for each possible action in the environment. The j-th look-
ahead planning corresponds to the j-th of the action set A, and the subsequent
actions are executed by the shared look-ahead policy. In our experiments, we use
the same policy model trained in the model-free path as the look-ahead policy.
All the other hyperparameters are tuned on the validation set. More training
details can be found in the supplementary material.

Evaluation Metrics. Following the conventional wisdom, the R2R dataset
mainly evaluates the results by three metrics: navigation error, success rate, and
oracle success rate. We also report the trajectory length though it is not a metric.
The navigation error is defined as the shortest path distance in the navigation
graph between the agent’s final position vT and the destination vtarget. The suc-
cess rate calculates the percentage of the result trajectories whose navigation

2 https://matterport.com/gallery/.
3 https://github.com/peteanderson80/Matterport3DSimulator.

https://matterport.com/gallery/
https://github.com/peteanderson80/Matterport3DSimulator

Look Before You Leap 49

errors are less than 3m. The oracle success rate is also reported: the distance
between the closest point on the trajectory and the destination is used to calcu-
late the error, even if the agent does not stop there.

Baselines. In the R2R dataset, there exists a ground-truth shortest-path tra-
jectory (Shortest) for each instruction sequence from the starting location v0
to the target location vtarget. This shortest-path trajectory can be further used
for supervised training. Teacher-forcing [19] uses cross-entropy loss to train the
model at each time step to maximize the likelihood of the next gound-truth
action given the previous ground-truth action. Instead of feeding the ground-
truth action back to the recurrent model, one can sample an action based on the
output probabilities over the action space (Student-forcing). In our experiments,
we list the results of these two models as reported in [3] as our baselines. We
also include the results of a random agent (Random), which randomly takes an
action at each step.

4.2 Results and Analysis

Table 1 shows the result comparison between our models and the baseline mod-
els. We first implement our own recurrent policy model trained with the cross-
entropy loss (XE). Note that our XE model performs better than the Student-
forcing model on the test set. By switching to the model-free RL, the results
are slightly improved. Then our RPA learning method further boosts the per-
formance consistently on the metrics and achieves the best results in the R2R
dataset, which validates the effectiveness of combining model-free and model-
based RL for the VLN task.

An important fact revealed here is that our RPA method brings a notable
improvement on the unseen sets and the improvement is even larger than that on
the seen set (the relative success rates are improved by 6.7% on Val Seen, 15.5%
on Val Unseen, and 14.5% on Test over XE). While the model-free RL method
gains a very small performance boost on the unseen sets. This proves our claim
that it is easy to collect and utilize data in a scalable way to incorporate the
look-ahead module for the decision making. Besides, our RPA method turns out
to be more generalized and can be better transferred to unseen environments.

4.3 Ablation Study

Learning Curves of the Environment Model. To realize our RPA method,
we first need to train an environment model to predict the future state given the
present state, which would be then plugged into the look-ahead module. So it is
important to guarantee the effectiveness of the pretrained environment model. In
Fig. 5, we plot both the transition loss and the reward loss of the environment
model during training. Evidently, both losses converge to a stable point after
around 500 iterations. But it is also noticeable that the learning curve of the
reward loss is much noisier than that of the transition loss. This is because of

50 X. Wang et al.

T
a
b
le

1
.

R
es

u
lt

s
o
n

b
o
th

th
e

va
li
d
a
ti

o
n

se
ts

a
n
d

te
st

se
t

in
te

rm
s

o
f

fo
u
r

m
et

ri
cs

:
T
ra

je
ct

o
ry

L
en

g
th

(T
L
),

N
av

ig
a
ti

o
n

E
rr

o
r

(N
E

),
S
u
cc

es
s

R
a
te

(S
R

),
a
n
d

O
ra

cl
e

S
u
cc

es
s

R
a
te

(O
S
R

).
W

e
li
st

th
e

b
es

t
re

su
lt

s
a
s

re
p
o
rt

ed
in

[3
],

o
f

w
h
ic

h
S
tu

d
en

t-
fo

rc
in

g
p
er

fo
rm

s
th

e
b
es

t.
O

u
r

R
P
A

m
et

h
o
d

si
g
n
ifi

ca
n
tl

y
o
u
tp

er
fo

rm
s

th
e

p
re

v
io

u
s

b
es

t
re

su
lt

s,
a
n
d

it
is

a
ls

o
n
o
ti

ce
a
b
le

th
a
t

w
e

g
a
in

a
la

rg
er

im
p
ro

v
em

en
t

o
n

th
e

u
n
se

en
se

ts
,
w

h
ic

h
p
ro

v
es

th
a
t

o
u
r

R
P
A

m
et

h
o
d

is
m

o
re

g
en

er
a
li
ze

d
.

V
a
l
se

en
V

a
l
u
n
se

en
T
es

t
(u

n
se

en
)

M
o
d
e
l

T
L

(m
)

N
E

(m
)

S
R

(%
)

O
S
R

(%
)

T
L

(m
)

N
E

(m
)

S
R

(%
)

O
S
R

(%
)

T
L

(m
)

N
E

(m
)

S
R

(%
)

O
S
R

(%
)

S
h
o
rt

es
t

1
0
.1

9
0
.0

0
1
0
0

1
0
0

9
.4

8
0
.0

0
1
0
0

1
0
0

9
.9

3
0
.0

0
1
0
0

1
0
0

R
a
n
d
o
m

9
.5

8
9
.4

5
1
5
.9

2
1
.4

9
.7

7
9
.2

3
1
6
.3

2
2
.0

9
.9

3
9
.7

7
1
3
.2

1
8
.3

T
ea

ch
er

-f
o
rc

in
g

1
0
.9

5
8
.0

1
2
7
.1

3
6
.7

1
0
.6

7
8
.6

1
1
9
.6

2
9
.1

-
-

-
-

S
tu

d
en

t-
fo

rc
in

g
1
1
.3

3
6
.0

1
3
8
.6

5
2
.9

8
.3

9
7
.8

1
2
1
.8

2
8
.4

8
.1

3
7
.8

5
2
0
.4

2
6
.6

O
u
rs

X
E

1
1
.5

1
5
.7

9
4
0
.2

5
4
.1

8
.9

4
7
.9

7
2
1
.3

2
8
.7

9
.3

7
7
.8

2
2
2
.1

3
0
.1

M
o
d
el

-f
re

e
R

L
1
0
.8

8
5
.8

2
4
1
.9

5
3
.5

8
.7

5
7
.8

8
2
1
.5

2
8
.9

8
.8

3
7
.7

6
2
3
.1

3
0
.2

R
P
A

8
.4

6
5
.5
6

4
2
.9

5
2
.6

7
.2

2
7
.6
5

2
4
.6

3
1
.8

9
.1

5
7
.5
3

2
5
.3

3
2
.5

Look Before You Leap 51

the sparsity nature of rewards. Unlike the state transitions that are usually more
continuous, the rewards within trajectory samples are very sparse and of high
variance, thus it is noisier to predict the exact reward using mean square error.

Fig. 5. Learning curves of the environment model.

Effect of Different Rewards. We test four different reward functions in our
experiments. The results are shown in Table 2. The Global Distance reward func-
tion is defined per path by assigning the same reward to all actions along this
path. This reward measures how far the agent approaches the target by finishing
the path. The Success reward is a binary reward: if the path is correct, then all
actions will be assigned with a reward 1, otherwise reward 0. The Discounted
reward is defined as in Eq. 11. Finally, the Discounted & Success reward, which
is used by our final model, basically adds the Success binary reward to the imme-
diate reward (see Eq. 10) of the final action. Then the discounted cumulative
reward is calculated using the Eq. 11. In the experiments, the first two rewards
are much less effective than the discounted reward functions which assign dif-
ferent rewards to different actions. We believe the discounted reward calculated
at every time step can better reflect the true value of each action. As the final
evaluation is not only based on the navigation error but also success rate, we also
observe that incorporating the success information into the reward can further
boost the performance in terms of success rate.

Case Study. For a more intuitive view of the decision-making process in the
VLN task, we show a test trajectory that is performed by our RPA agent in
Fig. 6. The agent starts from position (1) and takes a sequence of actions by
following the natural language instruction until it reaches the destination (11)
and stops there. We observe that although the actions include Forward, Left,
Right, Up, Down, and Stop, the action Up and Down appear very rare in the
result trajectories. In most cases, the agent can still reach the destination even
without moving up/down the camera, which indicates that the R2R dataset has
its limitation on the action distribution.

52 X. Wang et al.

T
a
b
le

2
.
R

es
u
lt

s
o
f
th

e
m

o
d
el

-f
re

e
R

L
w

it
h

d
iff

er
en

t
re

w
a
rd

d
efi

n
it

io
n
s.

V
a
l
se

en
V

a
l
u
n
se

en

R
e
w
a
rd

N
av

ig
a
ti

o
n

er
ro

r
(m

)
S
u
cc

es
s

(%
)

O
ra

cl
e

su
cc

es
s

(%
)

N
av

ig
a
ti

o
n

er
ro

r
(m

)
S
u
cc

es
s

(%
)

O
ra

cl
e

su
cc

es
s

(%
)

G
lo
ba
l
d
is
ta
n
ce

6
.1

7
3
5
.5

4
5
.1

8
.2

0
1
9
.0

2
5
.6

S
u
cc
es
s

6
.2

1
3
7
.8

4
3
.2

8
.1

7
2
1
.3

2
6
.7

D
is
co
u
n
te
d

5
.7
9

4
0
.5

5
2
.8

7
.7
4

2
0
.4

2
8
.5

D
is
co
u
n
te
d

&
su
cc
es
s

5
.8

2
4
1
.9

5
3
.5

7
.8

8
2
1
.5

2
8
.9

Look Before You Leap 53

Fig. 6. An example trajectory executed by our RPA agent. Given the instruction and
the starting position (1), the agent produces one action per time step. In this example
we show all the 11 steps of this trajectory.

5 Conclusion

Through experiments, we demonstrate the superior performance of our proposed
RPA approach, which also tackles the common generalization issue of the model-
free RL when applying to unseen scenes. Besides, equipped with the look-ahead
module, our method can simulate the environment and incorporate the imagined
trajectories, making the model more scalable than the model-free agents. In
the future, we plan to explore the potential of the model-based RL to transfer
across different tasks, i.e. Vision-and-Language Navigation, Embodied Question
Answering [10] etc.

References

1. Alomari, M., Duckworth, P., Hawasly, M., Hogg, D.C., Cohn, A.G.: Natural lan-
guage grounding and grammar induction for robotic manipulation commands. In:
Proceedings of the First Workshop on Language Grounding for Robotics, pp. 35–43
(2017)

2. Alomari, M., Duckworth, P., Hogg, D.C., Cohn, A.G.: Learning of object proper-
ties, spatial relations, and actions for embodied agents from language and vision.
In: The AAAI 2017 Spring Symposium on Interactive Multisensory Object Percep-
tion for Embodied Agents Technical Report SS-17-05, pp. 444–448. AAAI Press
(2017)

3. Anderson, P., et al.: Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2 (2018)

4. Antol, S., et al.: VQA: visual question answering. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 2425–2433 (2015)

5. Beattie, C., et al.: Deepmind lab. arXiv preprint arXiv:1612.03801 (2016)
6. Borenstein, J., Koren, Y.: Real-time obstacle avoidance for fast mobile robots.

IEEE Trans. Syst. Man Cybern. 19(5), 1179–1187 (1989)

http://arxiv.org/abs/1612.03801

54 X. Wang et al.

7. Borenstein, J., Koren, Y.: The vector field histogram-fast obstacle avoidance for
mobile robots. IEEE Trans. Robot. Autom. 7(3), 278–288 (1991)

8. Chang, A., et al.: Matterport3d: learning from RGB-D data in indoor environ-
ments. arXiv preprint arXiv:1709.06158 (2017)

9. Chen, X., Lawrence Zitnick, C.: Mind’s eye: a recurrent visual representation for
image caption generation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2422–2431 (2015)

10. Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., Batra, D.: Embodied ques-
tion answering. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2018)

11. Finn, C., Levine, S.: Deep visual foresight for planning robot motion. In: 2017
IEEE International Conference on Robotics and Automation (ICRA), pp. 2786–
2793. IEEE (2017)

12. Gu, S., Lillicrap, T., Sutskever, I., Levine, S.: Continuous deep q-learning with
model-based acceleration. In: International Conference on Machine Learning, pp.
2829–2838 (2016)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

14. Huang, T.H.K., et al.: Visual storytelling. In: Proceedings of the 2016 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 1233–1239 (2016)

15. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image
descriptions. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3128–3137 (2015)

16. Kempka, M., Wydmuch, M., Runc, G., Toczek, J., Jaśkowski, W.: ViZDoom: A
Doom-based AI research platform for visual reinforcement learning. In: 2016 IEEE
Conference on Computational Intelligence and Games (CIG), pp. 1–8. IEEE (2016)

17. Kim, D., Nevatia, R.: Symbolic navigation with a generic map. Auton. Robot. 6(1),
69–88 (1999)

18. Lenz, I., Knepper, R.A., Saxena, A.: DeepMPC: learning deep latent features for
model predictive control. In: Robotics: Science and Systems (2015)

19. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

20. Mei, H., Bansal, M., Walter, M.R.: Listen, attend, and walk: neural mapping of
navigational instructions to action sequences. In: AAAI, vol. 1, p. 2 (2016)

21. Misra, D.K., Langford, J., Artzi, Y.: Mapping instructions and visual observations
to actions with reinforcement learning. arXiv preprint arXiv:1704.08795 (2017)

22. Oh, J., Singh, S., Lee, H.: Value prediction network. In: Advances in Neural Infor-
mation Processing Systems, pp. 6120–6130 (2017)

23. Oriolo, G., Vendittelli, M., Ulivi, G.: On-line map building and navigation for
autonomous mobile robots. In: Proceedings., 1995 IEEE International Conference
on Robotics and Automation, 1995, vol. 3, pp. 2900–2906. IEEE (1995)

24. Pathak, D., Agrawal, P., Efros, A.A., Darrell, T.: Curiosity-driven exploration
by self-supervised prediction. In: International Conference on Machine Learning
(ICML), vol. 2017 (2017)

25. Ranzato, M., Chopra, S., Auli, M., Zaremba, W.: Sequence level training with
recurrent neural networks. arXiv preprint arXiv:1511.06732 (2015)

26. Silver, D., et al.: The predictron: end-to-end learning and planning. arXiv preprint
arXiv:1612.08810 (2016)

http://arxiv.org/abs/1709.06158
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1704.08795
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1612.08810

Look Before You Leap 55

27. Sutton, R.S.: Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In: Machine Learning Proceedings 1990,
pp. 216–224. Elsevier (1990)

28. Talvitie, E.: Agnostic system identification for monte carlo planning. In: AAAI,
pp. 2986–2992 (2015)

29. Tamar, A., Wu, Y., Thomas, G., Levine, S., Abbeel, P.: Value iteration networks.
In: Advances in Neural Information Processing Systems, pp. 2154–2162 (2016)

30. Thomason, J., Sinapov, J., Mooney, R.: Guiding interaction behaviors for multi-
modal grounded language learning. In: Proceedings of the First Workshop on Lan-
guage Grounding for Robotics, pp. 20–24 (2017)

31. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image
caption generator. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3156–3164. IEEE (2015)

32. Wang, X., Chen, W., Wang, Y.F., Wang, W.Y.: No metrics are perfect: adversarial
reward learning for visual storytelling. In: Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
899–909. Association for Computational Linguistics (2018)

33. Wang, X., Chen, W., Wu, J., Wang, Y.F., Wang, W.Y.: Video captioning via
hierarchical reinforcement learning. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4213–4222 (2018)

34. Wang, X., Wang, Y.F., Wang, W.Y.: Watch, listen, and describe: Globally and
locally aligned cross-modal attentions for video captioning. In: Proceedings of the
2018 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp.
795–801. Association for Computational Linguistics (2018)

35. Watter, M., Springenberg, J., Boedecker, J., Riedmiller, M.: Embed to control: a
locally linear latent dynamics model for control from raw images. In: Advances in
Neural Information Processing Systems, pp. 2746–2754 (2015)

36. Weber, T., et al.: Imagination-augmented agents for deep reinforcement learning.
arXiv preprint arXiv:1707.06203 (2017)

37. Xiong, W., Guo, X., Yu, M., Chang, S., Zhou, B., Wang, W.Y.: Scheduled policy
optimization for natural language communication with intelligent agents. arXiv
preprint arXiv:1806.06187 (2018)

38. Xu, K., et al.: Show, attend and tell: Neural image caption generation with visual
attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)

39. Yao, H., Bhatnagar, S., Diao, D., Sutton, R.S., Szepesvári, C.: Multi-step dyna
planning for policy evaluation and control. In: Advances in Neural Information
Processing Systems, pp. 2187–2195 (2009)

40. Yu, H., Wang, J., Huang, Z., Yang, Y., Xu, W.: Video paragraph captioning using
hierarchical recurrent neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4584–4593 (2016)

41. Zhu, Y., et al.: Target-driven visual navigation in indoor scenes using deep rein-
forcement learning. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3357–3364. IEEE (2017)

http://arxiv.org/abs/1707.06203
http://arxiv.org/abs/1806.06187

	Look Before You Leap: Bridging Model-Free and Model-Based Reinforcement Learning for Planned-Ahead Vision-and-Language Navigation
	1 Introduction
	2 Related Work
	3 Method
	3.1 Task Definition
	3.2 Overview
	3.3 Look-Ahead Module
	3.4 Models
	3.5 Learning

	4 Experiments
	4.1 Experimental Settings
	4.2 Results and Analysis
	4.3 Ablation Study

	5 Conclusion
	References

