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Abstract. We present a deep learning based volumetric approach for
performance capture using a passive and highly sparse multi-view cap-
ture system. State-of-the-art performance capture systems require either
pre-scanned actors, large number of cameras or active sensors. In this
work, we focus on the task of template-free, per-frame 3D surface recon-
struction from as few as three RGB sensors, for which conventional visual
hull or multi-view stereo methods fail to generate plausible results. We
introduce a novel multi-view Convolutional Neural Network (CNN) that
maps 2D images to a 3D volumetric field and we use this field to encode
the probabilistic distribution of surface points of the captured subject.
By querying the resulting field, we can instantiate the clothed human
body at arbitrary resolutions. Our approach scales to different numbers
of input images, which yield increased reconstruction quality when more
views are used. Although only trained on synthetic data, our network
can generalize to handle real footage from body performance capture.
Our method is suitable for high-quality low-cost full body volumetric
capture solutions, which are gaining popularity for VR and AR content
creation. Experimental results demonstrate that our method is signifi-
cantly more robust and accurate than existing techniques when only very
sparse views are available.
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1 Introduction

Performance capture is essential for a variety of applications ranging from gam-
ing, visual effects to free-viewpoint videos. The increasing popularity of VR/AR
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technologies has further triggered the needs for volumetric capture systems, which
enables an end-to-end solution for capturing dynamic clothed digital humans.

High-end capture solutions use a large number of cameras and active projec-
tions [1–3] or controlled lighting conditions [4,5], and are restricted to professional
studio settings. More lightweight systems often use a pre-scanned subject-specific
template [6–8], but may produce unnatural baked-in details, e.g. clothing folds.
Classic shape-from-silhouette approaches [9] and stereo variants [10] use a visual
hull to approximate the target geometry and do not rely on a template mesh. How-
ever, surfaces with concavities are difficult to model, and the resulting geometries
are often rough when a very sparse number of cameras are used. In most cases, a
minimum of eight cameras are required to ensure reasonable results.

To make high-quality performance capture more accessible to end users,
we propose a passive motion capture technique without requirements for pre-
processing or specialized capture hardware. In particular, our approach is able
to faithfully capture detailed human shapes from highly sparse, e.g. three or
four, camera views without the need of manual image processing, marker track-
ing, texture cues, or a pre-scanned mesh template.

Reconstruction from highly sparse views is challenging as large regions of the
body are often occluded or not observed by multiple cameras. We tackle this
challenge by using a novel multi-view convolutional neural network. Inspired by
the shape-from-silhouette method, which reconstructs the target surface by fus-
ing multi-view ray projections from 2D silhouettes, we propose to learn a similar
3D probability field that depicts the surface boundary of a human body using
multi-view projection constraints. However, instead of calculating the silhouettes
directly, which is either tedious to extract manually or error-prone if computed
via automatic segmentation, we use a 2D deep neural network to learn discrim-
inative features that could tell whether a 3D sample point is inside or outside
the silhouette. In particular, we associate each 3D point in the space where the
object occupies with the features extracted from its projections on multi-view
image planes using our convolutional neural network. The per-point features
are then fed into a classification network to infer its possibilities of lying inside
and outside of the human body. By densely sampling the near-surface region,
we obtain a high-resolution volumetric probability field that can be used for
reconstructing the body geometry at arbitrary resolutions.

As our proposed network implicitly learns the relations between 3D volume
and 2D projections, our approach is capable of reconstructing texture-less sur-
faces and unseen regions, which is not possible with existing muti-view stereo
techniques. For varying input views, e.g. different viewing distances and numbers
of captured images, we propose a novel scale-invariant symmetric pooling layer
to aggregate features from different views. As a result, our approach scales well
to different numbers of input views and produces better reconstruction when
more views are available. We evaluate the performance of our network using
different numbers of views. Our network is only trained on synthetic data gen-
erated using a standard 3D rendering software with animated CG characters.
Our method can faithfully capture fast and complex motions with a wide range
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of occlusion, backgrounds, and clothing. In addition, we compare our technique
with state-of-the-art performance capture methods and demonstrate that our
approach is significantly more robust and accurate, when only very sparse views
are available.

Our main contributions are:

– A novel performance capture technique that is able to robustly reconstruct
clothed human bodies from highly sparse camera views, which was not pos-
sible using existing techniques.

– A lightweight performance capture framework that does not require back-
ground segmentation, marker tracking, texture cues, or a pre-scanned tem-
plate model.

– A novel multi-view 2D CNN network that maps multi-view images to a dense
3D probability field, which enables high-resolution reconstruction and robust
motion capture from texture-less surfaces.

– A large synthetic dataset of clothed human body animations rendered on multi-
ple views, containing 50 characters and 13 animation sequences for each subject.

2 Related Work

Silhouette-Based Multi-view Reconstruction. Visual hulls created from multi-
view silhouette images are widely used for multi-view reconstruction, [6,10–15],
since they are fast and easy to compute and well approximate the underlying 3D
geometry. Further progresses have been made to the visual-hull-based viewing
experience [9], smoothing the geometry with fewer cameras [16], and real-time
performance [17]. Approaches have also emerged to recover geometric details
using multi-view constraints [18–20] and photometric stereo [4,21]. Recently,
Collet et al. [1] introduced a system for high-quality free-viewpoint video by
fusing multi-view RGB, IR and silhouette inputs.

Despite the speed and robustness of silhouette-based reconstruction methods,
their reliance on visual hulls implies bias against surface concavities as well as
susceptibility to artifacts in invisible space.
Human Body Performance Capture. Actor-specific shape priors can be incorpo-
rated to improve the reconstruction quality for human body performance cap-
ture [7,22–25]. Additional improvements have been proposed using kinematic
skeletons [26,27], segmentation of moving subjects [27–32] and human paramet-
ric models [33–39], even enabling single-view reconstruction [40–44]. To obtain
even higher accuracy and robustness, multi-view depth based approaches are
actively explored [45–48]. Orts-Escolano et al. [2] employ active stereo cam-
eras and highly specialized acquisition devices for real-time high-quality capture.
Wang et al. [49] use sparse depth sensors and RGB inputs to capture moving
subject with textures. In comparison, our method does not require any active
sensors and is more accessible to common users.

Further efforts have focused on capturing dynamic details such as clothing
folds using shape-from-shading [50], photometric stereo [51,52] or implicit mod-
eling of deformable meshes [53]. To reduce the computational cost for the inverse
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rendering problem in many of these approaches, Pons-Moll et al. [54] propose
a multi-cloth 3D model to reconstruct both body and clothes from 4D scan
sequences, estimating an unclothed body shape using [55,56] and tracking the
clothing over time. More recently, Xu et al. [8] reconstruct a human body wear-
ing general clothing. However, this approach requires each actor to be scanned in
advance for a template mesh and skeleton. In contrast, our method reconstructs
the mesh in a fully automatic way without needing any template model.
Multi-view 3D Deep Learning. Multi-view convolutional neural networks (CNN)
have been introduced to learn deep features for various 3D tasks including shape
segmentation [57], object recognition and classification [58–60], correspondence
matching [61], and novel view synthesis [62–64]. More closely related, a num-
ber of previous works apply multi-view CNNs to 3D reconstruction problems
in both unsupervised [65] and supervised approaches to obtain the final geome-
try directly [66,67], or indirectly via normal maps [68], silhouettes [69], or color
images [70]. Inspired by the multi-view stereo constraint, others [71,72] have
formulated ray consistency and feature projection in a differentiable manner,
incorporating this formulation into an end-to-end network to predict a volumet-
ric representation of a 3D object.

Hartmann et al. [73] propose a deep learning based approach to predict the
similarity between the image patches across multiple views, which enables 3D
reconstruction using stereopsis. In contrast, our approach aims for a different
and more challenging task of predicting per-point possibility of lying on the
reconstructed surface, and directly connects 3D volume and its 2D projections
on the image planes. Closer to our work, Ji et al. [74] propose a learned metric to
infer the per-voxel possibility of being on the reconstructed surface in a volumet-
ric shape representation. However, due to the reliance on multi-view stereopsis,
these methods [73,74] fail to faithfully reconstruct textureless surfaces and gen-
erate dense reconstruction from sparse views. In addition, as both the input
images and the output surface need to be converted into volumetric representa-
tions, it remains difficult for prior methods to generate high-resolution results.
Our approach, on the other hand, can work on textureless surfaces and produce
results with much higher resolution by leveraging an implicit representation.

Additionally, Dibra et al. [75] propose a cross-modal neural network that
captures parametric body shape from a single silhouette image. However, this
method can only predict naked body shapes in neutral poses, while our approach
generalizes well to dynamic clothed bodies in extreme poses.

3 Overview

Given multiple views and their corresponding camera calibration parameters as
input, our method aims to predict a dense 3D field that encodes the probabilistic
distribution of the reconstructed surface. We formulate the probability predic-
tion as a classification problem. At a high level, our approach resembles the
spirit of the shape-from-silhouette method: reconstructing the surface accord-
ing to the consensus from multi-view images on any 3D point staying inside
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the reconstructed object. However, instead of directly using silhouettes, which
only contain limited information, we leverage the deep features learned from a
multi-view convolution neural network.

As demonstrated in Fig. 1, for each query point in the 3D space, we project
it onto the multi-view image planes using the input camera parameters. We
then collect the multi-scale CNN features learned at each projected location and
aggregate them through a pooling layer to obtain the final global feature for the
query point. The per-point feature is later fed into a classification network to infer
its possibilities of lying inside and outside the reconstructed object respectively.
As our method outputs a dense probability field, the surface geometry can be
faithfully reconstructed from the field using marching cube reconstruction.

We introduce the multi-view based probability inference network and training
details in Sect. 4. In Sect. 5, we will detail the surface reconstruction.

Fig. 1. Network architecture.

4 Multi-view Based Probability Inference Network

4.1 Network Architecture

Our network consists of two parts: one feature extraction network that learns
discriminative features for each query point in the 3D space, and one classifica-
tion network that consumes the output of the preceding network and predicts
the per-point possibilities of lying inside and outside the reconstructed body.
Both networks are trained in an end-to-end manner.

Feature Extraction. The feature extraction network takes multi-view
images along with their corresponding camera calibration parameters and 3D
query points as input. The multi-view images are first passed to a shared-weight
fully convolutional network, whose building block includes a convolutional layer,
an Relu activation layer, and a pooling layer. Batch normalization [76] is utilized
in each convolutional layer.

We then associate each query point pi with its features by projecting it onto
the multi-view image planes. Let qij denote pi’s projection onto image plane j.
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As shown in Fig. 1, we track each qij throughout the feature maps at each level
of convolutional layers. The features retrieved from each layer at the projected
location are concatenated to obtain a single-view feature vector Fij .

Since the view projection has floating-point precision, ambiguity may arise
for feature extraction if the projected point lies on the boundary between two
adjacent pixels. To address this issue, at each level of the feature maps, we
perform bilinear interpolation on the nearest four pixels according to the local
coordinate of the projected location. It is worth mentioning that by applying
bilinear interpolation, our method further increases the receptive field of the
feature vector at each layer, and makes the network more robust against bound-
ary points around the silhouette. If the projection of a query point is out of scope
of the input image, we fill its feature vector with zeros and do not include it in
the back propagation.
Scale-invariant Symmetric Pooling. After obtaining the feature vector Fij from
each view j, one key module must effectively aggregate these view-dependent
signatures. However, the viewing distance and focal length may differ for each
camera, and so the scales of projections of the same 3D volume may vary signif-
icantly from viewpoint to viewpoint. As a result, features on the same level of
convolutional layers may have different 3D receptive fields across different views.
Therefore, direct element-wise pooling on view-dependent features may not be
effective, as it could be operated on mismatched scales.

To resolve this issue, we introduce shared-weight MLP layers before the pool-
ing operation so that multi-scale features will be more uniformly distributed to
all element entries, enabling the follow-up pooling module to be feature scale
invariant. Then, we apply a permutation invariant pooling module on the out-
put feature vectors of the MLP layers. The outputs of the pooling module are
the final feature vector associated with each query point.

Fig. 2. Classification
boundary.

Classification Network. After obtaining a feature
vector for a query point, we employ a classification net-
work to infer its probability of being on the reconstructed
surface. A simple structure consisting of multiple fully con-
nected layers is used for this classification task. In particu-
lar, we predict two labels (Pin, Pout) for each point, where
Pin and Pout stand for the possibility of the 3D point being
inside and outside the reconstructed object, respectively.
For a query point p and a ground-truth mesh M, if p is
inside M, we mark its labels as (1, 0); if p lies on the sur-
face, it is marked as (1, 1); otherwise, p is marked as (0, 1).

In reality, only very few sample points lay exactly on the surface. To bet-
ter capture the surface, we relax the criteria for determining the inside/outside
labels. As shown in Fig. 2, in addition to the points inside the surface, we also
include those outside points whose distance to the surface is below a threshold
τ (τ is set as 1 cm) and mark their Pin label as 1. Similarly, we apply the same
threshold to mark Pout. Therefore, points in the near-surface region are labeled
as both (1, 1). We predict the two labels independently and train the network
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using sigmoid cross-entropy loss. Therefore, the predicted value of Pin and Pout

ranges from 0 to 1, where a larger value indicates a higher probability. More
details of network design are provided in the supplementary materials.

4.2 Network Training

As our approach aims to predict a dense probability field, for each 3D mesh,
it is necessary to generate a large amount of query points for training the net-
work. However, uniformly sampling the 3D space would be prohibitive in terms
of computational cost. In fact, we only care about points that are near the
final reconstructed surface. We therefore adopt an adaptive sampling strategy
to emphasize our sampling on such points. For each ground-truth mesh M, we
first generate a regular point grid with resolution 2563 filling the space of an
enlarged (1.5 times) bounding box of M. We compute signed distances of the
grid points with the method given by [77]. We then calculate the largest distance
l from the interior grid point to M’s surface: l = |mini dist(ti,M)|.

To select points that are more centered around the surface of M, we utilize
Monte Carlo sampling to keep those grid points ti whose distance |dist(ti,M)|
satisfies the Gaussian distribution: norm(μ = 0, σ = l). For each of the combi-
nations of multi-view images and their camera matrices that will appear in the
training, we augment the data by firstly reconstructing the visual hull from the
input views; and then randomly sampling more points inside the visual hull but
ensuring the newly added points achieve an equal distribution inside and outside
the ground-truth mesh M. We stop adding samples when the total number of
query points for each M reaches 100, 000.

We train the network using various combinations of camera views. For a
certain number of views (3, 4 or 8), we train an individual model. We test each
model using corresponding number of views. The combinations of views are
selected such that every adjacent two of them have a wide baseline and all the
views together cover the entire subject in a loop. The query points and their
labels for each mesh are pre-computed so as to save training time.

During training, we randomly draw 10, 000 query points from the pre-
computed set for each sample. We directly take color images of each view as
inputs in their original resolutions, which varies from 1600×1200 to 1920×1080.
For each batch, we only load images from one multi-view scene due to the limited
GPU memory. The network is optimized using Adam optimizer. We start with
a learning rate of 0.00001 and gradually decay it exponentially every 100, 000
batches with a factor of 0.7. We train the network for 20 epochs on a single
NVIDIA GTX 1080Ti GPU.

5 Surface Reconstruction

At test time, we first use our network to generate a dense probability field from
the input images. As the near-surface region only occupies little volume com-
pared to the space it encloses, it is highly inefficient to apply uniform sampling
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over the space. Therefore we employ an octree-based approach to achieve a high-
resolution reconstruction with a low computational cost. In particular, we first
compute the center of the scene according to the camera positions and their cal-
ibration parameters. A bounding box of length 3 meters on each side is placed
at the scene center. We then fill the bounding box with a regular 3D grid. By
traversing each cube in the grid, we subdivide those cubes whose centers are
surface points, or whose vertices consist both inside and outside points, recog-
nized by our network. As our network predicts two probabilities (Pin, Pout) per
point, we propose to aggregate the two probabilities into one signed distance for
surface point prediction and later reconstruction of the entire surface.

As discussed in Sect. 4.2 and illustrated in Fig. 2, Pin and Pout indicate the
relaxed probabilities of being inside and outside the object, respectively. Since
Pin and Pout are independent events, the probability of a point being near the
surface can be simply computed as: Psurf = Pin × Pout. By excluding the near-
surface region (defined above), we define the probability of reliably staying inside
the object as P ′

in = Pin × (1 − Pout). Similarly, the probability of lying in the
outer region but having point-to-mesh distance larger than τ can be calculated
as P ′

out = Pout× (1−Pin). We compute all three probabilities {Psurf , P ′
in, P ′

out}
for each grid point. We then determine the signed distance value for each point
by selecting the largest probability. In particular, we only assign three discrete
signed distance values: {−1, 0, 1}, which represent inner, surface and outer points
respectively. For instance, for one query point, if its Psurf is larger than the
other probabilities, it will be assigned with 0 and treated as a surface point. A
similar strategy is applied to determine inner and outer points and to assign
their corresponding signed distances.

We then generate a dense signed distance field in a coarse-to-fine manner. As
discussed previously, we subdivide those cubes marked by the network, further
infer the signed distance for all the octant cubes, and iterate until a target
resolution is achieved. Finally, after obtaining the signed distance field, we use
the marching cubes algorithm to reconstruct the surface whose signed distance
equals 0.

6 Results

6.1 Dataset

A good training set of sufficient size is key to a successful deep learning model.
However, existing datasets of multi-view clothed body capture usually consist of
only a few subjects, making them unsuitable for training a deep neural network.
SURREAL dataset [78] has large amount of synthetic humans but it does not
contain geometric details of clothes and thus is not suitable for our task.

We therefore generate a synthetic dataset by rendering rigged and animated
human character models from Mixamo [79] as seen from multiple views. The
characters share the same rig, and so a variety of animations and human poses
could be rapidly synthesized of different figures dressed in many clothing types
and styles. In total we render images with 50 characters and 13 animations,
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for eight camera viewpoints with known projection matrices. We use 43 charac-
ters and 10 animations for training. The remaining seven characters and three
animations are used for validation and testing.

6.2 Evaluations

In this section, we evaluate our model on various datasets, including [4,6,18],
as well as our own synthetic data. For real-world datasets whose original back-
grounds are removed, we composite a green background according to the pro-
vided segmentation.

Fig. 3. Camera
setting for reported
four-view results.

Qualitative Results. We first reconstruct these results from
four views on grids of resolution 10243 as shown in Fig. 3.
All the results are generated directly from our pipeline
without any post-processing except edge collapse to reduce
file sizes. All the results are generated from test cases. To
validate the accuracy of the reconstructed geometry, we
colorize each vertex with the visible cameras with sim-
ple cosine weight blending. Our rendering results could be
further improved via recent real-time [80] or offline [81]
texturing approaches.

Figure 6 shows the camera setting for the results. From only four-view inputs
with limited overlap between each of them, our network reconstructs a water-
tight surface that resembles the subject’s geometry and recovers reasonable local
details. Even for ambiguous areas where no cameras have line-of-sight, our net-
work can still predict plausible shapes. We also present results on a sequence
of challenging motion performance from Vlasic et al. [6] in Fig. 4. Even for the
challenging poses and extreme occlusion, our network can robustly recover a
plausible shape.

As our network is not limited by the number of views, we train and test
our models with different numbers of views. We test our model with three-
view, four-view, and eight-view settings, selecting input views incrementally. As
shown in Fig. 5, with more views, our network can predict more details, e.g.
facial shape and hairstyle. For most of the results shown in this paper, we use
a four-view setting, which achieves the best balance between view-sparsity and
reconstruction quality.

Quantitative Results. We evaluate our reconstruction accuracy by measuring
Euclidean distance from reconstructed surface vertices to the reference scan. For
real world data, we use results given by [6] and [18] as our references, which
approximate the ground-truth surface using a much more advanced capturing
setup. We show visualizations for the mesh-to-scan distances and evaluate the
distance statistics.

As shown in Fig. 3, given inputs from various test sets, our network predicts
accurate surface, with median mesh-to-scan distance of all examples less than
0.9 cm. As shown in Fig. 4, our network also predicts accurate reconstruction for
the challenging input image sequences, with median mesh-to-scan distance below
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Fig. 4. Results reconstructed from four views Top to bottom rows: input multi-view
images, reconstructed mesh, textured mesh, and error visualization. From left to right,
median mesh-to-scan distance: 0.90 cm, 0.66 cm, 0.85 cm, 0.54 cm, 0.59 cm; mean mesh-
to-scan distance: 1.18 cm, 0.88 cm, 1.10 cm, 0.65 cm, 0.76 cm.
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Fig. 5. Sequence results. Top to bottom rows: multi-view images, reconstructed mesh,
textured mesh, and error visualization. From left to right, median mesh-to-scan dis-
tance: 0.94 cm, 0.86 cm, 0.82 cm, 0.76 cm, 0.85 cm; mean mesh-to-scan distance: 1.31 cm,
1.27 cm, 1.21 cm, 1.06 cm, 1.25 cm.

0.95 cm. In Fig. 5, we observe that the distance error decreases as more views are
available during network training. The median distance for 8-view drops below
half of the distance as for the three-view training setting.
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Fig. 6. Reconstructions with different views. Top to bottom rows: reconstructed mesh,
textured mesh, and error visualization. Left to right columns: three-view results, four-
view results, and eight-view-view results, for both two test cases respectively. Median
mesh-to-scan distance: left subject: 0.84 cm (three-view), 0.77 cm (four-view), 0.45 cm
(eight-view); right subject: 1.38 cm (three-view), 1.06 cm (four-view), 0.59 cm (eight-
view).

6.3 Comparisons

In this section we compare our approach with existing methods using four-view
input in Fig. 7.

While traditional multi-view stereo PMVS [82] is able to reconstruct an accu-
rate point cloud, it often fails to produce complete geometry with large base-
line (four views to cover 360 degree in this case) and texture-less inputs. As
a learning-based approach, SurfaceNet [74] reconstructs a more complete point
cloud, but still fails at the region with fewer correspondences due to large base-
line. It remains difficult to reconstruct a complete surface from sparse point
clouds results of PMVS and SurfaceNet. Although visual hull [17] based app-
roach can reconstruct a complete shape, the reconstruction deviates significantly
from the true shape due to its incapability of capturing concavities. On the con-
trary, our method is able to reconstruct a complete model with the clothed
human shape well sculpted given as few as four views.

In terms of runtime, PMVS takes 3.2 seconds with 12 threads using four
views. Since SurfaceNet is not designed to reconstruct object in 360 degrees,
we run on neighboring views for four times and then fuse them to obtain a
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Fig. 7. Comparisons. Top to bottom rows: input 4-view images, PMVS, SurfaceNet,
visual hull, and ours.

complete reconstruction. This process takes 15 minutes with one Titan X GPU.
For visual hull, it takes 30 ms on Titan X GPU at 5123 resolution with an octree
implementation. Our multi-view network takes 4.4 seconds for 2563 resolution,
and 18 seconds for 5123 resolution with an octree implementation on GTX 1080
Ti. Since operations for image feature extraction, pooling, point query, octree
transverses, and marching cubes can all be done distributively in parallel, the
performance of our method could be potentially further boosted.
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7 Discussion and Conclusion

In this work, we present a fully-automatic lightweight solution to the challenging
problem of dynamic human body performance capture, without requiring active
lighting, explicit foreground segmentation, specialized tracking hardware, or a
human body template. Using only sparse-view RGB images as input, our novel
multi-view CNN encodes the probability of a point lying on the surface of the
capture subject, enabling subsequent high resolution surface reconstruction. Our
network architecture, including the scale-invariant symmetric pooling, ensures
the robustness of our approach, even under as few as three input views.

Fig. 8. Failure case.

Since only trained on synthetic data
where all training subjects were rendered
in a virtual green screen room, our cur-
rent implementation does not generalize
to handle input images with arbitrarily
complex backgrounds. We have experi-
mented with training our network using
data composited with a small set of ran-
dom backgrounds. However, the results
are not satisfactory (Fig. 8). Also, results
of using unseen camera views that are sig-
nificantly different from our training data
can be less ideal.

It would be a future avenue to introduce larger variations into the training
data including complex backgrounds, additional camera viewpoints from which
to sample, and various lighting conditions. It is also interesting to explore the
problem of unconstrained reconstruction, i.e., how to faithfully capture human
motion from highly sparse viewpoints even when the camera calibration param-
eters are not available.

Acknowledgement. We would like to thank the authors of [74] who helped testing
with their system. This work was supported in part by the ONR YIP grant N00014-
17-S-FO14, the CONIX Research Center, one of six centers in JUMP, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA, the Andrew and Erna
Viterbi Early Career Chair, the U.S. Army Research Laboratory (ARL) under contract
number W911NF-14-D-0005, Adobe, and Sony. The content of the information does
not necessarily reflect the position or the policy of the Government, and no official
endorsement should be inferred.

References

1. Collet, A., et al.: High-quality streamable free-viewpoint video. ACM Trans. Graph.
(TOG) 34(4), 69 (2015)

2. Orts-Escolano, S., et al.: Holoportation: Virtual 3d teleportation in real-time. In:
Proceedings of the 29th Annual Symposium on User Interface Software and Tech-
nology, pp. 741–754. ACM (2016)



Deep Sparse Volumetric Capture 365

3. Joo, H., et al.: Panoptic studio: a massively multiview system for social motion cap-
ture. In: The IEEE International Conference on Computer Vision (ICCV) (2015)

4. Vlasic, D., et al.: Dynamic shape capture using multi-view photometric stereo.
ACM Trans. Gr. (TOG) 28(5), 174 (2009)

5. Li, H., et al.: Temporally coherent completion of dynamic shapes. ACM Trans. Gr.
(TOG) 31(1), 2 (2012)

6. Vlasic, D., Baran, I., Matusik, W., Popović, J.: Articulated mesh animation from
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