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Abstract. This paper presents a scene text detection technique that
exploits bootstrapping and text border semantics for accurate localiza-
tion of texts in scenes. A novel bootstrapping technique is designed which
samples multiple ‘subsections’ of a word or text line and accordingly
relieves the constraint of limited training data effectively. At the same
time, the repeated sampling of text ‘subsections’ improves the consis-
tency of the predicted text feature maps which is critical in predicting a
single complete instead of multiple broken boxes for long words or text
lines. In addition, a semantics-aware text border detection technique is
designed which produces four types of text border segments for each
scene text. With semantics-aware text borders, scene texts can be local-
ized more accurately by regressing text pixels around the ends of words
or text lines instead of all text pixels which often leads to inaccurate
localization while dealing with long words or text lines. Extensive exper-
iments demonstrate the effectiveness of the proposed techniques, and
superior performance is obtained over several public datasets, e.g. 80.1
f-score for the MSRA-TD500, 67.1 f-score for the ICDAR2017-RCTW,
etc.
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1 Introduction

Scene text detection and recognition has attracted increasing interests in recent
years in both computer vision and deep learning research communities due to
its wide range of applications in multilingual translation, autonomous driving,
etc. As a prerequisite of scene text recognition, detecting text in scenes plays an
essential role in the whole chain of scene text understanding processes. Though
studied for years, accurate and robust detection of texts in scenes is still a very
open research challenge as witnessed by increasing benchmarking competitions
in recent years such as ICDAR2015-Incidental [19], ICDAR2017-MLT [30], etc.
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With the fast development of convolutional neural networks (CNN) in rep-
resentation learning and object detection, two CNN-based scene text detection
approaches have been investigated in recent years which treat words or text lines
as generic objects and adapt generic object detection techniques for the scene
text detection task. One approach is indirect regression based [7,17,23,25] which
employs object detectors such as Faster-RCNN [34] and SSD [24] that first gen-
erate proposals or default boxes and then regress to accurate object boxes. These
techniques achieve state-of-the-art performance but require multiple proposals of
different lengths, angles and shapes. Another approach is direct regression based
[11,52] which adapts DenseBox [14] for the scene text detection task. This app-
roach does not require proposals and is capable of detecting words and text lines
of different orientations and lengths, but it often suffers from low localization
accuracy while dealing with long words or text lines.

Fig. 1. Overview of proposed scene text detection technique: For each training image,
a set of augmented images and semantics-aware text borders are extracted and fed to
a multi-channel fully convolutional network to train a scene text detector (as shown
above the dotted line). Given a test image, the scene text detector predicts a text
feature map and four text borders (highlighted in four colors) for accurate scene text
detection (as shown below the dotted line). (Color figure online)

Both direct and indirect regression based approaches are thus facing three
common constrains while adapted for the scene text detection task. The first is
broken detections where a text line is detected as multiple broken text segments.
The reason is that text lines often suffer from more variation as compared with
characters or words due to their larger spatial coverage in scenes, e. g. different
words within a text line may have different colors, fonts, environmental lighting,
etc. The second is inaccurate localization, where the regression fails to produce
an accurate text box either by missing certain parts of texts or including cer-
tain neighboring background. The inaccurate localization is largely due to the
long shape of text lines where the regressing text pixels around the text line
center are very far from text line ends where text bounding box vertices are
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located. The third is limited training data. A large amount of annotations are
required to capture the rich variation within scene texts, but existing datasets
often have limited training images, e.g. 300 training images in MSRA-TD500
[44], 229 training images in ICDAR2013 [20], etc.

We design two novel techniques to tackle the three constraints of state-of-
the-art scene text detection techniques. First, we design a novel bootstrapping
based scene text sampling technique that repeatedly extracts text segments of
different lengths from annotated texts as illustrated in Fig. 1. The bootstrapping
based sampling helps from two aspects. First, it augments the training data
and relieves the data annotation constraint by leveraging existing scene text
annotations. Second, the repeated sampling of text segments of various lengths
helps to decouple different types of image degradation and reduce the complexity
of training data effectively, e. g. scene texts with different lighting within the
same text line could be sampled by different text line segments with less variation
as illustrated in Fig. 2. The proposed bootstrapping based scene text sampling
technique thus helps to improve the consistency of the produced text feature
map and performance of regression which are critical for detecting a complete
instead of multiple broken boxes for a long word or text line. The idea of repeated
sampling has been exploited in training generic object detectors by cropping
multiple samples around annotated objects of interest.

Second, we design a novel semantics-aware text border detection technique for
accurate localization of texts in scenes. In particular, four text border segments
are defined by a pair of long-side borders and a pair of short-side borders which
can be extracted based on the text annotation boxes automatically as illustrated
in Figs. 1 and 4. By labeling the four text border segments as four types of
objects, the trained scene text detector is capable of detecting the four types
of text border segments separately as illustrated in Fig. 1 (four colors are for
illustration only). The differentiation of the four text border segments helps to
improve the text localization accuracy from two aspects. First, the text bounding
box can be regressed more accurately by using text pixels lying around the two
ends of words or text lines (which can be identified by using the short-side text
border segments) that are much closer to the text bounding box vertices as
compared with text pixels lying around the middle of text lines. Second, the
long-side text border segments can be exploited to separate neighboring text
lines especially when they are close to each other.

2 Related Work

Scene Text Detection. Quite a number of scene text detection techniques
have been reported in the literature [46,53] and they can be broadly classified
into three categories depending on whether they detect characters, words, or text
lines directly. The first category takes a bottom-up approach which first detects
characters [2,39,47] or text components [35,40] and then groups them into words
or text lines. The earlier works detect characters using various hand-crafted fea-
tures such as stroke width transform (SWT) [4,44], maximally stable extremal
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regions (MSERs) [2,15,18,31], boundary [28], FAST keypoints [1], histogram of
oriented gradients (HoG) [39], stroke symmetry [49], etc. With the fast develop-
ment of deep neural networks, CNNs have been widely used to detect characters
in scenes, either by adapting generic object detection methods [35,40] or tak-
ing a semantic image segmentation approach [9,45,50]. Additionally, different
techniques have been developed to connect the detected characters into words
or text lines by using TextFlow [39], long short-term memory (LSTM) [50], etc
[16,26,45].

The second category treats words as one specific type of objects and detects
them directly by adapting various generic object detection techniques. The meth-
ods under this category can be further classified into two classes. The first class
leverages Faster-RCNN [34], YOLO [33] and SSD [24] and designs text-specific
proposals or default boxes for scene text detection [5,7,17,23,25,38]. The sec-
ond class takes a direct regression approach [11,52] which first detects region of
interest (ROI) and then regresses text boxes around the ROI at pixel level.

The third category detects text lines directly by exploiting the full convolu-
tion network (FCN) [27] that has been successfully applied for semantic image
segmentation. For example, He et al. [8] proposed a coarse-to-fine FCN that
detects scene texts by extracting text regions and text central lines. In [32,42],
FCN is exploited to learn text border maps, where text lines are detected by
finding connected components with text labels.

Our proposed technique takes the direct regression approach as in [11,52]
that regresses word and text line boxes directly from text pixels. On the other
hand, we detect multiple text border segments with specific semantics (instead of
a whole text border as in [32,42]) that help to improve the scene text localization
accuracy greatly, more details to be described in Sect. 3.2.

Data Augmentation. Data augmentation has been widely adopted in deep
network training as a type of regularization for avoiding over-fitting. For vari-
ous computer vision tasks such as image classification and object detection, it
is widely implemented through translating, rotating, cropping and flipping of
images or annotated objects of interest for the purpose of creating a larger
amount of training data [6,22,37]. Some more sophisticated augmentation
schemes have been proposed in recent years, e. g. using masks to hide certain
parts of objects to simulate various occlusion instances [51]. Data augmentation
has become one routine operation in deep learning due to its effectiveness in
training more accurate and more robust deep network models.

Our bootstrapping based scene text sampling falls under the umbrella of data
augmentation. It is similar to image cropping but involves innovative designs by
catering to text-specific shapes and structures. By decoupling image variations
in long words or text lines, it helps to produce more consistent scene text features
which is critical in predicting a single complete instead of multiple broken boxes
for a word or text line, more details to be described in Sect. 3.1.
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3 Methodology

We proposed a novel scene text detection technique that exploits bootstrapping
for data augmentation and semantics-aware text border segments for accurate
scene text localization. For each training image, the proposed technique extracts
a set of bootstrapped training samples and two pairs of text border segments
as illustrated in Fig. 1, and feeds them (together with the original scene text
annotations) to a multi-channel fully convolutional network to train a scene text
detection model. The bootstrapping based sampling improves the consistency of
the produced text feature map which greatly helps to predict a single complete
instead of multiple broken boxes for long words or text lines. The semantics of the
detected text border segments greatly help to regress more accurate localization
boxes for words or text lines in scenes as illustrated in Fig. 1.

3.1 Bootstrapping Based Image Augmentation

Fig. 2. Illustration of the bootstrapping based scene text sampling: Given an image
with a text line as annotated by the green box, three example text line segments are
extracted as highlighted by red boxes where the centers of the sampling windows are
taken randomly along the center line of the text line (the shrunk part in yellow color).
The rest text regions outside of the sampling windows are filled by inpainting. (Color
figure online)

We design a bootstrapping based image augmentation technique that repeatedly
samples text line segments for each text annotation box (TAB) as labeled by
the green box in the top-left image in Fig. 2. With L denoting the TAB length,
the center line of the TAB (as highlighted by the dashed line) is first shrunk
by 0.1 ∗ L from both TAB ends which gives the yellow line segment as shown
in Fig. 2. Multiple points are then taken randomly along the shrunk center line
for text segment sampling. The length of each sampled text segment varies from
0.2 ∗ L to twice the distance between the sampling point to the closer TAB end.
In addition, the rest of the TAB outside the sampled text segment is filled by
inpainting [42] as illustrated in Fig. 2. With the sampling process as described
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Fig. 3. The inclusion of augmented images improves the scene text detection: With the
inclusion of the augmented images in training, more consistent text feature maps and
more complete scene text detections are produced as shown in (d) and (e), as compared
with those produced by the baseline model (trained using original training images
only) shown in (b) and (c). The coloring in the text feature maps shows the distance
information predicted by regressor (blue denotes short distances and red denotes long
distance). (Color figure online)

above, the number of the augmented images can be controlled by the number of
text segments that are sampled from each text box.

The proposed bootstrapping based scene text image augmentation technique
improves the consistency of predicted text feature map as well as the perfor-
mance of regression greatly as illustrated in Fig. 3. For the sample images in
Fig. 3a, Figs. 3b and 3d show the text feature maps that are produced by the
baseline model (trained by using the original training images) and the augmented
model (trained by further including the augmented sample images), respectively
(training details to be described in Sect. 3.3). The coloring in the text feature
maps shows the distance to the left-side boundary as predicted by regressor - blue
denotes short distance and red denotes long distance. Figures 3c and 3e show the
corresponding detection boxes, respectively, where red boxes show false detec-
tions and green boxes show correct detections. It can be seen that the inclusion
of the augmented images helps to produce more consistent text feature maps as
well as smoother geometrical distance maps (for regression of text boxes) which
leads to more complete instead of broken scene text detections.

3.2 Semantics-Aware Text Borders

We extract two pairs of semantics-aware text border segments for each scene
text annotation as illustrated in Fig. 4. With W and L denoting the width and
length of a text annotation box (TAB), a pair of long text border segments in
green and blue colors can be extracted along the two long edges of the TAB as
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illustrated in Fig. 4, where the segment length is set at L and the segment width
is empirically set at 0.2 ∗ W . In addition, the center line of the two long text
border segments overlaps perfectly with the long edges of TAB so that the text
border segments capture the transition from text to background or vice versa.

Fig. 4. Semantics-aware text border detection: Four text border segments are automat-
ically extracted for each text annotation box including a pair of short-edge text border
segments in yellow and red colors and a pair of long-edge text border segments in green
and blue colors. The four types of text border segments are treated as four types of
objects and used to train deep network models, and the trained model is capable of
detecting the four types of text border segments as illustrated in Fig. 5c. (Color figure
online)

A pair of short text border segments can also be extracted based on the TAB
as illustrated in Fig. 4. In particular, the dimension along the TAB width is set
at 0.8 ∗ W which fits perfectly in between the two long text segments. Another
dimension along the TAB length is set the same as W with which the trained
text border detector can detect a certain amount of text pixels to be used in
text bounding box regression. Similarly, the center line of the short text border
segments (along the TAB width) overlaps perfectly with the TAB short edge
so that the extracted text border segments capture the transition from text to
background or vice versa.

The use of the semantics-aware text borders helps to improve the localization
accuracy of the trained scene text detection model greatly (training details to
be described in Sect. 3.3). With the identified text border semantics as shown in
Fig. 5c (four colors are for illustration only), text pixels around the text line ends
can be determined by the overlap between the short text border segments and
the predicted text feature map. The text bounding box can thus be regressed by
using the text pixels lying around the text line ends which often leads to accurate
text localization as illustrated in Fig. 5d. The reason is that text pixels around
the middle of texts are far from the text box vertices for long words or text lines
which can easily introduce regression errors and lead to inaccurate localization
as illustrated in Fig. 5b. At the other end, the long text border segments also
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Fig. 5. The use of semantics-aware text borders improves scene text detection: With
the identified text border semantics information as illustrated in (c), scene texts can be
localized much more accurately as illustrated in (d) as compared with the detections
without using the border semantics information as illustrated in (b). Green boxes give
correct detections and red boxes give false detections. (Color figure online)

help for better scene text detection performance. In particular, the long text
border segments can be exploited to separate text lines when neighboring text
lines are close to each other.

3.3 Scene Text Detection

The original scene text annotations, together with the augmented images and
the extracted semantics-aware text borders as described in Sects. 3.1 and 3.2, are
fed to a multi-channel FCN to train a scene text detection model. The training
aims to minimize the following multi-task loss function:

L = Lcls + λloc ∗ Lloc + λbrd ∗ Lbrd (1)

where Lcls, Lloc and Lbrd refer to loss of text feature (confidence score of each
pixel being a text pixel), regression (distances from each pixel to four sides of text
boundaries) and border feature (confidence score of each pixel being a border
pixel), respectively. Parameters λloc and λbrd are weights of the corresponding
losses which are empirically set at 1.0 in our system.

For the regression loss Lloc, we adopt the IoU loss [48] in training. For the
classification losses Lcls and Lbrd, we use Dices Coefficient [29] which is a widely-
used in image segmentation tasks. Given a ground truth region G and a predicted
region P, the Dices Coefficient is defined by:
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Algorithm 1 Text bounding box detection.
1: Input: Regressor R, text region map T and text border region map B
2: Output: A list of text bounding boxes BB
3: Delineate text lines t in T using the long text border regions in B
4: Determine left-side and right-side regressing text pixels pl and pr by overlaps

between the delineated t and the two short text border regions in B
5: Derive two sets of text boxes BBl and BBr by regressing pl and pr
6: BB ← Φ
7: for each box in BBl and BBr do
8: if the two boxes are regressed from text pixels of the same t then
9: Merge the two boxes and add the merged box to BB

10: end if
11: end for
12: Apply NMS to BB

Lbrd =
2 ∗ |G ∩ P |
|G| + |P | (2)

Given a test image, our trained scene text detector produces three maps
including a text feature map, a text border feature map, and a regressor. The
text border feature map has four channels which give a pair of short text border
segments and a pair of long text border segments as illustrated in Fig. 5c. The
regressor also has four channels that predict the distances to the upper, lower, left
and right text boundaries, respectively, as illustrated in Figs. 3c and 3e (which
shows one channel distance to the left-side text boundary).

Algorithm 1 shows how the text bounding boxes are derived from the outputs
of the trained scene text detector. Given a text feature map and a text border
feature map, a text region map and four text border region maps are first deter-
mined (as the algorithm inputs) by global thresholding where the threshold is
simply estimated by the mean of the respective feature map. Overlaps between
the text region map and four text border region maps can then be determined.
Text lines can thus be delineated by removing the overlaps between the text
region map and the two long text border region maps. Further, text bounding
box vertices at the left and right text line ends can be predicted by regressing
the text pixels that overlap with the left-side and right-side text border region
maps, respectively. Finally, the text bounding box is determined by merging the
regressed left-side and right-side text box vertices.

4 Experiments

4.1 Datasets and Evaluation Metrics

MSRA-TD5001[44] comprise 300 training images and 200 testing images with
scene texts printed in either Chinese or English. For each training image, annota-
tions at either word or text line level is provided, where each annotation consists
1 http://tc11.cvc.uab.es/datasets/MSRA-TD500 1.

http://tc11.cvc.uab.es/datasets/MSRA-TD500_1
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Table 1. Recall (R), precision (P) and f-score (F) of different scene text detection
methods over the MSRA-TD500 and ICDAR2013 datasets.

MSRA-TD500 ICDAR2013

Method R P F Method R P F

Kang et al. [18] 62.0 71.0 66.0 He et al. [11] 81.0 92.0 86.0

Yin et al. [47] 63.0 81.0 71.0 Tian et al. [38] 83.1 91.1 86.9

Zhang et al. [50] 67.0 83.0 74.0 He et al. [7] 86.0 88.0 87.0

He et al. [11] 70.0 77.0 74.0 Zhou et al. [52] 82.7 92.6 87.7

Yao et al. [45] 75.3 76.5 75.9 Jiang et al. [17] 82.6 93.6 87.7

Zhou et al. [52] 67.4 87.3 76.1 He et al. [10] 83.0 93.0 88.0

Shi et al. [35] 70.0 86.0 77.0 Tian et al. [40] 87.0 88.0 88.0

Wu et al. [42] 78.0 77.0 77.0 Hu et al. [12] 87.5 93.3 90.3

Baseline(ResNet) 73.4 70.3 71.8 Baseline(ResNet) 79.3 86.9 83.0

Border(ResNet) 72.0 76.4 74.3 Border(ResNet) 84.5 85.4 84.9

Aug.(ResNet) 71.1 77.7 74.3 Aug.(ResNet) 86.7 83.8 85.2

Aug.+Border(ResNet) 73.3 80.7 76.8 Aug.+Border(ResNet) 86.9 87.8 87.4

Aug.+Border(DenseNet) 77.4 83.0 80.1 Aug.+Border(DenseNet) 87.1 91.5 89.2

of a rectangle box and the corresponding box rotation angle. Due to the very
small number of training images, 400 training images in the HUST-TR400 2 [43]
are included in training.

ICDAR20133[20] consists of 229 training images and 233 testing images
with texts in English. The text annotations are at word level, and no rotation
angles are provided as most captured scene texts are almost horizontal. We also
include training images from ICDAR2015 in training.

ICDAR2017-RCTW4[36] comprises 8,034 training images and 4,229 test-
ing images with scene texts printed in either Chinese or English. The images are
captured from different sources including street views, posters, screen-shot, etc.
Multi-oriented words and text lines are annotated using quadrilaterals.

ICDAR2017-MLT5[30] comprise 7,200 training images, 1,800 validation
images and 9,000 testing images with texts printed in 9 languages including Chi-
nese, Japanese, Korean, English, French, Arabic, Italian, German and Indian.
Most annotations are at word level while texts in non-Latin languages like Chi-
nese are annotated at text-line level. Similar to ICDAR2017-RCTW, texts in
this dataset are also multi-oriented with text annotated using quadrilaterals.

Evaluation Metrics. For MSRA-TD500, we use the evaluation protocol in [41].
For ICDAR2013, ICDAR2017-RCTW and ICDAR2017-MLT, we perform eval-
2 http://mclab.eic.hust.edu.cn/UpLoadFiles/dataset/HUST-TR400.zip.
3 http://rrc.cvc.uab.es/?ch=2&com=introduction.
4 http://www.icdar2017chinese.site:5080/dataset/.
5 http://rrc.cvc.uab.es/?ch=8.

http://mclab.eic.hust.edu.cn/UpLoadFiles/dataset/HUST-TR400.zip
http://rrc.cvc.uab.es/?ch=2&com=introduction
http://www.icdar2017chinese.site:5080/dataset/
http://rrc.cvc.uab.es/?ch=8
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uations by using the online evaluation systems that are provided by the respec-
tive dataset creators. In particular, one-to-many (one rectangle corresponds to
many rectangles) and many-to-one (many rectangles correspond to one rectan-
gle) matches are adopted for better evaluation for the ICDAR2013 dataset.

4.2 Implementation Details

The network is optimized by Adam [21] optimizer with starting learning rate
of 10−4 and batch size of 16. Images are randomly resized with ratio of 0.5, 1,
2, or 3 and cropped into 512× 512 without crossing texts before training. 20
augmented images are sampled for each training images by using the proposed
data augmentation technique. The whole experiments are conducted on Nvidia
DGX-1. All our models are fine-tuned from a pre-trained model using the Ima-
geNet dataset [3]. Two base networks including ResNet [6] and DenseNet [13] are
implemented for evaluation. Multi-scale evaluation is implemented by resizing
the longer side of test images to 256, 512, 1024, 2048 pixels.

Table 2. Recall (R), precision (P) and f-score (F) of different detection methods over
the ICDAR2017-RCTW and ICDAR2017-MLT datasets.

ICDAR2017-RCTW ICDAR2017-MLT

Method R P F Method R P F

gmh [36] 57.8 70.6 63.6 Sensetime OCR [30] 69.4 56.9 62.6

NLPR PAL [36] 57.3 77.2 65.8 SCUT DLVClab [30] 54.5 80.3 65.0

Foo & Bar [36] 59.5 74.4 66.1 NLPR PAL [11] 57.9 76.7 66.0

Baseline(ResNet) 52.2 66.6 58.5 Baseline(ResNet) 60.9 64.5 62.6

Border(ResNet) 58.5 74.2 65.4 Border(ResNet) 60.6 73.9 66.6

Border(DenseNet) 58.8 78.2 67.1 Border(DenseNet) 62.1 77.7 69.0

4.3 Experimental Results

Quantitative Results. Table 1 shows quantitative experimental results on the
MSRA-TD500 and ICDAR2013 datasets as well as comparisons with state-of-
the-art methods. As Table 1 shows, five models are trained including: (1) ‘Base-
line (ResNet)’ that is trained by using ResNet-50 and the original training
images as described in Sect. 4.1, (2) ‘Border (ResNet)’ that is trained by includ-
ing text border segments as described in Sect. 3.2, (3) ‘Aug. (ResNet)’ that is
trained by including augmented scene text images as described in Sect. 3.1, (4)
‘Aug.+Border (ResNet)’ that is trained by including both text border segments
and augmented images, and (5) ‘Aug.+Border (DenseNet)’ that is trained by
using DenseNet-121 with the same training data as the ‘Aug.+Border (ResNet)’.
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As Table 1 shows, the detection models using either semantics-aware text
borders or augmented images or the both outperform the baseline model consis-
tently. In addition, the models using both text borders and augmented images
outperform the ones using either text borders or augmented images alone. Fur-
ther, the trained models outperform the state-of-the-art methods clearly when
the DenseNet-121 is used, demonstrating the superior performance of the pro-
posed technique. We observe that the performance improvement is mainly from
higher precisions for the MSRA-TD500 dataset as compared with higher recalls
for the ICDAR2013 dataset. This inconsistency is largely due to the different
evaluation methods for the two datasets, i.e. the evaluation of the MSRA-TD500
follows one-to-one (one rectangle corresponds to one rectangles) match whereas
the evaluation of the ICDAR2013 follows one-to-many and many-to-one. As
studied in [42], the ICDAR2013 online evaluation system usually produces lower
precision as compared with the real values. We conjecture that the actual preci-
sion by our method should be higher than what is presented in Table 1.

Fig. 6. Illustration of the proposed scene text detection technique: Successful detec-
tions where sample images are picked from the four studied datasets including (a)
MSRA-TD500, (b) ICDAR2013, (c) ICDAR2017-RCTW and (d) ICDAR2017-MLT,
respectively.

The proposed technique is also evaluated on two more recent large-scale
datasets including the ICDAR2017-RCTW and the ICDAR2017-MLT. As the
two datasets both have a large amount of training images, we evaluated the pro-
posed semantics-aware text borders only. As Table 2 shows, the use of semantics-
aware text borders helps to improve both detection recall and detection preci-
sion clearly for the ICDAR2017-RCTW dataset where a mixture of word level
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and text-line level annotations is created. For the ICDAR2017-MLT dataset,
the improvement is mainly from higher precisions as most annotations in this
dataset are at word level. In addition, the proposed techniques outperform state-
of-the-art methods (including baselines and winning methods as reported in the
ICDAR2017-RCTW and ICDAR2017-MLT benchmarking competition papers
[30,36]) for both datasets when DenseNet is used.

Qualitative Results. Figure 6 shows several sample images and the correspond-
ing detections by using the proposed technique, where all sample images are
picked from the four studied datasets including several images in Figs. 3 and
5. As Fig. 6 shows, the proposed technique is capable of detecting scene texts
that have different characteristics and suffer from different types of degradation.
In particular, the inclusion of the bootstrapping based augmentation helps to
produce more complete detections though texts may not be localized accurately
as illustrated in Fig. 3. On the other hand, the inclusion of the semantics-aware
text borders helps to produce more accurate scene text localization though texts
may be detected by multiple broken boxes as illustrated in Fig. 5. The combi-
nation of bootstrapping based augmentation and semantics-aware text borders
overcomes both constraints (broken detection and inaccurate localization) and
produces more complete and accurate text detections as illustrated in Fig. 6.

Fig. 7. The inclusion of the semantics-aware text borders and bootstrapping based aug-
mentation helps to improve the scene text localization accuracy greatly as illustrated
in (a), where the f-score gap keeps increasing with the increment of IoU threshold
on MSRA-TD500 dataset. Additionally, the inclusion of the bootstrapping based aug-
mentation also leads to fast learning and convergence as illustrated in (b) and (c) on
MSRA-TD500 dataset.

Discussion. The proposed technique is capable of producing accurate scene
text localization which is critical to the relevant scene text recognition task.
This can be observed in Fig. 7a that shows f-scores of the proposed model (the
semantics-aware text borders and augmented images are included in training) vs
the baseline model (training uses the original images only) when different IoUs
(Intersection over Union) are used in evaluation. As Fig. 7a shows, the f-score
gap increases from 5.0 to 15.9 steadily when the IoU threshold increases from
0.5 to 0.8, demonstrating more accurate scene text localization by the proposed
technique.
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Fig. 8. Illustration of the failure cases of proposed scene text detection technique: Sam-
ple images are from the four studied datasets, where green boxes are correct outputs
of our methods, red boxes are false detections and yellow boxes give the ground-truth
missing detections. (Color figure online)

Another interesting observation is that the inclusion of the augmented images
often accelerates the training convergence as illustrated in Fig. 7b. For training
over 40,000 iterations (batch size of 16) on the MSRA-TD500 dataset, the model
using the augmented images takes 36 hours while the baseline model using the
original training images only takes 56 hours when both models converge and
obtain f-scores of 74.3 and 71.8, respectively, as shown in Table 1. This can
be further verified by checking the training loss vs training iteration number
as shown in Fig. 7c. Experiments on other datasets show similar convergence
pattern as shown in Figs. 7b and 7c. This does not make sense at the first sight
as the augmentation increases the number of training images by 20 times (20
augmented images are sampled for each training image). We conjecture that the
faster convergence is largely due to the augmented text line segments that are
shorter than the original text lines and accordingly decouple different types of
image variation which leads to the faster learning and model convergence.

The proposed technique could fail under several typical scenarios as illus-
trated in Fig. 8. First, it may introduce false positives while handling scene texts
of a big size, largely due to NMS errors as shown in the first image. Second,
it may produce incorrect broken detections when a text line has large blanks
as shown in the second image. This kind of failure often results from annota-
tion inconsistency where some long text line with large blanks is annotated by
a single box whereas some is annotated by multiple boxes. Third, it could be
confused when vertical texts can also be interpreted as horizontal and vice versa
as shown in the third image. Without the text semantic information, it is hard
to tell whether it is two vertical text lines or five horizontal words.

5 Conclusions

This paper presents a novel scene text detection technique that makes use of
semantics-aware text borders and bootstrapping based text segment augmen-
tation. The use of semantics-aware text borders helps to detect text border
segments with different semantics which improves the scene text localization
accuracy greatly. The use of augmented text line segments helps to improve the
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consistency of predicted feature maps which leads to more complete instead of
broken scene text detections. Experiments over four public datasets show the
effectiveness of the proposed techniques.

Acknowledgement. This work is funded by the Ministry of Education, Singapore,
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